JPH02275127A - Elastic bush - Google Patents
Elastic bushInfo
- Publication number
- JPH02275127A JPH02275127A JP2427190A JP2427190A JPH02275127A JP H02275127 A JPH02275127 A JP H02275127A JP 2427190 A JP2427190 A JP 2427190A JP 2427190 A JP2427190 A JP 2427190A JP H02275127 A JPH02275127 A JP H02275127A
- Authority
- JP
- Japan
- Prior art keywords
- elastic
- reinforcing layer
- tubular
- rigid member
- intermediate layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 25
- 230000004044 response Effects 0.000 claims abstract description 4
- 239000013536 elastomeric material Substances 0.000 claims description 14
- 238000005452 bending Methods 0.000 claims description 7
- 239000007769 metal material Substances 0.000 claims description 3
- 230000008602 contraction Effects 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims 2
- 229920001971 elastomer Polymers 0.000 abstract description 11
- 229910000831 Steel Inorganic materials 0.000 abstract description 9
- 239000010959 steel Substances 0.000 abstract description 9
- 239000000806 elastomer Substances 0.000 abstract description 8
- 244000043261 Hevea brasiliensis Species 0.000 abstract description 2
- 229920003052 natural elastomer Polymers 0.000 abstract description 2
- 229920001194 natural rubber Polymers 0.000 abstract description 2
- 230000036316 preload Effects 0.000 abstract description 2
- 230000009467 reduction Effects 0.000 abstract description 2
- 239000011229 interlayer Substances 0.000 abstract 4
- 239000010410 layer Substances 0.000 abstract 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000002787 reinforcement Effects 0.000 description 17
- 230000004323 axial length Effects 0.000 description 6
- 229920002302 Nylon 6,6 Polymers 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229920004943 Delrin® Polymers 0.000 description 1
- 241000763212 Lype Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/36—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
- F16F1/38—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/36—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
- F16F1/371—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by inserts or auxiliary extension or exterior elements, e.g. for rigidification
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Springs (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は弾性ブツシュに関し、内側剛部材(11)と、
該内側剛部材の回りに離間して延在する外側剛部材(1
2)と、前記内側及び外側剛部材(11112)間で延
在してこれらを互いに結合させる弾性エラストマー材料
の中間層(13)とからなる弾性ブツシュに関する。本
発明は特に上述した型の弾性ブツシュであって、前記弾
性エラストマー材料の中間層(13)が埋設された補強
体(14)を設けられ、これによりもし中間層が補強体
を伴わない場合に比して、ブツシュの半径方向剛性を増
大させた弾性ブツシュに関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an elastic bushing, comprising an inner rigid member (11);
outer rigid members (1) extending spaced apart around the inner rigid member;
2) and an intermediate layer (13) of resilient elastomeric material extending between said inner and outer rigid members (11112) and bonding them together. The invention particularly relates to an elastic bushing of the type described above, in which the intermediate layer (13) of said elastic elastomeric material is provided with an embedded reinforcement (14), so that if the intermediate layer is not accompanied by a reinforcement, In contrast, it relates to an elastic bushing with increased radial stiffness of the bushing.
本発明はまた、これには限定されないが、上述の如く埋
葬された補強体を有しかつエラストマー材料が半径方向
に予圧縮された弾性ブツシュに関する。The invention also relates to, but is not limited to, an elastic bushing having embedded reinforcement as described above and in which the elastomeric material is radially precompressed.
従来の技術
この型の弾性ブツシュの一つの確立した形態では、埋設
補強体は管状鋼製挿入体であった。これにおいては、弾
性エラストマー中間層は半径方向内側及び半径方向外側
の各管状部分に分割され、従来はこれらは接着剤により
上記鋼製挿入体に固着されている。中間層の半径方向予
圧縮は、外側剛部材をスェージング加工(すえ込み加工
:管材などを工具の間で圧縮成形してその厚さ又は直径
を減らす加工)して、中間層の半径方向外側管状部分□
に予圧縮させることにより行う。それと同時に中間層の
半径方向内側管状部分は内側剛部材(これもまた管状断
面形状を有する)の膨張により予圧縮を受ける。Prior Art In one established form of this type of resilient bushing, the buried reinforcement was a tubular steel insert. In this, the elastic elastomeric intermediate layer is divided into radially inner and radially outer tubular sections, which are conventionally secured to the steel insert by adhesive. The radial precompression of the intermediate layer is achieved by swaging the outer rigid member (swaging process: a process in which a tube material is compressed between tools to reduce its thickness or diameter). Part □
This is done by pre-compressing the material. At the same time, the radially inner tubular portion of the intermediate layer is precompressed by expansion of the inner rigid member (which also has a tubular cross-sectional shape).
