JPH02275332A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPH02275332A
JPH02275332A JP9630589A JP9630589A JPH02275332A JP H02275332 A JPH02275332 A JP H02275332A JP 9630589 A JP9630589 A JP 9630589A JP 9630589 A JP9630589 A JP 9630589A JP H02275332 A JPH02275332 A JP H02275332A
Authority
JP
Japan
Prior art keywords
diaphragm
pressure
temperature
sensitive resistor
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9630589A
Other languages
Japanese (ja)
Inventor
Yasushige Yamagishi
山岸 康重
Yasuhiro Hattori
服部 泰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Copal Electronics Co Ltd
Original Assignee
Copal Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Copal Electronics Co Ltd filed Critical Copal Electronics Co Ltd
Priority to JP9630589A priority Critical patent/JPH02275332A/en
Publication of JPH02275332A publication Critical patent/JPH02275332A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform highly accurate pressure detection with a simple constitution by bonding an electronic cooling element to a diaphragm wherein a pressure sensitive resistor forming a required circuit is provided, and providing a cylindrical space which is communicated to a nozzle at the central part. CONSTITUTION:A diaphragm 8 is provided with an insulating layer 11. A pressure sensitive resistor 18 forming a bridge circuit is provided on the surface of the diaphragm 8. An electronic cooling element which is composed of a copper electrode 3, a solder layer 2, a Peltier element 1 and the like is coupled to the diaphragm 8 through an upper bonding layer 13. A discharge plate 15 is provided at the lower surface of a lower electronic cooling element. A cylindrical space is formed with a cylinder 16 which is communicated to a nozzle 17 at the lower surface of the diaphragm 8. In this constitution, cooling is effectively performed, the resistor 18 is operated at the constant temperature all the time and temperature correction is not required. Thus, a pressure sensor which can detect the pressure highly accurately with the simple constitution is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧力センサに関し、特にダイアフラム上に、感
圧抵抗を配置してなる圧力センサにおける温度補償に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a pressure sensor, and more particularly to temperature compensation in a pressure sensor in which a pressure-sensitive resistor is arranged on a diaphragm.

(従来の技術) 従来、ダイアフラムとしてセラミック薄板を用い、この
ダイアフラム上に厚膜印刷、焼成技術により形成した厚
膜抵抗でなる感圧抵抗を配置した圧力センサが実用化さ
れている。
(Prior Art) Conventionally, a pressure sensor has been put into practical use in which a ceramic thin plate is used as a diaphragm, and a pressure sensitive resistor made of a thick film resistor formed by thick film printing and baking techniques is arranged on the diaphragm.

例えば第8図A、Bに示すようにセラミック薄板でなる
ダイアフラム38の下面に厚膜印刷、焼成技術により感
圧抵抗28、導体パターン30等を形成したものを、セ
ラミックでなるリング状の台座26の上面上に、ガラス
等でなる接着層33を介して接着した圧力センサが実用
化されている。
For example, as shown in FIGS. 8A and 8B, a pressure-sensitive resistor 28, a conductive pattern 30, etc. are formed on the lower surface of a diaphragm 38 made of a thin ceramic plate by thick film printing and firing techniques, and then a ring-shaped pedestal 26 made of ceramic is formed. A pressure sensor has been put into practical use that is bonded onto the top surface of the sensor via an adhesive layer 33 made of glass or the like.

一方、金属薄板でなるダイアフラム上にガラスゲリーズ
絶縁層などの無機質絶縁層を介して厚膜抵抗でなる感圧
抵抗を配置した圧力センサも提案されている。
On the other hand, a pressure sensor has also been proposed in which a pressure sensitive resistor made of a thick film resistor is placed on a diaphragm made of a thin metal plate with an inorganic insulating layer such as a glass Gerry's insulating layer interposed therebetween.

(発明が解決しようとする課題) 前記従来の圧力センサでは、感圧抵抗28の温度特性は
あまりよくないので、高精度センサにするには温度補償
回路を用いる等の温度補償を行なう必要があった。これ
は個々のセンサの温度特性を測定した後、温度補償回路
を入れるため大変時間がかかった。
(Problems to be Solved by the Invention) In the conventional pressure sensor, the temperature characteristics of the pressure-sensitive resistor 28 are not very good, so in order to make the sensor highly accurate, it is necessary to perform temperature compensation such as using a temperature compensation circuit. Ta. This took a lot of time because it involved measuring the temperature characteristics of each sensor and then installing a temperature compensation circuit.

