JPH02274882A - Production of grain-oriented silicon steel sheet having good forsterite insulating film in coil state - Google Patents

Production of grain-oriented silicon steel sheet having good forsterite insulating film in coil state

Info

Publication number
JPH02274882A
JPH02274882A JP9683289A JP9683289A JPH02274882A JP H02274882 A JPH02274882 A JP H02274882A JP 9683289 A JP9683289 A JP 9683289A JP 9683289 A JP9683289 A JP 9683289A JP H02274882 A JPH02274882 A JP H02274882A
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
coil
steel sheet
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9683289A
Other languages
Japanese (ja)
Other versions
JP2762111B2 (en
Inventor
Yozo Suga
菅 洋三
Masao Matsuo
松尾 征夫
Takeo Nagashima
長島 武雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14175515&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02274882(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9683289A priority Critical patent/JP2762111B2/en
Publication of JPH02274882A publication Critical patent/JPH02274882A/en
Application granted granted Critical
Publication of JP2762111B2 publication Critical patent/JP2762111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce the grain-oriented silicon steel sheet having a uniform and good forsterite insulating film by subjecting a cold rolled silicon steel strip to a decarburization annealing and adequately applying a specific annealing and separating agent thereon, then subjecting the steel sheet as a coil to a finishing high-temp. annealing. CONSTITUTION:The silicon steel strip cold rolled to a desired final sheet thickness is decarburization annealed at about 850 deg.C in wet hydrogen to form the sub-scale of an oxide film contg. SiO2 on the surface thereof. This steel strip is coated with the annealing and separating agent essentially consisting of MgO2 and is then taken up as a strip coil. This coil is subjected to the finish high temp. annealing at about 1200 deg.C to form the forsterite. The annealing and separating agent in the abovementioned process for producing the grain oriented silicon steel sheet is formed of the agent prepd. by adding a Ca compd. contg. O and a compd. contg. S thereto in combination at the equiv. of the S of 0.4 to 1.4 times the equiv. of the Ca. Further, this annealing and separating agent is applied on the strip surface at such a ratio at which the component of the CaO attains 0.04 to 0.35g/m<2>. The good forsterite insulating film in the coil state is formed by controlling the generated [O] in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、ストリップコイルの形態で仕上高温焼鈍が遂
行される一方向性珪素鋼板の製造プロセスにおいて、良
好なフォルステライト絶縁皮膜を形成させ得る製造方法
に関するものである。 (従来の1支術) 一方向性珪素鋼板表面のフォルステライトを主体とした
MgOSing系絶縁皮膜は製品外観を整えるばかりで
なく、鋼板間に必要な眉間抵抗を与え、また、鋼板とフ
ォルステライト皮膜間に働く引張り応力により製品鉄損
を低下させるという磁気特性的にも重要な役割を持って
いる。 このフォルステライト皮膜は通常、次のような方法で生
成される。まず、約3〜4重量%の珪素を含む一方向性
珪素鋼用素材を1回ないし、中間焼鈍をはさむ2回以上
の冷延により最終板厚にした後、湿水素中で700〜9
00°Cの範囲で脱炭焼鈍を施し、同時にSiO2を含
む酸化皮膜を鋼板表面に形成する。ついでMgOを主成
分とするスラリー状の焼鈍分離剤を鋼板表面に塗布した
後、コイル状に巻取り、最終仕上焼鈍を行ない、この間
に起こるMgO−5iO1系固相反応を利用してフォル
ステライト(MgzSi04 )を形成させる。 しかしながら、この時生成されるフォルステライト皮膜
の性質は脱炭酸化皮膜の性状、マグネシアの種類、マグ
ネシアパウダーへの微量添加物の量と性質、あるいは仕
上焼鈍時の雰囲気などに左右され、機械的・磁気的に優
れた特性を備えたフォルステライト皮膜の形成法に関し
てこれまで多くの研究がなされてきた。 例えば特公昭51−12451号公報によればマグネシ
アパウダー中にTi0zを添加することにより密着性、
均一性に優れたフォルステライト皮膜が得られることが
報告されている。また特開昭54−66935号公報で
は、平均粒径が細かいフォルステライト粒子からなるた
め密着性の良好なフォルステライト皮膜を得るため、マ
グネシアパウダー中のCaOと水分量を適正管理するこ
とが開示されている。さらに特開昭55−58331号
公報では使用するマグネシアの活性度を限定することに
より、良好なフォルステライト皮膜を得る方法が開示さ
れている。 これらの方法に共通することは、いずれもがマグネシア
を主成分とする焼鈍分離剤の改良に関する提案であり、
それらはそれぞれ効果の認められるものも多いが、工業
的な面からはコスト高に結びついたり、工程管理が困難
である場合が多い。 さらに、より本質的な問題点は、鋼板表面のMgO−5
i(h系固相反応によりフォルステライト皮膜を形成す
る際、このように焼鈍分離剤、つまりMgOの側だけを
一方的に規定しても、得られるフォルステライト皮膜の
特性向上には限界があるということである0例えば、こ
のような方法で得られるフォルステライト皮膜の鋼板張
力は高々400g/−程度であり、実際の工程では特公
昭53−28375号公報に開示されているように、フ
ォルステライト皮膜の上にさらにコロイダルシリカ等を
主成分とする二次コーティングを行ない鋼板張力を向上
させる必要がある。 一方、仕上高温焼鈍中の雰囲気を規定するものとしては
、特開昭50−116998号公報、同55−1107
26号公報に示された鉄及び鉄酸化物に対する不活性の
中性ガス通人法、あるいは特開昭53−5800号公報
に見られる露点の制御法などがある。 これらの方法は主に特開昭49−61019号公報に示
される磁束密度の高い一方向性珪素鋼板の製造方法にお
けるフォルステライト皮膜形成方法の問題点を解決する
ために提案されたものである。すなわち、特開昭49−
61019号公報に開示された方法では最終仕上焼鈍中
800〜920″Cの間を一定温度で10〜100時間
加熱することが必要であるが、その間、酸化スケール中
の酸化鉄に対し、還元性の雰囲気を与えるとフォルステ
ライト皮膜の著しい不良が発生することが判明し、その
ため雰囲気を中性もしくは不活性とすることが必要とさ
れた(特開昭50−116998号公報、同55−11
0726号公報)。また、800〜920℃間の恒温保
持後、1150〜1250°Cまでの昇温時の雰囲気を
水素ガスとし、その時の露点を一20〜+20°Cの範
囲にし、さらにその後の平均露点を+10℃以下にする
ことにより、フォルステライト平均粒径を0.7n以下
にする方法が特開昭53−5800号公報により開示さ
れた。前者の提案はMMgO−5in反応時の鋼板側の
適正Si0g量を確保するものであり、後者の提案は反
応開始時のフォルステライト粒の発生とその後の粒成長
を雰囲気の酸素分圧により制御しようとするものである
。 これらの方法はいずれも特開昭49−61019号公報
に示された800〜920 ’C間の一定温度で恒温保
持することを特徴とする最終仕上焼鈍を前提として提案
されたフォルステライトの絶縁皮膜の形成方法であり、
その他の仕上焼鈍サイクルに対して必ずしも一般性があ
るとは言えない。また得られるフォルステライト皮膜の
平均結晶粒径が0、7μ翻以下であっても、皮膜の曲げ
密着性は最小剥離半径で10−程度であり、必ずしも充
分な密着性が確保されたとは言えない、さらにこのよう
な方法では皮膜が鋼板に与える張力も不充分で、コロイ
ダルシリカを主成分とした二次コーティングが必要とさ
れる場合が多く、製造コストの上昇に結びついている゛
。 以上の仕上高温焼鈍中の外部雰囲気を規定した技術はい
ずれも、その酸素ポテンシャルを供給雰囲気より若干高
める方向での制御の効果を述べているが、それらの条件
については若干ずつ異なっている。これは恐ら(、鋼板
をコイル状態で焼鈍した場合にその鋼板間隙の雰囲気を
外部焼鈍雰囲気を侵入させて制御する事が極めて困難で
あり、僅かな条件、例えば鋼板の締め付は力、焼鈍分離
剤の塗布密度等、の違いにより、それら適切焼鈍雰囲気
が見掛は上異なっているためと考えられる。 (発明が解決しようとする課題) 本発明の目的は、鋼板間隙が狭く外部焼鈍雰囲気がその
鋼板表面まで侵入し難いコイル状態での仕上高温焼鈍に
おいても、フォルステライト皮膜の形成に適した酸素ポ
テンシャルに制御することを可能にする一方向性珪素鋼
板の製造方法を提供することである。 本発明によれば、欠陥部の無い外観、そして密着性が良
く、皮膜張力の高いフォルステライト皮膜が、コイル全
長、全幅に亘って均一に得られる。 (課題を解決するための手段) 本発明の特徴はMgOを主成分とする焼鈍分離剤中に鋼
板の一定表面積当りに酸素元素を含むCa化合物をCa
O分として0.04〜0.35 g/rd、さらに合せ
てSを含む化合物をそのS化合物中のS当量がCa当量
の0.4〜1.4倍になる量、を複合添加し、CaO+
 S−+CaS +(0〕の反応により発生させた〔0
〕により、鋼板間隙の酸素ポテンシャルを正確に制御可
能にしたことにある。以下に本発明の実施態様を例にし
て、Ca化合物とS化合物の複合添加効果について説明
する。 重量%でCj 0.047%、Si:3.25%、Mn
=0.13%、S:0.007%、酸可溶性Aj:0.
030%、T、N  : 0.0078%、残部Fe及
び不可避的不純物を含有するスラブを1200°Cに加
熱後、2. Ovn厚の熱延板とし、1100℃X2s
inの焼鈍をし、0.20園厚まで冷延し、850°C
X90secにて湿水素中で脱炭焼鈍し、焼鈍分離剤と
してMgO+3%TlO,+ 5%窒化フェロマンガン
にCaOとSとを第1図に示す量だけ添加したものをL
og/%塗布し、乾燥後にコイル状に巻取り、N275
%+H225%の雰囲気で1200°Cまで昇熱し、1
Itloo%で1200°CX20hrの仕上焼鈍を行
なった。この成品の皮膜欠陥部の発生有無(フォルステ
ライト部の点状の欠落部)と、成品の片面のフォルステ
ライト絶縁皮膜を酸により除去した時の板の曲りから求
めた皮膜張力と、さらにこの成品について6CIX30
C11の単板を多数切り出しBs=1.93Tes l
 aのものについて測定した鉄損を第1図に示した。 第1図から、傾向としてCaO添加量が少ないと皮膜欠
落部の欠陥が発生し、多すぎると皮膜張力は大きいが、
皮膜が厚くなり過ぎて鉄損が悪くなる。又Sが少ないと
皮膜欠落部の欠陥が発生し、多すぎると皮膜張力が弱く
鉄損が悪い、ことが分る。 本発明者等は、CaOとSとの適当な添加量の組合せで
皮膜欠落部の無い、かつ皮膜張力の大きいフォルステラ
イト皮膜が形成された原因がCaO+S→cas(0)
の反応による適切な酸素ボテンシャル供給によると考え
た。熱分析によると、この反応による
(Industrial Application Field) The present invention relates to a manufacturing method capable of forming a good forsterite insulating film in the manufacturing process of a unidirectional silicon steel sheet in which final high-temperature annealing is performed in the form of a strip coil. (One conventional technique) The MgOSing-based insulating film mainly composed of forsterite on the surface of the unidirectional silicon steel sheet not only improves the appearance of the product, but also provides the necessary glabellar resistance between the steel sheets. It also plays an important role in terms of magnetic properties, reducing product iron loss due to the tensile stress that acts between them. This forsterite film is usually produced by the following method. First, a material for unidirectional silicon steel containing about 3 to 4% by weight of silicon is cold-rolled once or twice or more with intermediate annealing to the final thickness, and then rolled in wet hydrogen to a 700 to 90%
Decarburization annealing is performed in the range of 00°C, and at the same time an oxide film containing SiO2 is formed on the surface of the steel sheet. Next, a slurry-like annealing separator containing MgO as a main component is applied to the surface of the steel sheet, then wound into a coil and subjected to final annealing. The MgO-5iO1-based solid phase reaction that occurs during this process is used to convert forsterite ( MgzSi04) is formed. However, the properties of the forsterite film produced at this time depend on the properties of the decarboxylated film, the type of magnesia, the amount and properties of trace additives to the magnesia powder, or the atmosphere during final annealing, and are affected by mechanical and Much research has been conducted on methods for forming forsterite films with excellent magnetic properties. For example, according to Japanese Patent Publication No. 51-12451, adhesion and
