JPH02274886A - Production of high-alloy remolten cam - Google Patents

Production of high-alloy remolten cam

Info

Publication number
JPH02274886A
JPH02274886A JP9775789A JP9775789A JPH02274886A JP H02274886 A JPH02274886 A JP H02274886A JP 9775789 A JP9775789 A JP 9775789A JP 9775789 A JP9775789 A JP 9775789A JP H02274886 A JPH02274886 A JP H02274886A
Authority
JP
Japan
Prior art keywords
base material
remelting
cam
alloy powder
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9775789A
Other languages
Japanese (ja)
Inventor
Yoshifumi Yamamoto
義史 山本
Shigezo Osaki
茂三 大崎
Katsuya Ouchi
大内 勝哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP9775789A priority Critical patent/JPH02274886A/en
Priority to US07/510,076 priority patent/US5096662A/en
Publication of JPH02274886A publication Critical patent/JPH02274886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To well convert a cam surface to a high alloy without generating quenching cracks by adhering an alloy powder sheet to the prescribed range of the surface of a cam base material, then irradiating the base material with a high energy beam by starting the irradiation from the exposed part of the material, and thereby remelting the material. CONSTITUTION:A binder resin is mixed with alloy powder contg. carbide forming elements in form the sheet of the alloy power. This alloy powder sheet 4 is adhered to the prescribed range on the surface of the base material 3 of the cam 2 disposed on a cam shaft 1. After the alloy powder sheet 4 is degreased, the alloy powder sheet 4 and the surface of the base material 3 are remelted by the high energy beam generated by the TIG arc from a TIG torch 5 having an electrode 6 to form the high alloy layer. The abovementioned remelting is started from the exposed part on this side where approximately the entire width of the surface of the base material 3 is coated with the abovementioned sheet 4. The base material 3 is sufficiently preheated in this way to prevent the rapid cooling of the remolten layer and to prevent the generation of the quenching cracks at the point near the remelting start point, by which the high alloying of the cam 2 surface is well performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エンジンの動弁カムとして用いられる高合金
再溶融カムの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a high alloy remelting cam used as a valve driving cam of an engine.

〔従来の技術) ロッカアームやタペット等に摺接して回転するエンジン
の動弁カムは、高い耐摩性が要求される。
[Prior Art] The valve drive cam of an engine, which rotates in sliding contact with a rocker arm, tappet, etc., is required to have high wear resistance.

このカムの耐摩性を高めるために、カム表面を高エネル
ギー密度熱源で再溶融して硬化させることは知られてい
る。つまり、鋳鉄製カムの表面を高エネルギー密度の熱
源で再溶融すると、内部への熱伝導により急冷されて微
細で高硬度のチル層を形成することができ、さらに再溶
融時にCr、MO等の炭化物生成元素を供給すると、母
材の組成と異なる高硬度の高合金再溶融層を得ることが
できる。
In order to increase the wear resistance of this cam, it is known to remelt and harden the cam surface with a high energy density heat source. In other words, when the surface of a cast iron cam is remelted using a heat source with high energy density, it is rapidly cooled by heat conduction to the inside, forming a fine and highly hard chilled layer. By supplying carbide-forming elements, it is possible to obtain a high-alloy remelted layer with high hardness different from the composition of the base material.

従来、このような耐摩性が要求されるカム等の金属部材
の表面硬化処理として、例えば特開昭60−23098
6号公報に示されるように、合金粉末にバインダー樹脂
を混合してシート状としたものを母材に接着する等によ
り金属部材表面に合金粉末シート層を形成し、脱ろう処
理を行なった後、レーザビーム、電子ビーム、ティグア
ーク(TIGアークータングステン不活性ガスアーク)
等による高エネルギービームを照射して合金粉末シート
層と母材表面を同時に再溶融することにより、高合金化
するようにした方法が知られている。
Conventionally, as a surface hardening treatment for metal members such as cams that require such wear resistance, for example, Japanese Patent Application Laid-Open No. 60-23098
As shown in Publication No. 6, an alloy powder sheet layer is formed on the surface of a metal member by, for example, bonding a sheet made by mixing binder resin with alloy powder to a base material, and after dewaxing treatment is performed. , laser beam, electron beam, TIG arc (TIG arc - tungsten inert gas arc)
A method is known in which the alloy powder sheet layer and the surface of the base material are simultaneously remelted by irradiation with a high-energy beam such as the above, thereby achieving high alloying.