更に安価な金属ダイアフラムを使用する場合、感圧抵抗
と温度係数(膨張率)が異なるので、感圧抵抗とダイア
フラム間の絶縁層を感圧抵抗と温度係数を等しくするだ
けでは高精度化に対して問題があり実用化には至ってい
ない。
Furthermore, when using an inexpensive metal diaphragm, the pressure-sensitive resistor and the temperature coefficient (expansion coefficient) are different, so simply making the insulating layer between the pressure-sensitive resistor and the diaphragm have the same pressure-sensitive resistor and temperature coefficient is not sufficient for achieving high precision. However, there are some problems and it has not been put into practical use.

(課題を解決するための手段) 本発明の圧力センサでは、前記の課題を解決することを
目的とするもので。
(Means for Solving the Problems) The pressure sensor of the present invention aims to solve the above problems.

(1)ダイアフラムの上面に、感圧抵抗がフルブリッジ
回路状に形成され、前記ダイアフラムの下面に接着層を
介して銅電極が固定され、前記fIiJ電極の下面には
半田層を介して下部に放熱板の固着された電子冷却素子
が固定され、かつ前記ダイアプラムの下面には、外部よ
り圧力を導入する円筒とノズルを設けたものである。
(1) A pressure sensitive resistor is formed in the form of a full bridge circuit on the upper surface of the diaphragm, a copper electrode is fixed to the lower surface of the diaphragm via an adhesive layer, and a copper electrode is fixed to the lower surface of the fIiJ electrode via a solder layer. A thermoelectric cooling element to which a heat sink is fixed is fixed, and a cylinder and a nozzle for introducing pressure from the outside are provided on the lower surface of the diaphragm.

(2)前記電子冷却素子をベルチェ素子でなるようにし
たものである。
(2) The electronic cooling element is a Beltier element.

(作用) 本発明の圧力センサでは、厚膜印刷、焼成技術により感
圧抵抗、リード線等が形成されたダイアフラムが電子冷
却素子の一部を形成し、電子冷却素子の温度検出に感圧
抵抗を利用するようにしたもので、感圧抵抗の温度特性
より温度を検出し、電子冷却素子を制御し、ダイアフラ
ムの温度を一定にすることができるので、圧力センサの
高精度化が可能となる。
(Function) In the pressure sensor of the present invention, a diaphragm on which a pressure-sensitive resistor, lead wires, etc. are formed by thick film printing and baking technology forms a part of the electronic cooling element, and the pressure-sensitive resistor is used to detect the temperature of the electronic cooling element. The temperature can be detected from the temperature characteristics of the pressure-sensitive resistor, the electronic cooling element can be controlled, and the temperature of the diaphragm can be kept constant, making it possible to improve the accuracy of the pressure sensor. .

(実施例) 以下添付図面を参照して本発明に係る一実施例を説明す
る。
(Embodiment) An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図は、本発明にかかる電子冷却の原理図であり、上
下を基板(アルミナセラミック)4,4で構成し、その
間にベルチェ素子(電子冷却素子)1を配し、銅電極3
を半田層2,2で結合したものである。これに電流を矢
印B (tit流の流れ)方向に流すと、熱は矢印A(
熱の流れ)の方向に流れる。電流の向きを反対にすると
、熱の流れの方向も反対になり、電流の方向で加熱、冷
却を行なうことができる。
FIG. 1 is a diagram showing the principle of electronic cooling according to the present invention, which consists of upper and lower substrates (alumina ceramic) 4, 4, with a Vertier element (electronic cooling element) 1 arranged between them, and a copper electrode 3.
are connected by solder layers 2, 2. When a current is passed through this in the direction of arrow B (tit flow), heat is released by arrow A (
heat flow). If the direction of the current is reversed, the direction of heat flow will also be reversed, allowing heating and cooling to be performed in the direction of the current.

第2図は本発明の詳細な説明する図であって、圧力セン
サの断面図である。即ち8はダイアフラムであり、両面
に絶縁層11があり、感圧部分のみ薄くダイアフラムと
なっておりベルチェ素子1より熱交換する部分は厚くな
って強度を確保している。
FIG. 2 is a diagram for explaining the present invention in detail, and is a sectional view of the pressure sensor. That is, 8 is a diaphragm, and there are insulating layers 11 on both sides, and only the pressure sensitive part is a thin diaphragm, and the part that exchanges heat from the Bertier element 1 is thicker to ensure strength.