It has been reported that a forsterite film with excellent uniformity can be obtained. Furthermore, JP-A No. 54-66935 discloses that in order to obtain a forsterite film with good adhesion because it is composed of forsterite particles with a small average particle size, the amount of CaO and water in magnesia powder is appropriately controlled. ing. Further, JP-A-55-58331 discloses a method for obtaining a good forsterite film by limiting the activity of magnesia used. What these methods have in common is that they all propose improvements to annealing separators whose main component is magnesia.
Although many of these methods are recognized to be effective, from an industrial standpoint, they often lead to high costs and are difficult to control the process. Furthermore, a more fundamental problem is that MgO-5 on the surface of the steel sheet
i (When forming a forsterite film by h-based solid-phase reaction, even if only the annealing separator, that is, MgO side is unilaterally specified in this way, there is a limit to the improvement in the properties of the resulting forsterite film. For example, the steel plate tension of the forsterite film obtained by such a method is about 400 g/- at most, and in the actual process, as disclosed in Japanese Patent Publication No. 53-28375, forsterite film is It is necessary to further improve the steel sheet tension by applying a secondary coating mainly composed of colloidal silica etc. on top of the film.On the other hand, as a method for regulating the atmosphere during finish high-temperature annealing, Japanese Patent Application Laid-Open No. 116998/1983 discloses , 55-1107
Examples include the inert neutral gas passage method for iron and iron oxides shown in Japanese Patent No. 26, and the dew point control method shown in Japanese Patent Application Laid-Open No. 53-5800. These methods were mainly proposed to solve the problems of the forsterite film forming method in the method for manufacturing unidirectional silicon steel sheets with high magnetic flux density, as disclosed in Japanese Patent Application Laid-open No. 49-61019. That is, JP-A-49-
The method disclosed in Publication No. 61019 requires heating at a constant temperature of 800 to 920"C for 10 to 100 hours during final finish annealing, but during this time, the iron oxide in the oxide scale is It was found that significant defects in the forsterite film occurred when an atmosphere of
Publication No. 0726). In addition, after maintaining the constant temperature between 800 and 920 degrees Celsius, when the temperature is raised to 1,150 to 1,250 degrees Celsius, the atmosphere is hydrogen gas, the dew point at that time is in the range of -20 to +20 degrees Celsius, and the average dew point thereafter is +10 degrees Celsius. JP-A-53-5800 discloses a method of reducing the average grain size of forsterite to 0.7 nm or less by lowering the temperature to 0.7 nm or less. The former proposal is to ensure an appropriate amount of Si0g on the steel plate side during the MMgO-5in reaction, and the latter proposal is to control the generation of forsterite grains at the start of the reaction and the subsequent grain growth by controlling the oxygen partial pressure of the atmosphere. That is. All of these methods were proposed on the premise of final annealing, which is characterized by constant temperature maintenance at a constant temperature between 800 and 920'C, as shown in Japanese Patent Application Laid-open No. 49-61019. It is a method of forming
It cannot be said that this is necessarily general to other finish annealing cycles. Furthermore, even if the average crystal grain size of the obtained forsterite film is 0.7μ or less, the bending adhesion of the film is about 10-1 at the minimum peel radius, and it cannot be said that sufficient adhesion is necessarily ensured. Moreover, in this method, the tension that the coating imparts to the steel sheet is insufficient, and a secondary coating containing colloidal silica as a main component is often required, leading to an increase in manufacturing costs. All of the above techniques for regulating the external atmosphere during final high-temperature annealing describe the effect of controlling the oxygen potential to be slightly higher than the supply atmosphere, but the conditions differ slightly. This is probably because (when steel plates are annealed in a coiled state, it is extremely difficult to control the atmosphere in the gap between the steel plates by introducing an external annealing atmosphere; This is thought to be because the appearance of the appropriate annealing atmosphere differs due to differences in the application density of the separating agent, etc. (Problems to be Solved by the Invention) The purpose of the present invention is to create an external annealing atmosphere with a narrow gap between the steel sheets. To provide a method for producing a unidirectional silicon steel sheet that makes it possible to control the oxygen potential to be suitable for forming a forsterite film even during finishing high-temperature annealing in a coiled state in which it is difficult for oxygen to penetrate to the surface of the steel sheet. According to the present invention, a forsterite film with a defect-free appearance, good adhesion, and high film tension can be uniformly obtained over the entire length and width of the coil. (Means for Solving the Problem) This invention The feature of the invention is that a Ca compound containing an oxygen element is added to an annealing separator containing MgO as a main component per a certain surface area of the steel sheet.
0.04 to 0.35 g/rd as O content, further adding a compound containing S in an amount such that the S equivalent in the S compound is 0.4 to 1.4 times the Ca equivalent, CaO+
[0] generated by the reaction of S-+CaS + (0)
], it is possible to accurately control the oxygen potential in the steel plate gap. The effects of combined addition of a Ca compound and an S compound will be described below using embodiments of the present invention as examples. Cj 0.047%, Si: 3.25%, Mn in weight%
=0.13%, S: 0.007%, acid soluble Aj: 0.
After heating the slab containing 0.030%, T, N: 0.0078%, balance Fe and unavoidable impurities to 1200°C, 2. Hot-rolled plate with Ovn thickness, 1100℃ x 2s
In, cold rolled to 0.20mm thickness, 850°C
Decarburization annealing was carried out in wet hydrogen for 90 seconds at
Coat og/%, wind up into a coil after drying, N275
%+H2 25% atmosphere to 1200°C, 1
Finish annealing was performed at 1200°C for 20 hours at Itloo%. The presence or absence of film defects in this product (dot-shaped missing parts in the forsterite part), the film tension determined from the bending of the plate when the forsterite insulating film on one side of the product was removed with acid, and the About 6CIX30
Cut out many C11 veneers Bs=1.93Tes l
Figure 1 shows the iron loss measured for item a. As shown in Figure 1, if the amount of CaO added is too small, defects in the film will occur, and if it is too large, the film tension will be large;
If the film becomes too thick, iron loss will worsen. It is also found that if the S content is too low, defects will occur in the missing parts of the film, and if it is too high, the film tension will be weak and the iron loss will be poor. The present inventors believe that the reason for the formation of a forsterite film with no film defects and a high film tension due to the combination of appropriate addition amounts of CaO and S is CaO+S→cas(0).
This was thought to be due to the appropriate supply of oxygen potential through the reaction. According to thermal analysis, this reaction