(発明が解決しようとする!!題) 上記のような方法で高合金再溶融カムを製造する場合に
、高エネルギービームによる再溶融時に、合金粉末シー
ト層が形成されている部分のうちでとくに再溶融開始点
付近の箇所に焼き割れが生じ易いという問題があった。
(Problem to be Solved by the Invention) When manufacturing a high-alloy remelted cam using the above-described method, when remelting with a high-energy beam, there is a problem in which the alloy powder sheet layer is formed. There was a problem in that quench cracks were likely to occur near the remelting start point.

すなわち、上記合金粉末シート層の形成部分は、再溶融
により、炭化物が多くなるとともに焼き入れ性が上がる
ために硬度が増大するが、その反面、冷却速度が速いと
焼き割れが生じる。そして、カムシャフトに配設された
カムの母材表面の所定範囲に合金粉末シート層を形成し
た後にこの部分を再溶融するときは、カムシャフトを一
定速度で回転させつつ、合金粉末シート層の形成部分の
一端側から高エネルギービームを照射させていくが、こ
の再溶融の初期はカム温度が低いため、再溶融開始点側
の部分は他の部分と比べて冷却速度が速くなる。従って
この再溶融開始点側の部分で焼き割れが生じ易くなる。
That is, the portion where the alloy powder sheet layer is formed increases in hardness due to remelting, which increases carbides and improves hardenability, but on the other hand, if the cooling rate is fast, quench cracking occurs. After forming an alloy powder sheet layer on a predetermined range of the surface of the base material of the cam installed on the camshaft, when remelting this area, the camshaft is rotated at a constant speed while the alloy powder sheet layer is melted. A high-energy beam is irradiated from one end of the forming part, but since the cam temperature is low at the beginning of this remelting, the cooling rate of the part near the remelting start point is faster than other parts. Therefore, quench cracking is likely to occur in the portion on the side of this remelting start point.

この問題の対策として、再溶融に際してカムシャフトを
予熱しておくことにより、再溶融開始点側の部分の冷却
速度を遅くすることが考えられる。
As a countermeasure to this problem, it is conceivable to preheat the camshaft during remelting to slow down the cooling rate of the portion closer to the remelting start point.

しかし、カムシャフトには多数のカムが配設されていて
これらが順次再溶融されるので、最後のカムが再溶融さ
れるまでカムシャフト全体を予熱すると予熱時間が長く
なり、かつ、合金粉末は表面積が大きくて酸化され易い
。このため、予熱温度を350°C程度以上に高くする
と、予熱中に合金粉末シートが異常に酸化して母材から
脱落する。
However, since the camshaft has a large number of cams and these are remelted one after another, preheating the entire camshaft until the last cam is remelted will require a long preheating time, and the alloy powder will It has a large surface area and is easily oxidized. For this reason, if the preheating temperature is increased to about 350° C. or higher, the alloy powder sheet will abnormally oxidize during preheating and fall off from the base material.

一方、予熱温度を350°C程度以下に低くすると、再
溶融開始点側の部分の冷却速度を遅くする作用が不充分
となり、焼き割れの発生を防止できない。従って、カム
シャフトを予熱するだけで・は、焼き割れの発生防止と
合金粉末シートの酸化、脱落の防止とを両立することが
できない。
On the other hand, if the preheating temperature is lowered to about 350° C. or lower, the effect of slowing down the cooling rate of the portion on the side of the remelting start point becomes insufficient, and the occurrence of quench cracking cannot be prevented. Therefore, by simply preheating the camshaft, it is not possible to prevent both the occurrence of quench cracking and the oxidation and falling off of the alloy powder sheet.