ダイアフラム8上に感圧抵抗18、導体パターン9、電
極19が厚膜印刷、焼成技術により形成されている。
A pressure sensitive resistor 18, a conductive pattern 9, and an electrode 19 are formed on the diaphragm 8 by thick film printing and baking techniques.

ダイアフラム8の下部に接着層13を介し、銅電極3を
固定し、銅電極3は、半田層2を介しベルチェ素子1を
固定している。ベルチェ素子1は、2段になっており、
上下の間に基板(アルミナセラミック)4を介して固定
している。下部には放熱板15を設け、ベルチェ素子1
の熱効率(放熱効果)を高めている。
A copper electrode 3 is fixed to the lower part of the diaphragm 8 via an adhesive layer 13, and the Vertier element 1 is fixed to the copper electrode 3 via a solder layer 2. The Beltier element 1 has two stages,
It is fixed with a substrate (alumina ceramic) 4 interposed between the upper and lower parts. A heat sink 15 is provided at the bottom, and a Bertier element 1 is provided.
Thermal efficiency (heat dissipation effect) is increased.

更に、ダイアフラム8の下部には、外部より圧力を導入
する円筒16とノズル17が設けられている。又、ベル
チェ素子1には、リード線12a〜12bにより電圧を
供給する。
Furthermore, a cylinder 16 and a nozzle 17 for introducing pressure from the outside are provided at the lower part of the diaphragm 8. Further, a voltage is supplied to the Beltier element 1 through lead wires 12a to 12b.

第3図は第2図の上面図であり、ダイアフラム8の上面
に感圧抵抗18a〜18d、導体パターン9.電極端子
19a〜19dが絶縁層11を介して設けである。
FIG. 3 is a top view of FIG. 2, in which pressure-sensitive resistors 18a to 18d and conductor patterns 9. Electrode terminals 19a to 19d are provided with an insulating layer 11 in between.

尚、絶縁層11は、感圧抵抗18 a 〜18 d、導
体パターン9及び電極端子19a〜19dの焼成時の温
度(600〜900℃)に耐えるだけの耐熱性が要求さ
れる。感圧抵抗18a〜18dは、例えば酸化ルテニュ
ーム系の材料を、絶縁層11上にスクリーン印刷して6
00〜900℃の温度で焼成することにより形成される
。感圧抵抗18a及び18bは、ダイアフラム8上の受
圧部の周縁部寄りの左右位置に配置されており、感圧抵
抗18c及び18dは、ダイアフラム8の中心部よりの
上下位置に配置されている。電極端子19a〜19dは
、例えば銀、銀バラジュウム系等の材料を絶縁層11上
に、スクリーン印刷して600〜900℃の温度で焼成
することにより、ダイアフラム8の受圧部の外側に1位
置されるように形成される。導体パターン9は例えば銀
、銀パラジュウム系統の材料を絶縁層11上にスクリー
ン印刷して600〜900℃の温度で焼成することによ
り、感圧抵抗18a〜18d及び電極端子198〜19
dをフルブリッジ接続するように形成されている。尚導
体パターン9は、ダイアフラム8の受圧部には必要最小
限しか露呈しないように、主としてダイアフラム8の周
縁部に沿って形成されている。
Note that the insulating layer 11 is required to have heat resistance sufficient to withstand the temperature (600 to 900° C.) during firing of the pressure sensitive resistors 18 a to 18 d, the conductor pattern 9, and the electrode terminals 19 a to 19 d. The pressure sensitive resistors 18a to 18d are formed by screen printing a ruthenium oxide material on the insulating layer 11, for example.
It is formed by firing at a temperature of 00 to 900°C. The pressure sensitive resistors 18a and 18b are arranged at left and right positions near the periphery of the pressure receiving portion on the diaphragm 8, and the pressure sensitive resistors 18c and 18d are arranged above and below the center of the diaphragm 8. The electrode terminals 19a to 19d are positioned on the outside of the pressure receiving part of the diaphragm 8 by screen printing a material such as silver or silver-baladium on the insulating layer 11 and firing it at a temperature of 600 to 900°C. It is formed so that The conductor pattern 9 is formed by screen-printing a material such as silver or silver palladium on the insulating layer 11 and baking it at a temperature of 600 to 900°C, thereby forming the pressure sensitive resistors 18a to 18d and the electrode terminals 198 to 19.
d is formed to have a full bridge connection. The conductor pattern 9 is mainly formed along the periphery of the diaphragm 8 so that only the minimum necessary amount is exposed to the pressure receiving portion of the diaphragm 8.