〔0〕放出は約9
20°Cから開始される事が分った。一方、フォルステ
ライト皮膜形成(2MgO+5iOz→2 MgO・5
t(h )は約950〜1120°Cで行なわれるので
、上記(0)放出開始後に対応し、従来から言われてい
るフォルステライト皮膜形成の促進、例えばStowの
形成供給、MgOと5t(hの固相反応促進、に効果が
あったと思われる。 第2図は、第1図と同じ素材を同し工程で処理し、焼鈍
分離剤としてMgO+3%Tl(h + 5%窒化フェ
ロマンガンに2%のCaOを添加し、さらにS量を種々
変えたものを10g/rrf(両面合計)塗布した場合
の皮膜張力、皮膜欠落部の有無、さらにB a = 1
.93 Te5laの部位の鉄損を第1図の結果も合せ
て示した。第2図からS当1/Ca当量が0、4〜1.
4倍の範囲で鉄損が良く、皮膜欠落部の発生がない、こ
とが分る。 次に本発明の実施Jl!様を説明する。本発明で用いる
溶鋼は転炉、電気炉等を用いて得ることができ、その溶
製方法は問わない。成分としては、フオルステライト皮
膜の形成のためにSiO□を構成するSiが必要である
。その量は、特に規定しないが、4.5%を超えると冷
延時の割れが著しくなるので4.5%以下が、又1.5
%未満では仕上高温焼鈍時にα→T変態があるため結晶
方位が破壊されるので1.5%以上が望ましい。本発明
では二次再結晶に必要なインヒビターとしてMnS、A
jN、(Aj、 5t)N等を用いる事が可能であるが
、高磁束密度材が製造可能なAjN、(Aj、 5t)
Nが望ましい。MnSについては、鋼中Sを高めると、
高Si材、薄手品で線状二次再結晶不良が発生するので
使用し難い。特に、本発明では焼鈍分離剤中に添加する
CaOが鋼中Sと反応するので、本発明の意図とは異な
った影響が現われる。このような理由から鋼中S量は少
ない方が本発明の素材として望ましく、0.012%以
下が上記条件を良く満足させる。以上に述べた溶鋼は鋳
造スラブを経て熱延による熱延板、あるいは直接に薄く
鋳造した鋳造板にされる。これら鋼板は1回あるいは中
間焼鈍をはさむ2回の冷延工程で最終板厚に仕上げられ
る。このように冷延された板は次いで温水素中で脱炭焼
鈍され、その焼鈍中に鋼板表面にSi島を含む酸化膜が
形成される。脱炭焼鈍後の鋼板表面には仕上高温焼鈍時
における焼付防止、及びフォルステライト系絶縁皮膜形
成のためにMgOを主成分とする焼鈍分離剤を塗布、乾
燥し、コイル状態に巻取る。本発明の特徴は、このコイ
ル状態の鋼板間隙の酸素ポテンシャル制御をCaQ+S
→CaS+(0)の反応で放出される
[0] Release is approximately 9
It turns out that it starts at 20°C. On the other hand, forsterite film formation (2MgO+5iOz→2 MgO・5
Since t(h) is carried out at approximately 950 to 1120°C, it corresponds to the above (0) after the start of release, and promotes the formation of forsterite film, which is conventionally said, such as forming and supplying Stow, and adding MgO and 5t(h). Figure 2 shows that the same material as in Figure 1 was treated in the same process, and MgO + 3% Tl (h + 5% ferromanganese nitride) was added as an annealing separator. % of CaO and various S amounts were applied at 10 g/rrf (total on both sides), the film tension, presence or absence of film missing parts, and B a = 1
.. The results of FIG. 1 are also shown for the iron loss in the 93 Te5la region. From FIG. 2, the S/Ca equivalent is 0, 4 to 1.
It can be seen that the iron loss is good within the range of 4 times, and there is no occurrence of film defects. Next, implementation of the present invention Jl! Explain the situation. The molten steel used in the present invention can be obtained using a converter, an electric furnace, etc., and any method of molten steel may be used. As a component, Si constituting SiO□ is necessary for forming a forsterite film. The amount is not particularly specified, but if it exceeds 4.5%, cracking during cold rolling becomes significant, so it is recommended that it be 4.5% or less, or 1.5% or less.
If it is less than 1.5%, the crystal orientation will be destroyed due to α→T transformation during final high-temperature annealing, so 1.5% or more is desirable. In the present invention, MnS and A are used as inhibitors necessary for secondary recrystallization.
Although it is possible to use AjN, (Aj, 5t)N, etc., it is possible to use AjN, (Aj, 5t), which can produce high magnetic flux density materials.
N is desirable. Regarding MnS, when increasing the S content in steel,
It is difficult to use with high Si materials and thin products because linear secondary recrystallization defects occur. In particular, in the present invention, since CaO added to the annealing separator reacts with S in the steel, an effect different from the intention of the present invention appears. For these reasons, it is preferable for the material of the present invention to have a small amount of S in the steel, and 0.012% or less satisfies the above conditions. The above-mentioned molten steel is made into a hot-rolled plate by hot rolling after passing through a casting slab, or into a cast plate by directly casting into a thin layer. These steel plates are finished to their final thickness through one or two cold rolling processes with intermediate annealing in between. The sheet cold-rolled in this manner is then decarburized annealed in warm hydrogen, and during the annealing, an oxide film containing Si islands is formed on the surface of the steel sheet. After decarburization annealing, an annealing separator containing MgO as a main component is applied to the surface of the steel sheet to prevent seizure during final high-temperature annealing and to form a forsterite-based insulating film, and the steel sheet is dried and wound into a coil. The feature of the present invention is that the oxygen potential control in the gap between the steel sheets in the coiled state is performed using CaQ+S.
→Released by CaS+(0) reaction