本発明はこのような事情に鑑み、合金粉末シートが異常
に酸化して母材から脱落するという事態が生じることを
防止しつつ、再溶融開始点側の部分に焼き割れが発生す
る゛ことを防止し、再溶融によるカム表面の高合金化を
良好に行なうことができる高合金再溶融カムの製造方法
を提供するものである。
In view of these circumstances, the present invention prevents the alloy powder sheet from being abnormally oxidized and falling off from the base material, and at the same time prevents the occurrence of quench cracking in the part on the side of the remelting start point. The object of the present invention is to provide a method for manufacturing a high-alloy remelted cam, which can prevent the above-mentioned problems and satisfactorily make the cam surface highly alloyed by remelting.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記のような目的を達成するため、合金粉末と
バインダー樹脂とを混合した合金粉末シー゛トを、カム
母材表面の所定範囲に接着した後、高エネルギービーム
を照射することにより上記合金粉末シートおよび母材表
面を再溶融して高合金層を形成する高合金再溶融カムの
製造方法であって、上記高エネルギービームによる再溶
融を、母材表面の略全幅が合金粉末シートで覆われてい
る部分より手前側の、母材露出部分より開始するもので
ある。
In order to achieve the above objects, the present invention adheres an alloy powder sheet, which is a mixture of alloy powder and binder resin, to a predetermined area of the surface of the cam base material, and then irradiates it with a high energy beam. A method for manufacturing a high-alloy remelting cam in which a high-alloy layer is formed by remelting an alloy powder sheet and the surface of a base material, the method comprising: remelting with the high-energy beam; It starts from the exposed part of the base material, which is closer to the covered part.

〔作用〕[Effect]

上記構成によると、上記母材露出部分に高エネルギービ
ームが照射されている闇に、この部分から伝わる熱によ
り、合金粉末シートが接着された部分の始端側が充分に
昇温され、再溶融時のこの部分の急激な冷却が抑えられ
る。しかも、再溶融のための高エネルギービームを利用
して、合金粉末シート接着部分が再溶融される直前に短
時間で上記昇温が行なわれることにより、合金粉末シー
トの異常酸化が防止される。
According to the above configuration, when the exposed part of the base material is irradiated with a high-energy beam, the heat transmitted from this part sufficiently raises the temperature of the starting end of the part where the alloy powder sheet is bonded, and when it is remelted. Rapid cooling of this part is suppressed. In addition, abnormal oxidation of the alloy powder sheet is prevented by using a high-energy beam for remelting to raise the temperature in a short time immediately before the bonded portion of the alloy powder sheet is remelted.

〔実施例〕〔Example〕

図面を参照しつつ、本発明の方法の実施例と、比較例と
を説明する。
Examples of the method of the present invention and comparative examples will be described with reference to the drawings.

く第1実施例〉 先ず、炭化物生成元素を含む合金粉末と7、バインダー
樹脂としてのアクリル系樹脂とを混合し、合金粉末シー
トを形成する。具体的な実施例としては、MO: 2.
5〜15.0wt%、Cr:10wt%以下、P:0.
5〜3.0wt%、C:1.5〜5,0wt%、Fe:
残部、を成分とする共晶合金粉末を作成し、その粉末粒
度を200メツシユ以下とし、これにewt%のアクリ
ル系樹脂を添加し、アセトンで希釈して混練した後、厚
さ0.8Mの合金粉末シートを形成した。
First Example> First, an alloy powder containing a carbide-forming element and 7, an acrylic resin as a binder resin are mixed to form an alloy powder sheet. As a specific example, MO: 2.
5 to 15.0 wt%, Cr: 10 wt% or less, P: 0.
5 to 3.0 wt%, C: 1.5 to 5.0 wt%, Fe:
A eutectic alloy powder containing the remainder of An alloy powder sheet was formed.