第4図は、感圧抵抗18a〜18d、導体パターン9、
電極端子19a〜19dにより構成されるフルブリッジ
回路と、ペルチェ素子1とリード線12a〜12bの回
路図を示している。このフルブリッジ回路では、電極端
子19b、19d間に所定の直流電圧を印加すると、ダ
イアフラム8の受感部に圧力が印加されない平衡状態で
は、電極端子19a、19c間の出力電圧がほぼ零と成
るように設定されている。
FIG. 4 shows pressure sensitive resistors 18a to 18d, conductor pattern 9,
A circuit diagram of a full bridge circuit constituted by electrode terminals 19a to 19d, a Peltier element 1, and lead wires 12a to 12b is shown. In this full bridge circuit, when a predetermined DC voltage is applied between the electrode terminals 19b and 19d, the output voltage between the electrode terminals 19a and 19c becomes almost zero in an equilibrium state in which no pressure is applied to the sensing part of the diaphragm 8. It is set as follows.

第5図はペルチェ素子1の温度制御回路である。FIG. 5 shows a temperature control circuit for the Peltier element 1.

定電流駆動アンプ20で感圧抵抗18a〜18dのフル
ブリッジ回路を定電流駆動する電流検出抵抗R1により
電流を検出する。基準電圧21を。
A current is detected by a current detection resistor R1 that drives a full bridge circuit of pressure sensitive resistors 18a to 18d at a constant current using a constant current drive amplifier 20. Reference voltage 21.

可変抵抗器24にて調整し、温度目標値電圧VCを発生
させる。温度フィードバック電圧VBと。
The temperature target value voltage VC is generated by adjusting with the variable resistor 24. Temperature feedback voltage VB.

温度目標値電圧VCを、誤差増幅アンプ22へ入力し、
電流ブーストトランジスタ23a、23bを介して、ペ
ルチェ素子1をペルチェ素子印加電圧Vpで駆動する。
Input the temperature target value voltage VC to the error amplification amplifier 22,
The Peltier element 1 is driven by the Peltier element applied voltage Vp via the current boost transistors 23a and 23b.

圧力検出信号は、計装アンプ25へ入力される。The pressure detection signal is input to the instrumentation amplifier 25.

第6図は感圧抵抗18a〜18dの抵抗値の温度特性グ
ラフの一例である。第5図において電極端子19b〜1
9d間の抵抗値は、第6図の特性を示す。
FIG. 6 is an example of a temperature characteristic graph of the resistance values of the pressure sensitive resistors 18a to 18d. In FIG. 5, electrode terminals 19b-1
The resistance value between 9d shows the characteristics shown in FIG.

電流検出抵抗R1は温度特性が平坦であり、駆動電流も
一定であるから温度フィードバック電圧VBは駆動電流
をIB、ブリッジ抵抗(19b〜19d間の抵抗値)を
RBとすると。
The current detection resistor R1 has a flat temperature characteristic and a constant drive current, so for the temperature feedback voltage VB, let the drive current be IB and the bridge resistance (resistance value between 19b and 19d) be RB.

VB=IBX (RB+R1) 上式において、IBとR1は、一定であるから。VB=IBX (RB+R1) In the above formula, IB and R1 are constant.

vBOe:RBの関係が成立ち、第6図において、抵抗
値RBは、温度計と相関関係があるのでVBを温度フィ
ードバック信号として使用出来ることがわかる。
The relationship vBOe:RB is established, and in FIG. 6, it can be seen that the resistance value RB has a correlation with the thermometer, so that VB can be used as a temperature feedback signal.