〔0〕によって行
なうことにある。Ca化合物としてCaO、Ca(OH
)z 、 CaCO5、硫酸基Ca化合物、硝酸基Ca
化合物、有機物Ca化合物があるが、CaO、Ca(O
H)z 、 CaCO5以外の後3者は仕上高温焼鈍時
に分解して多量のC,N、Sを発生し、二次再結晶や皮
膜形成に悪影響をもたらすので使用出来難い、但し、こ
れらCa化合物も、塗布後の乾燥工程で熱分解によりC
,N、Sを除去しておけば使用出来る。なお、この時に
残存する形態は実質的にはCaO、Ca(OH)tとな
っている。このような付加処理、そしてCa化合物の単
価を考慮すれば実際上、使用出来るCa源はCaO、C
a(OH)z、CaCO3である。CaOはSとの反応
がほぼフォルステライト形成温度域にあるので最適であ
る。Ca (OH) tは分解温度が580°Cである
ので、仕上高温焼鈍昇温時に分解し、その温度以上では
CaOとなるので効果としてはCaOと同じである。 
CaC0zの分解温度は898°Cであるので、焼鈍分
離剤の乾燥工程でこのような高温処理は不可能であり、
CaC01のままで仕上高温焼鈍工程に持ち込まれる。 そして分解後はCaOの効果と、C08の影響が現われ
ると考えられるが、CaO、単独の場合に比べ皮膜特性
が若干悪い。S化合物については、S単体の粉末が単価
が安く、かつそれ以外の構成元素を持ち込まないので最
適であるが、FeSのようなS化金属、FeSO4のよ
うな硫酸化金属もそれなりの効果がある。 Ca化合物の適切添加量は、皮膜形成に最適な
It lies in what we do with [0]. Ca compounds include CaO, Ca(OH
)z, CaCO5, sulfate group Ca compound, nitrate group Ca
There are organic compounds, Ca compounds, CaO, Ca(O
H)z, The latter three other than CaCO5 decompose during finishing high temperature annealing and generate large amounts of C, N, and S, which have a negative effect on secondary recrystallization and film formation, so it is difficult to use them. However, these Ca compounds Also, carbon is released by thermal decomposition during the drying process after application.
, N, and S can be removed. Note that the remaining forms at this time are substantially CaO and Ca(OH)t. Considering this addition process and the unit price of Ca compounds, the only Ca sources that can be used are CaO, C
a(OH)z, CaCO3. CaO is optimal because its reaction with S is approximately within the forsterite formation temperature range. Since Ca (OH) t has a decomposition temperature of 580°C, it decomposes when the temperature is raised during final high-temperature annealing, and becomes CaO above that temperature, so it has the same effect as CaO.
Since the decomposition temperature of CaC0z is 898 °C, such high temperature treatment is impossible in the drying process of the annealing separator.
The CaC01 is brought to the final high temperature annealing process. After decomposition, it is thought that the effect of CaO and the influence of CO8 appear, but the film properties are slightly worse than in the case of CaO alone. Regarding S compounds, a powder of simple S is optimal because it is cheap and does not introduce other constituent elements, but sulfurized metals such as FeS and sulfated metals such as FeSO4 are also effective. . The appropriate amount of Ca compound added is the optimum amount for film formation.