上記成分について説明すると、MOはFe、Cと結合し
、基地の強化および硬質相の形成に寄与するとともに、
融点を下げる役割をするものである。この1yloが2
.5wt%未満であると、硬質相が少なくなるとともに
、液相量が少なくなって合金化しにくく、また15育【
%を越えると、液相量が多くなりすぎて脆くなり、靭性
が著しく低下するため、MOは2.5〜15.0wt%
の範囲が良い。Crは、その炭化物による耐摩性の向上
および焼き入れ性の向上に寄与するものである。このC
rが10W【%を越えると飽和してしまうため、Crは
10wt%以下が良い。PはF8.Cと結合し、耐摩性
を向上させるとともに、融点を下げる役割をするもので
ある。このPが0.5wt%未満であると液相量が少な
くなって合金化に寄与せず、また3、owt%を越える
と液相過多となって形状を確保しにくくなるため、Pは
0.5〜3.0wt%の範囲が良い。Cは基地の強化お
よび硬質相の形成を行なうとともに、合金化に役立つも
のである。このCが1,5wt%未満であると低融点化
が阻害され、また5、0wt%を越えると液相量が多く
なりすぎて形状を確保しにべくなるため、1゜5〜5.
Qwt%の範囲が良い。
To explain the above components, MO combines with Fe and C and contributes to strengthening the base and forming a hard phase,
It plays the role of lowering the melting point. This 1ylo is 2
.. If it is less than 5 wt%, the hard phase will decrease, the amount of liquid phase will decrease, making it difficult to alloy, and
If it exceeds 2.5 to 15.0 wt%, the amount of liquid phase will be too large, resulting in brittleness and a significant decrease in toughness.
Good range. Cr contributes to improving wear resistance and hardenability due to its carbide. This C
If r exceeds 10 W%, it will be saturated, so Cr is preferably 10 wt% or less. P is F8. It combines with carbon to improve wear resistance and lower the melting point. If this P is less than 0.5 wt%, the amount of liquid phase will be small and will not contribute to alloying, and if it exceeds 3.0 wt%, there will be too much liquid phase and it will be difficult to secure the shape, so P is 0. A range of .5 to 3.0 wt% is preferable. C strengthens the matrix, forms a hard phase, and is useful for alloying. If this C is less than 1.5 wt%, lowering the melting point will be inhibited, and if it exceeds 5.0 wt%, the amount of liquid phase will be too large and it will be difficult to maintain the shape.
The Qwt% range is good.

次に、第1図および第2図に示すように、カムシャフト
1に配設されたカム2の母材3表面の所定範囲に、上記
の合金粉末シード′4を、アクリル系の接着テープによ
って接着した。合金粉末シート4を接着する範囲は、第
2図のように、カムリフト部より手前13°からカムノ
ーズ部を経て反対側対称位置に至る範囲とし、この範囲
でカム母材3の略全幅に合金粉末シート4を接着した。
Next, as shown in FIGS. 1 and 2, the above alloy powder seeds '4 are applied to a predetermined area of the surface of the base material 3 of the cam 2 disposed on the camshaft 1 using an acrylic adhesive tape. Glued. As shown in Fig. 2, the area to which the alloy powder sheet 4 is bonded is the area from 13 degrees before the cam lift part to the symmetrical position on the opposite side through the cam nose part, and in this range, the alloy powder is applied to approximately the entire width of the cam base material 3. Sheet 4 was adhered.

なお、カム母材3表面は、鋳造後に黒皮を除去し、表面
粗さを4S以下とした。
Incidentally, the surface of the cam base material 3 had black scale removed after casting, and the surface roughness was set to 4S or less.