上述したブツシュの形態によれば多くの応用において使
用されるとき良好な性能及び疲れ寿命を示すが、その加
工時に補強弾性エラストマー材料の半径方向内側及び外
側部分に予圧縮を与えるために二つの作業、即ちスェー
ジング加工作業及び膨張加工作業を行う必要があるので
、製造に時間がかかると共にコストも大になるという欠
点があった。更に、ブツシュは必然的に中実形態よりは
むしろ管状の内側剛部材を有する必要がある。また、幾
つかの応用例においては、弾性ブツシュの疲れ寿命は所
望の程度まで達していなかった。Although the bushing configuration described above exhibits good performance and fatigue life when used in many applications, during its processing two operations are required to provide precompression to the radially inner and outer portions of the reinforcing elastic elastomer material. That is, since it is necessary to perform swaging processing and expansion processing, there are disadvantages in that manufacturing takes time and increases cost. Furthermore, the bushing necessarily needs to have a tubular inner rigid member rather than a solid configuration. Additionally, in some applications, the fatigue life of the elastic bushings has not been as high as desired.
上記スェージング加工及び膨張加工を行う必要を避ける
ため又中実の内側剛部材の使用を可能とするために、一
対の半円筒形状鋼製シェルからなる中間層補強体を使用
することが提案されており、これによれば管状鋼製補強
体の場合と同じく、上記一対の鋼製シェルは中間層の半
径方向内側及び外側部分に接着される。最初の組立期間
中は各シェルの各隣接する長手方向端部は円周方向に僅
かに離間するよう配置される。外側剛部材のスェージン
グ加工と同時に、中間層の半径方向外側部分が圧縮され
て各シェルの隣接する端部を互いに近接する方向に付勢
し、これにより内側剛部材の膨張を必要とすることなく
中間層の半径方向内側部分に圧縮力を生ぜしめる。In order to avoid the need for the above swaging and expansion operations and to enable the use of solid inner rigid members, it has been proposed to use an intermediate layer reinforcement consisting of a pair of semi-cylindrical steel shells. According to this, as in the case of tubular steel reinforcements, the pair of steel shells is glued to the radially inner and outer portions of the intermediate layer. During initial assembly, adjacent longitudinal ends of each shell are spaced slightly circumferentially apart. Simultaneously with the swaging of the outer rigid member, the radially outer portion of the intermediate layer is compressed to urge adjacent ends of each shell toward each other without requiring expansion of the inner rigid member. This creates a compressive force in the radially inner portion of the intermediate layer.
それゆえ、一対の半円筒形状シェルの補強体を使用する
ことにより製造を容易化し得、また中実断面形状の内側
剛部材の使用も可能となる。Therefore, manufacturing can be facilitated by using a pair of semi-cylindrical shell reinforcements, and it is also possible to use an inner rigid member with a solid cross-section.
解決すべき課題
しかしながら多くの製品への応用においてこれらの利点
は疲れ寿命が減少することによりしばしば相殺される。Problems to be Solved However, in many product applications these advantages are often offset by reduced fatigue life.
特に望ましくない応力が各シェルの隣接する長手方向端
部領域に集中的に発生し、これによりブツシュが早期に
疲れ破壊してしまう。Particularly undesirable stresses are concentrated in the adjacent longitudinal end regions of each shell, which leads to premature fatigue failure of the bushing.
また、モールディング工具内にシェルを適切に配置する
のも困難であった。It was also difficult to properly position the shell within the molding tool.
本発明の目的及び課題の解決手段
本発明の最も広範囲の目的は、補強中間層を有する型の
改良された弾性ブツシュを提供するこ七である。本発明
の他の目的は、半円筒形状ンエルの補強体を有する種類
のブツシュの製造を容易化し得る改良された半径方向予
圧縮の弾性ブツシュを提供することであり、これによれ
ば中空断面形状の内側剛部材の使用を不要とし得、かつ
良好な疲れ寿命を有するよう設計可能である。OBJECTS AND SUMMARY OF THE INVENTION The broadest object of the invention is to provide an improved elastic bushing of the type having a reinforcing intermediate layer. Another object of the invention is to provide an improved radially prestressed elastic bushing which can facilitate the production of bushings of the kind with semi-cylindrical reinforcements, according to which the hollow cross-sectional shape It is possible to eliminate the use of an inner rigid member and can be designed to have good fatigue life.
本発明によれば、弾性ブツシュの弾性エラストマー材料
の中間層が、該中間層の半径方向内側及び外側の管状部
分に生ずる圧縮力に応答して変形し得る材料からなる管
状補強層により補強されている。好ましくは管状補強層
は、内側又は外側剛部材の各半径方向膨張又は半径方向
縮減により生ずる如何なる圧縮力に対しても応答し得、
これにより中間層の半径方向内側及び外側管状部分の他
の部分に半径方向圧縮力を生ぜしめる。According to the invention, the intermediate layer of elastic elastomeric material of the elastic bushing is reinforced by a tubular reinforcing layer of material capable of deforming in response to compressive forces exerted on the radially inner and outer tubular portions of the intermediate layer. There is. Preferably the tubular reinforcing layer is capable of responding to any compressive force caused by each radial expansion or contraction of the inner or outer rigid member;
This creates radial compressive forces on other portions of the radially inner and outer tubular portions of the intermediate layer.
疑問を避けるために、本明細書中においては、「変形(
deform)」という語は形状の変化、つまり形状の
局部的変化及び必ずしも形状の変化を含まない寸法の変
化の両方を意味する。For the avoidance of doubt, in this specification "variations (
The term "deform" means both a change in shape, that is, a local change in shape, and a change in dimension, which does not necessarily involve a change in shape.