〔0〕を
供給するためには鋼板単位表面積光りにCaOに換算し
て0.04〜0.35 g/rrfである。 0.04g/rr1未満では添加効果がなく、0.35
 g/ボを越えると
In order to supply [0], the surface area of the steel sheet should be 0.04 to 0.35 g/rrf in terms of CaO. If it is less than 0.04g/rr1, there is no addition effect, and 0.35
If you cross g/bo

〔0〕が過剰になり、フォルステラ
イト皮膜が厚くなり過ぎて鉄…が悪くなる。この塗布量
は、鋼板板厚にはほとんど影響されないが、鋼板巻取り
力が大きい場合には少な目が良い。 鋼板の焼付きを防止するに必要な最少の焼鈍分離剤は約
4 g/rdであり、又12 g/%を越えて塗布して
もMgOが未反応で残り無駄である。したがって4〜1
2 g/mlの塗布量範囲で上記CaO量Gこなるよう
なCaO添加添加法めれば良い。 最適な方法は、この塗布量から決まる酸素分圧にほぼ平
衡した仕上高温焼鈍時の外部焼鈍雰囲気で、いわば゛炭
焼き”状態で行なうことである。 S添加量は鋼中S量によって影響を受け、鋼中Sが大の
場合はS添加量を少ない範囲にした方が良い。引き続い
て、仕上高温焼鈍を行なう。この工程は二次再結晶、フ
ォルステライト皮膜形成および純化を目的としており、
通常1100“C以上、5hrにて、水素又は水素を含
んだ混合雰囲気中で行なう。本発明は以上の実施態様に
加え、鋼中Sが低い範囲で本発明の効果を発揮し易いの
で、二次再結晶ニ対するインヒビターとして脱炭焼鈍か
ら仕上高温焼鈍の二次再結晶開始前迄のいずれかの段階
での窒化処理による(A#、 5i)Nを確保した方が
良い。 (実施例) 本発明を実施例に基づいて説明する。 (実施例1) 重量%でC: 0.048%、Si:3.27%、Mn
:0.10%、S : O,OO7%、酸可溶性Aj 
: 0.029%、T、N  : 0.0080%、残
部Fe及び不可避的不純物を含有するスラブを1200
″Cに加熱後、2.0 m厚の熱延板とし、1100°
CX2m1nの焼鈍をし、板厚0、20 mm厚まで冷
延し、850°CX90secにて湿水素中で脱炭焼鈍
し、焼鈍分離剤として(八)(MgO+3%TiO,+
5%窒化フェロマンガン+1、2%CaO+0.7%S
)と(B)  (MgO+3%Ti01+5%窒化フェ
ロマンガン+3%CaO+0.7%S)の2種類を鋼板
表面積1イ当り(両面の合計)に8gと13gを塗布し
、乾燥後にコイルに巻取り、N275%+H225%の
雰囲気で1200°Cまで昇熱し、nztoo%で12
00°CX20hrの仕上高温焼鈍を行なった。この成
品の皮膜特性と磁気特性を第1表に示した。(A)の場
合のS当量/Ca当量は1.0、(B)の場合のそれは
 0.4に相当する。 第1表から分るように、本発明範囲のCaO量を含む場
合、皮膜特性、磁気特性ともに良好であるが、0.39
0g/n1OCaO量の場合、皮膜特性は一番良好であ
るが、磁気特性が良くない。これはCaO量が多くなる
と皮膜が厚(なり過ぎるためである。 (実施例2) 重量%でC: 0.048%、Si:3.27%、Mn
二0.10%、S : 0. OO7%、酸可溶性IV
: 0.029%、T、N  : 0.0080%、残
部Fe及び不可避的不純物を含有するスラブを1200
℃に加熱後、板厚2.3 yra、2.0mg+、 1
.8mm厚の熱延板とし、2.3 mm厚の熱延板は0
.30m5+厚に、2.0 m厚の熱延板は0.23f
fiIs厚に、1.8 m厚の熱延板は0.20m厚に
冷延し、850℃で0.30mm厚の冷延板は120s
ec間、0.23mm厚の冷延板は100sec間、0
.20mm厚の冷延板は90sec間、湿水素中で脱炭
焼鈍し、焼鈍分離剤として(MgO+3%Ti0t+5
%窒化フェロマンガン+1.2%CaO+0.7%S)
を10 g/% (両面合計)塗布し、乾燥後にコイル
に巻取り、NZ75%+H225%の雰囲気で1200
°Cまで昇熱し、Hz100%で1200°CX20h
rの仕上高温焼鈍を行なった。この成品の皮膜特性と磁
気特性を第2表に示した。 第2表から分るように、各板厚とも皮膜欠落部の発生も
なく良好で、磁気特性も板厚に見合った優れた値である
。なお、張力が板厚が厚くなるほど下っているが、皮膜
厚みがほぼ一定であるのに対し地鉄厚みが大きくなるた
め、計算上で下がったものである。 (実施例3) 実施例1と同じ冷延板について、850℃X 90se
cにて湿水素中で脱炭焼鈍し、焼鈍分離剤として(Mg
O+3%rtoz+5%窒化フェロマンガン+0.5%
S)にCaOとCa (OH) tとCaCO5をそれ
ぞれ第3表に示す所定量だけ添加したものを10g(両
面合計)塗布し、乾燥し、コイルに巻取り、N875%
+H225%の雰囲気で1200℃まで昇熱し、Hz1
00%で1200℃X20hrの仕上高温焼鈍を行なっ
た。この成品の皮膜特性と磁気特性を第3表に示した。 なお、このいずれの焼鈍分離剤についてもCaO量とし
ては0.2g/rrfに相当する。 第3表から分るようにCa(OH)x 、 CaCO5
いずれについてもCaOと同じく、皮膜特性、磁気特性
いずれも良好である。 (実施例4) 実施例1と同じ冷延板について、850°C×90se
cにて湿水素中で脱炭焼鈍し、焼鈍分離剤として(Mg
O+3%Ti01+5%窒化フェロマンガン)にCaO
とSとFeSを、それぞれ第4表に示す所定量だけ添加
したものをtog/ポ(両面合計)塗布し、乾燥し、コ
イルに巻取り、Nt15%十Ht25%の雰囲気で12
00°Cまで昇熱し、HzlOO%で1200″CX2
0hrの仕上高温焼鈍を行なった。この成品の皮膜特性
と磁気特性を第4表に示した。なお、1.4%FeSは
Sとしては0.5%に相当する。 第4表から分るように、CaOとSの少ない焼鈍分離剤
ASCaOの少ないBはいずれも皮膜欠落部が発生し、
張力も少なく鉄損も良くない。 (発明の効果) 以上、詳述したように、本発明は鋼板間隙が狭く外部焼
鈍雰囲気がその鋼板表面まで侵入し難いコイル状態での
仕上高温焼鈍においても、フォルステライト皮膜の形成
に適した酸素ポテンシャルに制御することを可能にする
一方向性珪素鋼板の製造方法を提供するものであり、こ
れにより焼鈍分離剤中のCaOとSとが反応して
[0] becomes excessive, the forsterite film becomes too thick, and the iron quality deteriorates. This coating amount is hardly affected by the thickness of the steel sheet, but if the winding force of the steel sheet is large, less is better. The minimum amount of annealing separator necessary to prevent seizure of a steel plate is about 4 g/rd, and even if it is applied in excess of 12 g/%, MgO remains unreacted and is wasteful. Therefore 4-1
Any CaO addition method that achieves the above CaO amount G within a coating amount range of 2 g/ml may be used. The optimal method is to carry out the annealing in an external annealing atmosphere during final high-temperature annealing that is almost in equilibrium with the oxygen partial pressure determined by the applied amount, in a so-called ``charcoal-burning'' state.The amount of S added is affected by the amount of S in the steel. If the S content in the steel is large, it is better to keep the amount of S added within a small range.Subsequently, finish high-temperature annealing is performed.The purpose of this process is secondary recrystallization, forsterite film formation, and purification.
It is usually carried out at 1100"C or more for 5 hours in hydrogen or a mixed atmosphere containing hydrogen. In addition to the above-mentioned embodiments, the present invention can easily exhibit the effects of the present invention in a range where the S content in the steel is low. As an inhibitor for secondary recrystallization, it is better to secure (A#, 5i) N by nitriding treatment at any stage from decarburization annealing to before the start of secondary recrystallization in final high-temperature annealing. (Example) The present invention will be explained based on Examples. (Example 1) C: 0.048%, Si: 3.27%, Mn in weight%
: 0.10%, S: O, OO7%, acid soluble Aj