このようにしてカム表面に合金粉末シート4を接着した
カムシャフト1を、N2ガス中で3000の濃度に1時
間保持することにより脱ろう処理を行なった後、第3図
に示すように、ティグアークによる高エネルギービーム
で再溶融処理を行なった。この再溶融処理は、不活性ガ
ス中でティグトーチ5の電極6をカム表面に近接させた
状態で、カムシャフト1を一定の回転速度で回転させつ
つ、ティグトーチ5をカムの幅方向にオシレート(往復
移動)させることにより、電極6とカム表面との間に発
生するアークにより、合金粉末シート4が接着されたカ
ム表面を順次再溶融していくものである。とくにこの再
溶融を、第4図に示すように、合金粉末シート4が接着
されている部分より手前側の母材露出部分より開始し、
つまり、合金粉末シート4が母材表面とともに再溶融さ
れる高合金化再溶融ゾーンAより手前側の所定範囲を、
母材3のみが再溶融される母材前mmゾーンBとし、こ
の母材再i融ゾーンBから高合金化再溶融ゾーンAにわ
たってティグアークによる再溶融を行なった。
After dewaxing the camshaft 1 with the alloy powder sheet 4 adhered to the cam surface by holding it in N2 gas at a concentration of 3000 for 1 hour, as shown in FIG. The remelting process was performed using a high-energy beam. This remelting process is performed by oscillating the TIG torch 5 in the width direction of the cam while rotating the camshaft 1 at a constant rotational speed with the electrode 6 of the TIG torch 5 brought close to the cam surface in an inert gas. By moving the alloy powder sheet 4), the arc generated between the electrode 6 and the cam surface sequentially remelts the cam surface to which the alloy powder sheet 4 is adhered. In particular, as shown in FIG. 4, this remelting is started from the exposed part of the base material on the front side of the part where the alloy powder sheet 4 is bonded,
In other words, a predetermined range on this side of the highly alloyed remelting zone A where the alloy powder sheet 4 is remelted together with the base material surface,
A pre-base material mm zone B where only the base metal 3 is remelted was set, and remelting was performed using a TIG arc from this base metal remelting zone B to the highly alloyed remelting zone A.

この再溶融時のティグ処理条件は、表1の通りである。The TIG treatment conditions during this remelting are shown in Table 1.

表1.ティグ処理条件 このような条件で、上記母材再溶融ゾーンBを77°以
上に設定し、つまり高合金化再溶融ゾーンAの再溶融開
始側端部より77°以上手前から再溶融を開始すると、
高合金化再溶融ゾーンAの再溶融開始側端部は400〜
500°Cに昇温され、冷却速度が小さくなるためクラ
ック(焼き割れ〉が発生しなかった。なお、クラックの
発生を防止するに必要な母材再溶融ゾーンBの範囲は、
溶融速度等の条件が変更された場合はそれに応じて変る
ものであり、烏合金再溶融カムの製造にあたっては、再
溶融処理条件の設定等に基づき、予め実験的に調べて母
材再溶融ゾーンBの範囲を設定しておけばよい。
Table 1. TIG processing conditions Under these conditions, if the base material remelting zone B is set at 77° or more, that is, remelting is started at 77° or more before the end of the remelting start side of the highly alloyed remelting zone A. ,
The remelting start side end of the highly alloyed remelting zone A is 400~
Since the temperature was raised to 500°C and the cooling rate was reduced, no cracks (quenching cracks) occurred.The range of base material remelting zone B necessary to prevent cracks from occurring is as follows:
If the conditions such as melting speed are changed, it will change accordingly, and when manufacturing Karasu alloy remelting cams, based on the setting of remelting processing conditions, etc., the base material remelting zone should be experimentally investigated in advance. All you have to do is set the range of B.

〈比較例1〉 合金粉末シート4の成形、カム表面への接着、および表
1に示したような再溶融処理条件は第1実施例と同じと
し、上記母材再溶融ゾーンBの範囲を76°以下に設定
して再溶融を行なった場合は、高合金化再溶融ゾーンA
の再溶融開始側端部の昇温が不充分なためこの部分にク
ラックが発生した。
<Comparative Example 1> The molding of the alloy powder sheet 4, the adhesion to the cam surface, and the remelting treatment conditions as shown in Table 1 were the same as in the first example, and the range of the base material remelting zone B was set to 76 If remelting is performed with the setting below °, highly alloyed remelt zone A
Because the temperature at the end of the remelting start side was insufficient, cracks occurred in this part.