本発明は管状補強層は従来使用されていた鋼製材料に比
して、非金属材料となるであろう。In the present invention, the tubular reinforcing layer will be a non-metallic material as compared to the previously used steel materials.
従って、本発明は、従来の複数シェルからなる多ピース
組立体に比して管状の一ピースの型の補強体を使用し、
かつその補強体は従来使用された鋼製材料が高剛性であ
ったのに比して略半剛性の材料から形成される。Accordingly, the present invention utilizes a tubular, one-piece type of reinforcement as opposed to a conventional multi-shell multi-piece assembly;
Moreover, the reinforcing body is made of a substantially semi-rigid material compared to the highly rigid steel material used in the past.
半剛性補強体の材料はs、ooo〜7.0000Kgf
/cm2の範囲のヤング弾性係数を有し、かつより好ま
しくは16,000〜30,000Kg17cm2の範
囲にある。かくして、外側剛部材にスェージング加工が
施されると、弾性エラストマー中間層の半径方向外側部
分に半径方向圧縮力を生ぜしめ更に管状補強体に圧縮7
−プ応力を生ぜしめ、その結果、補強体材料のヤング率
と関連して、弾性エラストマー材料の中間層の半径方向
内側部分に必然的に半径方向圧縮力を生ぜしめる。The material of the semi-rigid reinforcement is s, ooo~7.0000Kgf
/cm2, and more preferably in the range of 16,000 to 30,000 kg17 cm2. Thus, swaging of the outer rigid member creates a radial compressive force on the radially outer portion of the elastic elastomer intermediate layer and a compressive force on the tubular reinforcement.
- creating a compressive stress which, in conjunction with the Young's modulus of the reinforcement material, necessarily creates a radial compressive force in the radially inner portion of the intermediate layer of elastic elastomeric material.
逆に、内側剛部材が管状形状のとぎにもし該内側剛部材
に膨張作業が施されるとすると、中間層の半径方向内側
部分に半径方向圧縮力を生じ、管状補強体に必然的に引
張フープ応力を生せしめる。Conversely, if the inner rigid member were to have a tubular shape and the inner rigid member was subjected to an expansion operation, it would create a radial compressive force on the radially inner portion of the intermediate layer, which would inevitably cause a tensile force on the tubular reinforcement. Causes hoop stress.
かくして管状補強体は、弾性エラストマー中間層の外側
部分に必要な半径方向圧縮せしめるに十分な程度の半径
方向膨張を生ずる。一般的に、外側剛部材に半径方向圧
縮力を加えることは作業上−層好都合であると共にそれ
により中間層の半径方同円側部分の圧縮が達成されるが
、これは内側剛部材の膨張により半径方向外側部分の圧
縮が達成されるよりも一層容易に行い得るという利点が
ある。The tubular reinforcement thus provides sufficient radial expansion to provide the necessary radial compression of the outer portion of the elastic elastomeric intermediate layer. In general, it is operationally advantageous to apply a radial compressive force to the outer rigid member and thereby achieve compression of the radially concentric portion of the intermediate layer, which is due to expansion of the inner rigid member. This has the advantage that compression of the radially outer part can be achieved more easily than with the radially outer part.
本発明の他の目的は、弾性エラストマー材料からなる中
間層が600−2,500Kgf/cm”の範囲の曲げ
強さ、−層好ましくは900−1゜000’ K g
f / c m ”の曲げ強さを有する材料からなる管
状補強層により補強されていることである。Another object of the invention is that the intermediate layer of elastic elastomeric material has a bending strength in the range of 600-2,500 Kgf/cm'', preferably 900-1°000' Kg.
It is reinforced by a tubular reinforcing layer made of a material with a bending strength of f/cm''.
上記の如く広い範囲の曲げ強さを有する材料からなる管
状補強層を設けることにより、ブツシュが内側剛部材及
び外側剛部材どうし間で相対的な半径方向又は円錐方向
移動を生ずるときは補強層は適切に変形を生じ得、これ
により通常はブツシュの疲れ寿命に不幸な影響を与える
好ましくない高レベルの応力集中の発生を避は得るか又
は減少し得る。By providing a tubular reinforcing layer made of a material having a wide range of bending strengths as described above, when the bushing undergoes relative radial or conical movement between the inner and outer rigid members, the reinforcing layer is Appropriate deformation can occur, thereby avoiding or reducing the occurrence of undesirably high stress concentrations which normally have an unfortunate effect on the fatigue life of the bushing.
一般的に、上述した如く広い範囲、より好ましくは上記
の如く限定された範囲にわたる曲げ強さを有する材料に
より、所定の厚さの管状補強層を適切に提供することが
できる。その所定厚さは、内側及び外側剛部材の相対的
半径方向移動に特に耐えるべくブツシュを硬化させるに
必要な補強効果を与える厚さであるが、望むならば、中
間層の半径方向内側又は外側部分から該中間層の他の部
分へ半径方向圧縮力を伝達する際に適切に円周方向に圧
縮可能又は膨張可能な厚さでなければならない。Generally, a tubular reinforcing layer of a given thickness can be suitably provided by a material having a bending strength over a wide range as described above, and more preferably over a limited range as described above. The predetermined thickness is such that it provides the reinforcing effect necessary to stiffen the bushing to specifically withstand relative radial movement of the inner and outer rigid members, but may not be applied to the radially inner or outer sides of the intermediate layer, if desired. The thickness must be such that it is suitably circumferentially compressible or expandable in transmitting radial compressive forces from one section to another section of the intermediate layer.