: 0.029%, T, N: 0.0080%, balance containing Fe and unavoidable impurities.
After heating to "C", it is made into a 2.0 m thick hot-rolled plate and heated at 1100°.
CX2m1n was annealed, cold-rolled to a plate thickness of 0.20 mm, decarburized in wet hydrogen at 850° CX for 90 seconds, and (8) (MgO + 3% TiO, +
5% ferromanganese nitride + 1, 2% CaO + 0.7% S
) and (B) (MgO + 3% Ti01 + 5% ferromanganese nitride + 3% CaO + 0.7% S) were applied at 8 g and 13 g per sheet surface area (total on both sides), and after drying, wound into a coil. Heat up to 1200°C in an atmosphere of N275% + H225%, and reduce the temperature to 1200°C at nztoo%.
Finishing high temperature annealing was performed at 00°C for 20 hours. The film properties and magnetic properties of this product are shown in Table 1. The S equivalent/Ca equivalent in case (A) corresponds to 1.0, and that in case (B) corresponds to 0.4. As can be seen from Table 1, when the amount of CaO in the range of the present invention is included, both the film properties and magnetic properties are good, but 0.39
When the amount of OCaO is 0 g/n1, the film properties are the best, but the magnetic properties are poor. This is because when the amount of CaO increases, the film becomes too thick. (Example 2) C: 0.048%, Si: 3.27%, Mn in weight%
20.10%, S: 0. OO7%, acid soluble IV
: 0.029%, T, N: 0.0080%, balance containing Fe and unavoidable impurities.
After heating to ℃, plate thickness 2.3 yra, 2.0 mg+, 1
.. 8mm thick hot rolled sheet, 2.3mm thick hot rolled sheet is 0
.. 30m5+ thickness, 2.0m thick hot rolled plate is 0.23f
A 1.8 m thick hot rolled plate is cold rolled to 0.20 m thick, and a 0.30 mm thick cold rolled plate is rolled at 850°C for 120 s.
EC, 0.23mm thick cold rolled plate for 100sec, 0
.. A cold-rolled sheet with a thickness of 20 mm was decarburized and annealed in wet hydrogen for 90 seconds, and (MgO + 3% Ti0t + 5
% ferromanganese nitride + 1.2% CaO + 0.7% S)
Coated at 10 g/% (total on both sides), wound up into a coil after drying, and heated at 1200 g/% in an atmosphere of NZ75% + H225%.
Heat up to °C, 1200°C x 20h at 100% Hz
Finishing high temperature annealing of r was performed. The film properties and magnetic properties of this product are shown in Table 2. As can be seen from Table 2, each plate thickness was good with no film missing parts, and the magnetic properties were excellent commensurate with the plate thickness. It should be noted that the tension decreases as the plate thickness increases, but this decrease was calculated because the thickness of the base metal increases while the coating thickness remains approximately constant. (Example 3) For the same cold rolled sheet as in Example 1, 850°C x 90se
Decarburization annealing was performed in wet hydrogen at step c, and (Mg
O + 3% rtoz + 5% ferromanganese nitride + 0.5%
10g (total of both sides) of CaO, Ca(OH)t, and CaCO5 added in the prescribed amounts shown in Table 3 is applied to S), dried, wound into a coil, and coated with N875%.
Heat up to 1200℃ in +H225% atmosphere, Hz1
Final high temperature annealing was performed at 1200° C. for 20 hours at 0.00%. The film properties and magnetic properties of this product are shown in Table 3. Note that the amount of CaO in any of these annealing separators corresponds to 0.2 g/rrf. As can be seen from Table 3, Ca(OH)x, CaCO5
As with CaO, both film properties and magnetic properties are good. (Example 4) For the same cold-rolled sheet as in Example 1, 850°C x 90se
Decarburization annealing was performed in wet hydrogen at step c, and (Mg
O + 3% Ti01 + 5% ferromanganese nitride) and CaO
The predetermined amounts of S, FeS, and S shown in Table 4 were added to the tog/po (total of both sides), dried, wound into a coil, and heated for 12 hours in an atmosphere of 15% Nt and 25% Ht.
Heat up to 00°C, 1200″CX2 at HzlOO%
Finishing high temperature annealing was performed for 0 hr. The film properties and magnetic properties of this product are shown in Table 4. Note that 1.4% FeS corresponds to 0.5% S. As can be seen from Table 4, the annealing separator B, which contains less CaO and S and less SCaO, has missing film parts.
Tension is low and iron loss is also not good. (Effects of the Invention) As described in detail above, the present invention provides oxygen suitable for the formation of a forsterite film even in finish annealing in a coiled state where the gap between the steel plates is narrow and the external annealing atmosphere is difficult to penetrate to the surface of the steel plate. The purpose is to provide a method for manufacturing unidirectional silicon steel sheets that enables control over the potential, whereby CaO and S in the annealing separator react with each other.