く比較例2〉 カムシャフト全体を400’ C以上に予熱すると、予
熱中に、カム表面に接着された合金粉末シートが異常酸
化して母材から脱落してしまい、再溶融処理ができなか
った。
Comparative Example 2> When the entire camshaft was preheated to over 400'C, the alloy powder sheet adhered to the cam surface was abnormally oxidized and fell off from the base material during preheating, making it impossible to remelt it. .

〈第2実施例〉 第1実施例のような母材再溶融ゾーンを設ける変りに、
第5図(a)もしくは同(b)のように、合金粉末シー
ト4の端部を角状もしくは円弧状等に挾った形とするこ
とにより、母材表面の略全幅が合金粉末シート4で覆わ
れている高合金化再溶融ゾーンAの手前に、合金粉末シ
ート4の面積を小さくして母材露出面積を大きくし、高
合金化率を低くするようにしたゾーンCを設け、このゾ
、−ンCから再溶融を行なった。このようにしても、ゾ
ーンCでは高合金化率が低くなることによって焼き割れ
が避けられ、かつ、このゾーンCの再溶融が行なわれて
いる間に高合金化再溶融ゾーンへの再溶融開始側部分が
充分に昇温されるので、焼き割れ防止に効果があつ′た
。なお、この第2実施例においてゾーンCよりさらに手
前から再溶融を開始してもよい。
<Second Example> Instead of providing the base material remelting zone as in the first example,
As shown in FIG. 5(a) or FIG. 5(b), by forming the ends of the alloy powder sheet 4 in a shape such as a corner or an arc shape, substantially the entire width of the base material surface is In front of the highly alloyed remelting zone A, which is covered with Remelting was carried out from zone C. Even in this case, quench cracking can be avoided by lowering the high alloying ratio in zone C, and while remelting of zone C is being carried out, remelting to the highly alloyed remelting zone starts. Since the temperature of the side portions was sufficiently raised, it was effective in preventing quench cracking. In this second embodiment, remelting may be started further before zone C.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、合金粉末シートをカム母材表面
の所定範囲に接着した後、高エネルギービームを照射す
ることにより再溶融する際に、母材表面の略全幅が°合
金粉末シートで覆われている部分より手前側の、母材露
出部分から、再溶融を開始するようにしているため、上
記母材露出部分への高エネルギービームの照射により、
合金粉末シートで覆われている部分の再溶融開始側端部
を短時闇で充分に昇温することができる。従って、異常
酸化による合金粉末シートの脱落を避けつつ、高合金化
される部分の急冷による焼き割れを防止することができ
るものである。
As described above, in the present invention, when an alloy powder sheet is bonded to a predetermined area on the surface of a cam base material and then remelted by irradiation with a high-energy beam, substantially the entire width of the base material surface is covered with the alloy powder sheet. Since remelting is started from the exposed part of the base material on this side of the covered part, by irradiating the exposed part of the base material with the high-energy beam,
The temperature of the remelting start side end of the portion covered with the alloy powder sheet can be sufficiently raised in the dark for a short time. Therefore, it is possible to prevent the alloy powder sheet from falling off due to abnormal oxidation, and to prevent quench cracking due to rapid cooling of the portion to be highly alloyed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の方法の第1実施例におい
てカム母材表面への合金粉末シート接着段階を示す概略
側面図および概略正面図、第3図は再溶融処理を示す概
略斜視図、第4図は再溶融の範囲を示す概略正面図、第
5図(a)(b)はそれぞれ第2実施例を示す概略側面
図である。 1・・・カムシャフト、2・・・カム、3・・・カム母
材、4・・・合金粉末シート、5・・・ティグトーチ、
6・・・電極。 特許出願人      マ ツ ダ 株式会社代 理 
人      弁理士  小谷 悦司同       
 弁理士  長1) 1同        弁理士  
伊藤 孝夫第 図 第 図 第 図 第 図 図 (b)
1 and 2 are a schematic side view and a schematic front view showing the step of adhering the alloy powder sheet to the surface of the cam base material in the first embodiment of the method of the present invention, and FIG. 3 is a schematic perspective view showing the remelting process. 4 are schematic front views showing the range of remelting, and FIGS. 5(a) and 5(b) are schematic side views showing the second embodiment, respectively. DESCRIPTION OF SYMBOLS 1... Camshaft, 2... Cam, 3... Cam base material, 4... Alloy powder sheet, 5... Tig torch,
6...electrode. Patent applicant Mazda Co., Ltd. Agent
People Patent Attorney Etsushi Kotani
Chief Patent Attorney 1) Patent Attorney 1
Takao Ito (b)