第7図は、受圧気体温度TOと、ペルチェ素子印加電圧
vPの関係を示したグラフで、温度に対応して、ペルチ
ェ素子印加電圧vPが温度フィードバック電圧VBにて
制御され、感圧抵抗18a〜18dの温度が一定になる
ように変化する。
FIG. 7 is a graph showing the relationship between the pressure-receiving gas temperature TO and the Peltier element applied voltage vP, in which the Peltier element applied voltage vP is controlled by the temperature feedback voltage VB in accordance with the temperature, and the pressure-sensitive resistors 18a to 18a. The temperature of 18d changes to remain constant.

(発明の効果) 以上説明したように本発明によれば、圧力センサーの温
度特性を測定する必要がなく安価な金属ダイアフラムを
使用しても高精度圧力センサが可能となり、受圧気体を
ペルチェ素子部分を通過させて、導入することでダイア
フラムに接した受圧気体の温度も一定にすることができ
1通常の温度補償では簡単にえられない高安定な圧力セ
ンサが可能となる。又温度検出にサーミスター等の温度
検出素子を別に設ける必要がなく温度検出に感圧抵抗を
利用するので、温度補償の対象と検出素子が同一である
ので、検出誤差を少なく出来る。
(Effects of the Invention) As explained above, according to the present invention, there is no need to measure the temperature characteristics of the pressure sensor, and a high-precision pressure sensor can be achieved even by using an inexpensive metal diaphragm. By introducing the pressure gas through the diaphragm, the temperature of the pressure-receiving gas in contact with the diaphragm can be kept constant.1 A highly stable pressure sensor, which cannot be easily obtained with normal temperature compensation, becomes possible. Further, since a pressure-sensitive resistor is used for temperature detection without the need to separately provide a temperature detection element such as a thermistor, detection errors can be reduced because the object of temperature compensation and the detection element are the same.

更に感圧抵抗体が一定温度にすることでゼロ点ドリフト
だけでなく感度ドリフトもなく、設定温度も任意に設定
できるので感圧抵抗の動作状態が最良の温度で圧力検出
が行なえ、高安定、高信頼、長寿命の圧力センサができ
る。
Furthermore, by keeping the pressure-sensitive resistor at a constant temperature, there is no drift in sensitivity as well as zero-point drift, and the set temperature can be set arbitrarily, so pressure can be detected at the temperature where the pressure-sensitive resistor is in the best operating condition, resulting in high stability. A highly reliable, long-life pressure sensor can be created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電子冷却素子の原理図、第2図は本発明の一実
施例を示す破断断面図、第3図は本発明の一実施例を示
す上面図、第4図は感圧抵抗体ブリッジとペルチェ素子
回路図、第5図はペルチェ素子制御回路図である。第6
図は感圧抵抗体温度特性グラフ、第7図は受圧気体温度
体ペルチェ素子印加電圧のグラフ、第8図A、Bはそれ
ぞれ従来例を示す断面図及び上面図である。 1・・・・・・ペルチェ素子 2・・・・・・半田層     3・・・・・・銅電極
4・・・・・・基板      8・・・・・・ダイア
フラム9・・・・・・導体パターン 11・・・・・・
絶縁層12a、12b・・・・・・リード線 13・・・・・・接着層    15・・・・・・放熱
板16・・・・・・円筒     17・・・・・・ノ
ズル18.18a〜18d・・・・・・感圧抵抗19、
19 a〜19 d−・−@極端子20・・・・・・定
電流駆動アンプ 21・・・・・・基準電圧   22・・・・・・誤差
増幅アンプ23a、23b・・・・・・電流ブーストト
ランジスター24・・・・・・可変抵抗器  25・・
・・・・計装アンプVC・・・・・・温度目標値電圧 Vp・・・・・・ペルチェ素子印加電圧VB・・・・・
・温度フィードバック電圧R1・・・・・・電流検出抵
Fig. 1 is a principle diagram of a thermoelectric cooling element, Fig. 2 is a broken sectional view showing an embodiment of the present invention, Fig. 3 is a top view showing an embodiment of the invention, and Fig. 4 is a pressure sensitive resistor. The bridge and the Peltier device circuit diagram, and FIG. 5 is the Peltier device control circuit diagram. 6th
FIG. 7 is a graph of the pressure-sensitive resistor temperature characteristic, FIG. 7 is a graph of the voltage applied to the Peltier element of the pressure-receiving gas temperature body, and FIGS. 8A and 8B are a cross-sectional view and a top view, respectively, showing a conventional example. 1... Peltier element 2... Solder layer 3... Copper electrode 4... Substrate 8... Diaphragm 9... Conductor pattern 11...
Insulating layers 12a, 12b... Lead wire 13... Adhesive layer 15... Heat sink 16... Cylinder 17... Nozzle 18.18a ~18d...pressure sensitive resistor 19,
19 a to 19 d-.-@pole terminal 20... Constant current drive amplifier 21... Reference voltage 22... Error amplification amplifier 23a, 23b... Current boost transistor 24... Variable resistor 25...
...Instrumentation amplifier VC...Temperature target value voltage Vp...Peltier element applied voltage VB...
・Temperature feedback voltage R1...Current detection resistor