〔0〕
を発生し、鋼板間隙の酸素ポテンシャルを最適に制御す
ることが出来る。本発明によれば、コイル全長、全幅に
亘って皮膜特性の良好な一方向性珪素鋼板が得られる。
[0]
It is possible to optimally control the oxygen potential in the steel plate gap. According to the present invention, a unidirectional silicon steel plate having good coating properties over the entire length and width of the coil can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は重量%でC: 0.047%、Si:3.25
%、Mn : o、 13%、S : 0.007%、
酸可溶性M:0.030%、T、N  j 0.007
8%を含有し、残部Fe及び不可避的不純物からなるス
ラブを1200°Cに加熱後、2.0mm厚の熱延板と
し、1100″CX2m1nの焼鈍をし、0.20 m
a厚まで冷延し、850°(: X90secにて湿水
素中で脱炭焼鈍し、焼鈍分離剤としてMgO+3%Ti
0z+5%窒化フェロマンガンにCaOとSとを適当量
添加したものをLog/rrf塗布し、乾燥後にコイル
状に巻取り、N!75%十 H225%の雰囲気で12
00″Cまで昇熱し、HzlOO%で1200”CX2
0hrの仕上高温焼鈍を行った時の、皮膜欠陥部の発生
有無(フォルステライト部の点状の欠落部)と皮膜張力
とB s−1,93Te5laの部分の鉄損とをCaO
とSとの添加割合との関係で示したものである。 第2図は第1図と同じ素材を同じ工程で処理し、焼鈍分
離剤としてMgO+3%Ti0z +、 5%窒化フェ
ロマンガンに2%のCaOを添加し、さらにS量を種々
変えたものを10g/rrf(両面の合計)塗布した場
合の皮膜張力と皮膜欠陥部の発生有無(フォルステライ
ト部の点状の欠落部)とB、−1,93Tes 1 a
の部分の鉄損とをS当量/Ca当量との関係で示したも
のである。 第2vR 5当量 当量 手続補正書(自発) 平t;1年5月29日
Figure 1 shows C: 0.047%, Si: 3.25 in weight%.
%, Mn: o, 13%, S: 0.007%,
Acid soluble M: 0.030%, T, N j 0.007
After heating the slab containing 8% Fe and unavoidable impurities to 1200°C, it was made into a 2.0 mm thick hot-rolled plate, annealed to 1100"C x 2m1n, and 0.20 m
It was cold-rolled to a thickness of a, decarburized in wet hydrogen at 850° (:
A mixture of 0z+5% ferromanganese nitride with appropriate amounts of CaO and S added is applied by Log/rrf, and after drying, it is wound into a coil shape and N! 75% 12 in an atmosphere of H225%
Heat up to 00"C, 1200"CX2 at HzlOO%
When finishing high-temperature annealing was performed for 0 hr, the presence or absence of film defects (dot-shaped missing parts of forsterite parts), film tension, and iron loss in the B s-1,93Te5la part were calculated using CaO
It is shown in terms of the relationship between the addition ratio of and S. Figure 2 shows 10g of the same material as in Figure 1 treated in the same process, with MgO + 3% TiOz + added as an annealing separator, 2% CaO added to 5% ferromanganese nitride, and the amount of S varied. /rrf (total of both sides) Film tension when applied, presence or absence of film defects (point-like missing parts of forsterite part), and B, -1,93Tes 1 a
The iron loss of the portion is shown in relation to S equivalent/Ca equivalent. 2nd vR 5 equivalent procedure amendment (voluntary) May 29, 1 year