Claims (1)

【特許請求の範囲】[Claims] 1、合金粉末とバインダー樹脂とを混合した合金粉末シ
ートを、カム母材表面の所定範囲に接着した後、高エネ
ルギービームを照射することにより上記合金粉末シート
および母材表面を再溶融して高合金層を形成する高合金
再溶融カムの製造方法であつて、上記高エネルギービー
ムによる再溶融を、母材表面の略全幅が合金粉末シート
で覆われている部分より手前側の、母材露出部分より開
始することを特徴とする高合金再溶融カムの製造方法。
1. After adhering an alloy powder sheet, which is a mixture of alloy powder and binder resin, to a predetermined area on the surface of the cam base material, the alloy powder sheet and the base material surface are remelted by irradiation with a high-energy beam to increase the A method for manufacturing a high-alloy remelting cam forming an alloy layer, wherein the remelting using the high-energy beam is performed by exposing the base material on the front side of the part where substantially the entire width of the base material surface is covered with the alloy powder sheet. A method of manufacturing a high-alloy remelting cam, the method comprising starting from a section.
JP9775789A 1989-04-17 1989-04-17 Production of high-alloy remolten cam Pending JPH02274886A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9775789A JPH02274886A (en) 1989-04-17 1989-04-17 Production of high-alloy remolten cam
US07/510,076 US5096662A (en) 1989-04-17 1990-04-17 Method for forming high abrasion resisting layers on parent materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9775789A JPH02274886A (en) 1989-04-17 1989-04-17 Production of high-alloy remolten cam

Publications (1)

Publication Number Publication Date
JPH02274886A true JPH02274886A (en) 1990-11-09

Family

ID=14200753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9775789A Pending JPH02274886A (en) 1989-04-17 1989-04-17 Production of high-alloy remolten cam

Country Status (1)

Country Link
JP (1) JPH02274886A (en)

Similar Documents

Publication Publication Date Title
JPH02274886A (en) Production of high-alloy remolten cam
JP3234209B2 (en) Manufacturing method of sliding member
US5096662A (en) Method for forming high abrasion resisting layers on parent materials
JPH0423144B2 (en)
JP2571820B2 (en) Method for manufacturing remelted chill camshaft
JP2856431B2 (en) Manufacturing method of re-melt hardened parts
JPS6136566B2 (en)
JPH024990A (en) Method for hardening surface of steel
JP2839596B2 (en) Method of manufacturing wear-resistant sliding member
JPH0328382A (en) Production of cam by remelting of high alloy
JPH0742569B2 (en) Method for improving wear resistance of cast iron
JP3091971B2 (en) Electrodes using reinforced copper
JPH02197554A (en) Manufacture of wear-resistant sliding member
JP2520124B2 (en) Re-Melted Chilcum Shaft
JPS60258426A (en) Remelted and hardened cam shaft
JPH04124214A (en) Production of sliding member having wear resistance
SU585020A1 (en) Ceramic flux
JPH0447006B2 (en)
JPS62112786A (en) Improvement of wear resistance of surface of steel member
JP2653094B2 (en) Remelted chill camshaft
JPH0328383A (en) Production of cam by remelting of high alloy
JPS60258417A (en) Cam shaft made of cast iron and its manufacture
JPH0570832A (en) Device and method for remelt hardening treatment
JPS5916923A (en) Method for hardening surface of metal member by remelting
JPS61207582A (en) Pinion shaft for differential gear