本発明によれば、管状補強層はブツシュの使用時にその
弾性限界内でのみ変形可能であることが更に望ましい。According to the invention, it is further preferred that the tubular reinforcing layer is deformable only within its elastic limits during use of the bushing.
かくして、ブツシュが外部から加えられた負荷から解放
されたとき管状補強層は本性的に最初の形状及び形態に
戻る傾向となるであろう。Thus, when the bushing is released from an externally applied load, the tubular reinforcing layer will inherently tend to return to its original shape and configuration.
特に管状補強層を形成する適当な非金属材料はポリアミ
ド、ナイロン6及びナイロン66、アセタール、ヒトレ
ル・デルリン(Hytrel sad Delrin)
のようなプラスチック材料を含む。補強層は織物型(f
abric LyPe)IR造でもよいが、一般的には
これは十分に高い曲げ強さを有しないであろうから、通
常は管状補強層は非織物材料(nofi−textil
stater目l)の管状層から形成されるよう意図さ
れる。しかしながら、補強層は埋設した補強体からなる
ようにしてもよい。か(して、管状補強体は、例えば、
繊維ガラスファイバー ビード若しくは球体、又は織物
材料(vov!n tateriil)からなる埋設補
強体を含むナイロン6の管状スリーブから構成してもよ
い。Particularly suitable non-metallic materials for forming the tubular reinforcing layer are polyamide, nylon 6 and nylon 66, acetal, Hytrel sad Delrin.
Contains plastic materials such as. The reinforcing layer is a textile type (f
The tubular reinforcing layer is usually made of a non-textile material (abric LyPe) IR construction, but generally this will not have a sufficiently high bending strength.
It is intended to be formed from a tubular layer of stator (l). However, the reinforcing layer may also consist of embedded reinforcing bodies. (Then, the tubular reinforcement is e.g.
It may consist of a tubular sleeve of nylon 6 with embedded reinforcement of fiberglass beads or spheres or textile material.
管状補強層はその壁内に少なくとも一つの孔を形成され
てもよい。これにより、弾性エラストマー中間層の半径
方向内側及び外側部分を形成するモールディング作業中
に、材料が半径方向内方又は外方へ補強層を通って流れ
るのが容易となる。The tubular reinforcing layer may have at least one hole formed in its wall. This facilitates the flow of material radially inwardly or outwardly through the reinforcing layer during the molding operation to form the radially inner and outer portions of the elastic elastomer intermediate layer.
更に、これにより中間層の半径方向内側及び外側部分の
モールドされI;材料どうし間の連続性及び機械的結合
を行うことができる。好ましくは、補強層は少なくとも
一つの円周方向に配設された一連の孔を有する。Furthermore, this allows continuity and mechanical bonding between the molded materials of the radially inner and outer portions of the intermediate layer. Preferably, the reinforcing layer has at least one circumferentially arranged series of holes.
管状補強層の半径方向厚さは、典型的には内側及び外側
剛部材の対峙する面間の半径方向距離の15%〜25%
の範囲内にあるよう意図される。The radial thickness of the tubular reinforcing layer is typically 15% to 25% of the radial distance between opposing surfaces of the inner and outer rigid members.
is intended to be within the range of
これは平均的に見て従来使用されていた管状又は半円筒
形状補強体、つまり典型的には内側及び外側剛部材の対
峙面の半径方向距離の10%〜20%の範囲の厚さを有
するものと対比される。This has, on average, a thickness in the range of 10% to 20% of the radial distance of the opposing surfaces of the traditionally used tubular or semi-cylindrical reinforcements, typically the inner and outer rigid members. Contrasted with things.
更に応力集中を減少又は除去するために、管状補強層の
軸方向一端又は好ましくは両端部が層の中央部分に比し
て減少した壁厚さとなっている。In order to further reduce or eliminate stress concentrations, one or preferably both axial ends of the tubular reinforcing layer have a reduced wall thickness compared to the central portion of the layer.
補強層の内側及び外側表面は、層にテーパ形状の端部領
域を与えるように形状付けされてもよい。The inner and outer surfaces of the reinforcing layer may be shaped to give the layer a tapered end region.
本発明の一実施例が添付の図面を参照して以下に記述さ
れる。An embodiment of the invention will now be described with reference to the accompanying drawings.
実施例
第1図及び第2図に示す如く、円形断面を有する弾性ブ
ツシュ10は、夫々鋼製の内側及び外側剛部材11,1
2と、天然ゴムからなる二つの部分15.16からなる
弾性エラストマー中間層13とを具備する。各部分15
.16は剛部材11.12の間において該剛部材、11
,12の対峙する面に接着されている。Embodiment As shown in FIGS. 1 and 2, an elastic bushing 10 having a circular cross section is provided with inner and outer rigid members 11 and 1 made of steel, respectively.
2 and an elastic elastomer intermediate layer 13 consisting of two parts 15, 16 made of natural rubber. Each part 15
.. 16 is between the rigid members 11 and 12.