Claims (2)

【特許請求の範囲】[Claims] (1)ダイアフラムの上面に、感圧抵抗がフルブリッジ
回路状に形成され、前記ダイアフラムの下面に接着層を
介して銅電極が固定され、前記銅電極の下面には半田層
を介して下部に放熱板の固着された電子冷却素子が固定
され、かつ前記ダイアフラムの下面には、外部より圧力
を導入する円筒とノズルを設けられて構成されたことを
特徴とする圧力センサ。
(1) A pressure sensitive resistor is formed in the form of a full bridge circuit on the upper surface of the diaphragm, a copper electrode is fixed to the lower surface of the diaphragm via an adhesive layer, and a pressure sensitive resistor is fixed to the lower surface of the diaphragm via a solder layer. 1. A pressure sensor characterized in that a thermoelectric cooling element having a heat sink fixed thereto is fixed thereto, and a cylinder and a nozzle for introducing pressure from the outside are provided on the lower surface of the diaphragm.
(2)前記電子冷却素子はペルチェ素子でなることを特
徴とする請求項1記載の圧力センサ。
(2) The pressure sensor according to claim 1, wherein the electronic cooling element is a Peltier element.
JP9630589A 1989-04-18 1989-04-18 Pressure sensor Pending JPH02275332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9630589A JPH02275332A (en) 1989-04-18 1989-04-18 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9630589A JPH02275332A (en) 1989-04-18 1989-04-18 Pressure sensor

Publications (1)

Publication Number Publication Date
JPH02275332A true JPH02275332A (en) 1990-11-09

Family

ID=14161318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9630589A Pending JPH02275332A (en) 1989-04-18 1989-04-18 Pressure sensor

Country Status (1)

Country Link
JP (1) JPH02275332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142330A (en) * 2012-12-28 2014-08-07 Seiko Instruments Inc Pressure sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114732A (en) * 1987-10-28 1989-05-08 Ricoh Co Ltd Semiconductor pressure sensor with temperature correcting means

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114732A (en) * 1987-10-28 1989-05-08 Ricoh Co Ltd Semiconductor pressure sensor with temperature correcting means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142330A (en) * 2012-12-28 2014-08-07 Seiko Instruments Inc Pressure sensor

Similar Documents

Publication Publication Date Title
KR960015065B1 (en) Control and detection circuitry for mass air-flow sensors
EP1541974B1 (en) Heating resistor type flow-measuring device
JPS63243885A (en) Flow velocity detector
JPS61134621A (en) Measuring device for flow rate of fluid
US5033299A (en) Flow sensor
JP2839418B2 (en) Temperature sensor
JP3802443B2 (en) Flow rate sensor
JPH0625684B2 (en) Fluid flow rate detection sensor
JP2585681B2 (en) Metal thin film resistive strain gauge
JPH0194218A (en) Thermal flow rate detector
JPH02275332A (en) Pressure sensor
US5148707A (en) Heat-sensitive flow sensor
JPH11118566A (en) Flow sensor
JPH11311559A (en) Sensor circuit system
JPH0472523A (en) Flow sensor
JPH088444Y2 (en) Oil detection sensor
JP3345695B2 (en) Acceleration sensor
JPS6222272B2 (en)
JP2003106884A (en) Airflow sensor
JPH06249864A (en) Wind speed sensor
JP2002310832A (en) Electric capacitance type pressure sensor
JPH03255918A (en) Thermally sensitive type gas flow rate detecting device
JPS5846693B2 (en) Ondo sensor
JP2003106883A (en) Airflow sensor
JPH02253133A (en) Semiconductor pressure sensor