Claims (1)

【特許請求の範囲】[Claims] 所望の最終板厚に冷間圧延された珪素鋼帯を脱炭焼鈍し
、その表面にSiO_2を含むサブスケールを生成させ
、次いでMgOを主成分とする焼鈍分離剤を塗布した後
巻き取ってストリップコイルとし、仕上高温焼鈍を行っ
てフォルステライトを形成する一方向性珪素鋼板の製造
方法において、前記焼鈍分離剤を酸素元素を含むCa化
合物ならびにSを含む化合物をS当量がCa当量の0.
4〜1.4倍となる量複合添加したものとし、ストリッ
プ表面にCaO分として0.04〜0.35g/m^2
となる如く塗布してストリップコイルにおける鋼板間隙
の酸素ポテンシャルを制御することを特徴とするコイル
状態で良好なフォルステライト絶縁皮膜を形成させる一
方向性珪素鋼板の製造方法。
A silicon steel strip that has been cold-rolled to a desired final thickness is decarburized and annealed to generate subscales containing SiO_2 on its surface, then an annealing separator containing MgO as a main component is applied, and then it is wound up into strips. In a method for manufacturing a grain-oriented silicon steel sheet in which a coil is formed and final high-temperature annealing is performed to form forsterite, the annealing separator is a Ca compound containing an oxygen element and a compound containing S.
4 to 1.4 times the amount is added, and the CaO content is 0.04 to 0.35 g/m^2 on the strip surface.
A method for producing a unidirectional silicon steel sheet which forms a good forsterite insulating film in a coil state, the method comprising controlling the oxygen potential in the gap between the steel sheets in a strip coil by applying the coating in such a manner that the coating is applied as follows.
JP9683289A 1989-04-17 1989-04-17 Method for producing unidirectional silicon steel sheet for forming good forsterite insulating film in coil state Expired - Lifetime JP2762111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9683289A JP2762111B2 (en) 1989-04-17 1989-04-17 Method for producing unidirectional silicon steel sheet for forming good forsterite insulating film in coil state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9683289A JP2762111B2 (en) 1989-04-17 1989-04-17 Method for producing unidirectional silicon steel sheet for forming good forsterite insulating film in coil state

Publications (2)

Publication Number Publication Date
JPH02274882A true JPH02274882A (en) 1990-11-09
JP2762111B2 JP2762111B2 (en) 1998-06-04

Family

ID=14175515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9683289A Expired - Lifetime JP2762111B2 (en) 1989-04-17 1989-04-17 Method for producing unidirectional silicon steel sheet for forming good forsterite insulating film in coil state

Country Status (1)

Country Link
JP (1) JP2762111B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218849A (en) * 2019-06-24 2019-09-10 鞍钢股份有限公司 Bottom interleaving agent when a kind of oriented silicon coil of strip high annealing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218849A (en) * 2019-06-24 2019-09-10 鞍钢股份有限公司 Bottom interleaving agent when a kind of oriented silicon coil of strip high annealing
CN110218849B (en) * 2019-06-24 2021-04-02 鞍钢股份有限公司 Bottom separant for high-temperature annealing of oriented silicon steel coil

Also Published As

Publication number Publication date
JP2762111B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JPH08188824A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
US5190597A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JPS6160895B2 (en)
JP2006503189A5 (en) Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same
JPS60197883A (en) Formation of insulating forsterite film on grain-oriented silicon steel sheet
JP3382804B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating
JPH02274882A (en) Production of grain-oriented silicon steel sheet having good forsterite insulating film in coil state
JPH0425349B2 (en)
JP3483457B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating and magnetic properties
JP2599069B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties
JPH0225433B2 (en)
JPH0762440A (en) Manufacture of grain-oriented silicon steel sheet with highly tensile and uniform glass coating film and excellent in magnetic property
JPH09279247A (en) Production of grain-oriented silicon steel sheet high in density of magnetic flux
JPH08143975A (en) Annealing releasing agent and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic characteristics
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JP3268198B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties
JPH01119621A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic and glass film characteristic
KR20140131790A (en) Gran-oriented electrical steel sheet and manufacturing method for the same
JP2781524B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JP2762105B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with good iron loss characteristics
JPH06173019A (en) Production of thick grain-oriented silicon steel plate small in glass film and excellent in magnetic property
JP2786577B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JP3707249B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating uniformity
JPH0941153A (en) Separation agent at annealing, excellent in reactivity, and production of grain oriented silicon steel sheet using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12