, 12 are adhered to the opposing surfaces of the plates.
ゴム中間層13は、ナイロン66製の管状補強スリーブ
14により補強され、かつこのスリーブ14により半径
方向内側部分16及び半径方向外側部分15に分割され
、各部分16.15はスリーブ14に接着されている。The rubber intermediate layer 13 is reinforced by a tubular reinforcing sleeve 14 made of nylon 66 and is divided by this sleeve 14 into a radially inner section 16 and a radially outer section 15, each section 16.15 being glued to the sleeve 14. There is.
スリーブ14はその全長の主たる部分にわたりナイロン
66により形成され、1.5mmの厚さを有する。この
厚さは、内側及び外側剛部材11.12の対峙する外側
及び内側面が互いに離間する距離6 、5 m mの2
3%に相当する。スリーブ14の壁部の軸方向端部はテ
ーパ状断面となっている。これはスリーブ14の内側及
び外側面においてその各軸方向端部に面取りを行うこと
により得られる。Sleeve 14 is formed of nylon 66 over a major portion of its length and has a thickness of 1.5 mm. This thickness corresponds to the distance 6,5 mm between the opposing outer and inner surfaces of the inner and outer rigid members 11.12.
This corresponds to 3%. The axial end of the wall of the sleeve 14 has a tapered cross section. This is achieved by chamfering the inner and outer surfaces of the sleeve 14 at each of its axial ends.
ナイロン66の材料は、880 K g f / c
m 2の曲げ剛性及び1g、000Kgf/cm”のヤ
ング率を有する。スリーブ14はこの場合1.5mmの
厚さ、軸方向長さ3mm及び平均直径24゜5mmであ
る。Nylon 66 material is 880K g f/c
m 2 and a Young's modulus of 1 g, 000 Kgf/cm”. The sleeve 14 has a thickness of 1.5 mm in this case, an axial length of 3 mm and an average diameter of 24° 5 mm.
外側剛部材12の軸方向長さは内側剛部材11のそれよ
り小さく、スリーブ14の軸方向長さは内側及び外側部
材11,12の軸方向長さの中間にある。スリーブ14
は内側及び外側部材11.12の間の半径方向略中間位
置に配されるが、僅かに内側部材11の方へ近く配され
る。これにより、弾性中間層13の内側及び外側部分1
6.15は互いに略等しい体積となる。The axial length of the outer rigid member 12 is smaller than that of the inner rigid member 11 and the axial length of the sleeve 14 is intermediate between the axial lengths of the inner and outer members 11,12. Sleeve 14
is located approximately radially intermediate between the inner and outer members 11 , 12 , but slightly closer to the inner member 11 . Thereby, the inner and outer portions 1 of the elastic intermediate layer 13
6.15 have substantially equal volumes.
内側剛部材11は、比較的厚い壁断面を有し、両端部1
7間にスリーブ14の軸方向長さに対応する軸方向長さ
の円周方向凹部18を設けられている。The inner rigid member 11 has a relatively thick wall cross section and has both ends 1
A circumferential recess 18 having an axial length corresponding to the axial length of the sleeve 14 is provided between the sleeves 14 and 7.
上述した弾性ブツシュ10の組立、及び剛部材11%
12及びスリーブ14の対峙面をエラストマー中間層1
3の内側及び外側部分16.15と接着することに続い
て、外側剛部材12の半径方向縮減により外側部分15
が予圧状態に置かれる。Assembly of the above elastic bushing 10 and rigid member 11%
The facing surfaces of the sleeve 12 and the sleeve 14 are covered with an elastomer intermediate layer 1.
Following bonding with the inner and outer portions 16.15 of 3, radial reduction of the outer rigid member 12 causes the outer portion 15
is placed under preload.
その結果、スリーブ14は圧縮7−プ応力を受けて直径
が減少するので、中間層13の内側部分16が内側剛部
材11の外面に対し圧縮力を付与することになる。As a result, the inner portion 16 of the intermediate layer 13 exerts a compressive force on the outer surface of the inner rigid member 11 as the sleeve 14 is subjected to a compressive stress and is reduced in diameter.
本発明の更に他の特徴による弾性ブツシュIOによれば
、第3図及び第4図に示す如く、管状の補強スリーブ2
0を交換例として使用できる。スリーブ20はナイロン
66により形成され、その両端間1:、二つの軸方向に
離間した円形孔22からなる一連の孔21を設けられて
いる。一連の孔21は円周方向に均等間隔で配置された
4つの孔からなる。スリーブ20の軸方向端部は第3図
に示す如く断面U形であるか、又は例えば第1図のスリ
ーブ14で記述した方法により面取りされる。According to a further feature of the present invention, the resilient bushing IO has a tubular reinforcing sleeve 2, as shown in FIGS. 3 and 4.
0 can be used as a replacement example. The sleeve 20 is formed from nylon 66 and is provided between its ends with a series of holes 21 consisting of two axially spaced circular holes 22. The series of holes 21 consists of four holes arranged at equal intervals in the circumferential direction. The axial end of the sleeve 20 may be U-shaped in cross-section, as shown in FIG. 3, or be chamfered, for example, in the manner described for the sleeve 14 of FIG.
孔付き型のスリーブとすることにより、正常位置でのモ
ールディング作業によるゴム製中間層13の内側及び外
側部分16.15の成形を容易化できる。その際には、
モールド可能の材料がスリーブ20の壁を通って流れ、
内側及び外側部分16.15間で機械的インターロック
(結合)が達成される。The perforated sleeve facilitates the shaping of the inner and outer parts 16.15 of the rubber intermediate layer 13 by in-situ molding operations. In that case,
the moldable material flows through the walls of the sleeve 20;
A mechanical interlock is achieved between the inner and outer portions 16.15.
上述したことから、特定種類の補強層の弾性ブ・ンシュ
を使用することは、弾性ブツシュの製造及び設計技術に
おいて長期にわたり確立された実績からの重要な出発点
となり、これにより疲れ寿命の限界の如き如何なる顕著
な欠点も無く、製造の容易化と管状型内側剛部材を使用
し得る自由度とを可能とする。実際、本発明による上述
した種類の補強スリーブを使用することにより、長期に
わたり確立された設計による従来のブツシュが示す疲れ
寿命に比して最も有効な疲れ寿命の改良を示し得る。In view of the above, the use of elastic bushings with specific types of reinforcing layers is an important departure from the long-established track record in the manufacturing and design technology of elastic bushings, thereby limiting fatigue life. It does not have any significant drawbacks, and allows for ease of manufacture and flexibility in using tubular inner rigid members. In fact, the use of reinforcing sleeves of the type described above according to the present invention may exhibit the most significant fatigue life improvement over that exhibited by conventional bushings of long established designs.
本発明は、補強用エラストマー中間層が内側剛部材の膨
張及び外側剛部材の圧縮力による半径方向予圧縮力を受
ける弾性ブツシュに関して特に記述してきたが、変形例
としては、エラストマー材料は半径方向予圧縮力を受け
ないか又はその代わりの手段により半径方向予圧縮力を
受ける。かくして変形例においては、第1図乃至第4図
に示す形態であるがゴム製中間層13の半径方向予圧縮
力は無い。Although the present invention has been particularly described with respect to a resilient bushing in which the reinforcing elastomeric intermediate layer is subjected to a radial precompression force due to the expansion of the inner rigid member and the compressive force of the outer rigid member, in alternative embodiments the elastomeric material is Either it is not subjected to compression forces or it is subjected to radial precompression forces by alternative means. Thus, in the modified example shown in FIGS. 1 to 4, there is no radial precompression force on the rubber intermediate layer 13.
第1図は本発明になる弾性ブツシュの縦断面図、第2図
は第11150の弾性ブツシュの端面図、第3図は第1
図及び第2図の弾性ブツシュに使用するスリーブの他の
例の縦断面図、
第4図は第3図のスリーブの横断面図である。
10・・・弾性ブツシュ 11・・・内側剛部材1
2・・・外側剛部材
13・・・弾性エラストマー中間層
14.20・・・管状補強スリーブ
15・・・半径方向外側部分
16・・・半径方向内側部分FIG. 1 is a longitudinal sectional view of the elastic bushing according to the present invention, FIG. 2 is an end view of the elastic bushing No. 11150, and FIG.
FIG. 4 is a longitudinal cross-sectional view of another example of the sleeve used in the elastic bushing shown in FIGS. 10... Elastic bushing 11... Inner rigid member 1
2...Outer rigid member 13...Elastic elastomer intermediate layer 14.20...Tubular reinforcing sleeve 15...Radially outer portion 16...Radially inner portion
Claims (1)
して延在する外側剛部材(12)と、前記内側及び外側
剛部材(11、12)間で延在してこれらを互いに結合
させる弾性エラストマー材料の中間層(13)とからな
る弾性ブッシュにおいて、 前記弾性エラストマー材料の中間層(13)は管状補強
層(14)により補強され、該補強層(14)の材料は
前記中間層の半径方向内側又は外側管状部分(16、1
5)に発生する圧縮力に応答して変形し得ることを特徴
とする弾性ブッシュ。 2、前記管状補強層(14)は略半剛性の材料から形成
されていることを特徴とする請求項1記載の弾性ブッシ
ュ。 3、内側剛部材(11)と、該内側剛部材の回りに離間
して延在する外側剛部材(12)と、前記内側及び外側
剛部材(11、12)間で延在してこれらを互いに結合
させる弾性エラストマー材料の中間層(13)とからな
る弾性ブッシュにおいて、 前記弾性エラストマー材料の中間層(13)は管状補強
層(14)により補強され、該補強層(14)の材料は
600〜2,500Kgf/cm^2の範囲の曲げ強さ
を有することを特徴とする弾性ブッシュ。 4、前記管状補強層(14)の材料は900〜1,00
0Kgf/cm^2の曲げ強さを有することを特徴とす
る請求項3記載の弾性ブッシュ。 5、前記管状補強層(14)は非金属材料であることを
特徴とする請求項1乃至4の何れか1項記載の弾性ブッ
シュ。 6、前記管状補強層(14)は前記内側又は外側剛部材
(11、12)の各半径方向膨張又は半径方向縮減の結
果として前記エラストマー材料に発生する圧縮力に応答
して変形し得、これにより前記中間層(13)の他の部
分である半径方向内側及び外側管状部分(16、15)
に半径方向圧縮力を付与することを特徴とする請求項1
乃至5の何れか1項記載の弾性ブッシュ。 7、前記管状補強層(14)の内方及び外方に夫々配置
された弾性エラストマー材料の中間層の前記内側及び外
側部分(16、15)は、残留圧縮力状態にあることを
特徴とする請求項6記載の弾性ブッシュ。 8、前記外側剛部材(12)は、圧縮力を受けることに
より、前記弾性エラストマー材料の中間層(13)の内
側及び外側部分(16、15)の両方に残留圧縮力を生
ぜしめるような部材であることを特徴とする請求項7記
載の弾性ブッシュ。 9、前記管状補強層(14)は、該弾性ブッシュが外部
から加えられた負荷から解放されたとき、弾性ブッシュ
の通常の使用では、本性的にその最初の形状及び形態に
戻る傾向となるような種類であることを特徴とする請求
項1乃至8項の何れか1項記載の弾性ブッシュ。 10、前記管状補強層(14)は非織物材料の管状層か
ら形成されていることを特徴とする請求項1乃至9項の
何れか1項記載の弾性ブッシュ。 11、前記管状補強層(14)の半径方向厚さは、前記
内側及び外側剛部材(11、12)の対峙する面間の半
径方向離間距離の15%〜25%の範囲であることを特
徴とする請求項1乃至10の何れか1項記載の弾性ブッ
シュ。 12、前記管状補強層(14)の半径方向厚さは、前記
内側及び外側剛部材(11、12)の対峙する面間の半
径方向離間距離の20%〜25%の範囲であることを特
徴とする請求項11記載の弾性ブッシュ。 13、前記管状補強層(14)はその壁部に少なくとも
一の孔(22)が形成されていることを特徴とする請求
項1乃至12の何れか1項記載の弾性ブッシュ。 14、前記補強層(14)は、少なくとも一の円周方向
に配置された一連の孔(21;22)を設けられている
ことを特徴とする請求項13記載の弾性ブッシュ。 15、前記管状補強層(14)の少なくとも一の軸方向
端部領域が、軸方向中央領域に比して、厚さが縮減され
ていることを特徴とする請求項1乃至14の何れか1項
記載の弾性ブッシュ。[Claims] 1. An inner rigid member (11), an outer rigid member (12) extending spaced apart around the inner rigid member, and between the inner and outer rigid members (11, 12). an elastic bush consisting of an intermediate layer (13) of elastic elastomeric material extending and bonding them to each other, said intermediate layer (13) of elastic elastomeric material being reinforced by a tubular reinforcing layer (14), said reinforcing layer ( 14) of the radially inner or outer tubular portion (16, 1) of said intermediate layer.
5) An elastic bushing capable of deforming in response to the compressive force generated. 2. Elastic bushing according to claim 1, characterized in that the tubular reinforcing layer (14) is made of a substantially semi-rigid material. 3. an inner rigid member (11), an outer rigid member (12) extending spaced apart around the inner rigid member, and an outer rigid member (12) extending between the inner and outer rigid members (11, 12) to An elastic bush consisting of an intermediate layer (13) of elastic elastomeric material bonded to each other, said intermediate layer (13) of elastic elastomeric material being reinforced by a tubular reinforcing layer (14), the material of said reinforcing layer (14) being 600% An elastic bush characterized by having a bending strength in the range of ~2,500 Kgf/cm^2. 4. The material of the tubular reinforcing layer (14) is 900 to 1,000
The elastic bush according to claim 3, characterized in that it has a bending strength of 0 Kgf/cm^2. 5. The elastic bushing according to any one of claims 1 to 4, characterized in that the tubular reinforcing layer (14) is made of a non-metallic material. 6. said tubular reinforcing layer (14) is deformable in response to compressive forces generated in said elastomeric material as a result of each radial expansion or contraction of said inner or outer rigid member (11, 12); radially inner and outer tubular portions (16, 15) which are other portions of said intermediate layer (13);
Claim 1 characterized in that a radial compressive force is applied to the
The elastic bush according to any one of items 5 to 5. 7. characterized in that said inner and outer parts (16, 15) of the intermediate layer of elastic elastomeric material arranged inside and outside of said tubular reinforcing layer (14), respectively, are in a state of residual compressive force; The elastic bushing according to claim 6. 8. The outer rigid member (12) is such that upon being subjected to a compressive force, a residual compressive force is created in both the inner and outer portions (16, 15) of the intermediate layer (13) of elastic elastomeric material. The elastic bush according to claim 7, characterized in that it is. 9. Said tubular reinforcing layer (14) is such that, in normal use of the elastic bushing, it will inherently tend to return to its original shape and configuration when the elastic bushing is released from an externally applied load. The elastic bush according to any one of claims 1 to 8, characterized in that it is of a type of elastic bushing. 10. Elastic bushing according to any one of claims 1 to 9, characterized in that the tubular reinforcing layer (14) is formed from a tubular layer of non-woven material. 11. The radial thickness of the tubular reinforcing layer (14) is in the range of 15% to 25% of the radial separation between opposing surfaces of the inner and outer rigid members (11, 12). An elastic bush according to any one of claims 1 to 10. 12. The radial thickness of the tubular reinforcing layer (14) is in the range of 20% to 25% of the radial separation between opposing surfaces of the inner and outer rigid members (11, 12). The elastic bush according to claim 11. 13. Elastic bushing according to any one of claims 1 to 12, characterized in that the tubular reinforcing layer (14) has at least one hole (22) formed in its wall. 14. Elastic bushing according to claim 13, characterized in that the reinforcing layer (14) is provided with at least one circumferentially arranged series of holes (21; 22). 15. Any one of claims 1 to 14, characterized in that at least one axial end region of the tubular reinforcing layer (14) has a reduced thickness compared to the axial central region. Elastic bushing as described in section.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8908585.6 | 1989-04-15 | ||
GB898908585A GB8908585D0 (en) | 1989-04-15 | 1989-04-15 | Resilient bush |
GB8911024.1 | 1989-05-13 | ||
GB898911024A GB8911024D0 (en) | 1989-05-13 | 1989-05-13 | Resilient bush |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02275127A true JPH02275127A (en) | 1990-11-09 |
Family
ID=26295227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2427190A Pending JPH02275127A (en) | 1989-04-15 | 1990-02-02 | Elastic bush |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH02275127A (en) |
GB (1) | GB2231120B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04111933U (en) * | 1991-03-19 | 1992-09-29 | 東海ゴム工業株式会社 | Cylindrical anti-vibration rubber |
JP2010524763A (en) * | 2007-04-17 | 2010-07-22 | エアバス フランス | Device for fixing the lifting member of an airplane to the fuselage |
CN101858397A (en) * | 2010-06-11 | 2010-10-13 | 索密克汽车配件有限公司 | Large-swinging-angle rubber bushing |
JP2012107748A (en) * | 2010-10-26 | 2012-06-07 | Tokai Rubber Ind Ltd | Member mount and its assembling structure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10258986B4 (en) * | 2002-12-16 | 2005-07-14 | ZF Lemförder Metallwaren AG | Elastic chassis bearing for commercial vehicles |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1006761B (en) * | 1974-01-07 | 1976-10-20 | Getters Spa | PLANT AND PROCEDURE FOR OBTAINING HIGH VACUUMS |
GB1490253A (en) * | 1974-05-28 | 1977-10-26 | Jorn R | Resilient joint and method of making same |
EP0101235A3 (en) * | 1982-08-13 | 1986-02-12 | Avon Rubber Plc | Resilient assemblies |
-
1989
- 1989-11-30 GB GB8927145A patent/GB2231120B/en not_active Expired - Fee Related
-
1990
- 1990-02-02 JP JP2427190A patent/JPH02275127A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04111933U (en) * | 1991-03-19 | 1992-09-29 | 東海ゴム工業株式会社 | Cylindrical anti-vibration rubber |
JP2010524763A (en) * | 2007-04-17 | 2010-07-22 | エアバス フランス | Device for fixing the lifting member of an airplane to the fuselage |
CN101858397A (en) * | 2010-06-11 | 2010-10-13 | 索密克汽车配件有限公司 | Large-swinging-angle rubber bushing |
JP2012107748A (en) * | 2010-10-26 | 2012-06-07 | Tokai Rubber Ind Ltd | Member mount and its assembling structure |
Also Published As
Publication number | Publication date |
---|---|
GB8927145D0 (en) | 1990-01-31 |
GB2231120B (en) | 1993-02-24 |
GB2231120A (en) | 1990-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4007924A (en) | Elastic support mount | |
KR101544277B1 (en) | Flexible shaft coupling and method of manufacturing the same | |
US7866025B2 (en) | Rotary wing aircraft rod end and method of making a helicopter vehicle rod end with a precocked orientation | |
US9903433B2 (en) | Anti-vibration structure | |
US6196763B1 (en) | Connection system for hoses, expansion joints and actuators | |
US4322062A (en) | Torsion spring damper | |
US5152510A (en) | Cylindrical elastic mount with vibration damper including cylindrical rigid split member | |
JPH0510014U (en) | Bound stopper for vehicle suspension | |
JPS63180741A (en) | Plastic reinforced ring for fluid pressure device | |
CN106795932A (en) | For the elastomeric support of vehicle | |
JPH0629588Y2 (en) | Flexible connection device | |
JPH02275127A (en) | Elastic bush | |
CN107921862A (en) | The bicyclic isolator of Miniature shearing hub | |
US6371461B1 (en) | Elastic bush with two armatures; torque take up connecting rod equipped with a bush of this kind | |
US3235941A (en) | Method of making tubular joints | |
US3177559A (en) | Method of making a resilient joint | |
US11325658B2 (en) | Frame joint | |
JPH01120450A (en) | Elastic bush | |
JP2005344764A (en) | Vibration control bush | |
JPH07503516A (en) | elastic mounting | |
US4614455A (en) | Flexible joints or bearings | |
JPS58141903A (en) | Safety tire | |
CN115992848A (en) | Rubber metal sleeve bearing | |
JP3511122B2 (en) | Method of applying pre-compression to rectangular elastic bush | |
JP2007232189A (en) | Vibration-proof bush |