JPH02274834A - High strength and high toughness aluminum alloy and its manufacture - Google Patents
High strength and high toughness aluminum alloy and its manufactureInfo
- Publication number
- JPH02274834A JPH02274834A JP9702589A JP9702589A JPH02274834A JP H02274834 A JPH02274834 A JP H02274834A JP 9702589 A JP9702589 A JP 9702589A JP 9702589 A JP9702589 A JP 9702589A JP H02274834 A JPH02274834 A JP H02274834A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- aluminum alloy
- primary
- heat treatment
- vickers hardness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000000956 alloy Substances 0.000 claims abstract description 70
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 69
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 239000000126 substance Substances 0.000 claims description 8
- 238000000354 decomposition reaction Methods 0.000 abstract description 7
- 229910052751 metal Inorganic materials 0.000 abstract description 7
- 239000002184 metal Substances 0.000 abstract description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract 1
- 229910000946 Y alloy Inorganic materials 0.000 abstract 1
- 229910052802 copper Inorganic materials 0.000 abstract 1
- 239000010949 copper Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 abstract 1
- 239000011261 inert gas Substances 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000002156 mixing Methods 0.000 description 7
- 239000006104 solid solution Substances 0.000 description 7
- 238000005452 bending Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001192 hot extrusion Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910001111 Fine metal Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
A1発明の目的
(1)産業上の利用分野
本発明は高強度高靭性アルミニウム合金およびその製造
方法に関する。DETAILED DESCRIPTION OF THE INVENTION A1 Object of the Invention (1) Field of Industrial Application The present invention relates to a high-strength, high-toughness aluminum alloy and a method for producing the same.
(2)従来の技術
従来、この種合金として、機械的特性等を改善する目的
で、組織を微細化した急冷凝固アルミニウム合金が知ら
れている。(2) Prior Art Conventionally, as this type of alloy, rapidly solidified aluminum alloys with finer structures have been known for the purpose of improving mechanical properties and the like.
(3)発明が解決しようとする課題
しかしながら前記従来合金は、高硬度低靭性であるため
、熱間押出し加工、熱間鍛造加工等の熱間成形性が悪い
という問題がある。(3) Problems to be Solved by the Invention However, since the conventional alloys have high hardness and low toughness, they have a problem of poor hot formability in hot extrusion, hot forging, and the like.
本発明は前記に鑑み、熱間成形性が良好であり、また高
強度な前記アルミニウム合金およびその製造方法を提供
することを目的とする。In view of the above, an object of the present invention is to provide the aluminum alloy having good hot formability and high strength, and a method for manufacturing the same.
B8発明の構成
(1) 課題を解決するだめの手段
本発明に係る高強度高靭性アルミニウム合金は、化学式
A/!m Feb Ycで表わされ、a、 b、
cがそれぞれ原子%で、90<a<94.3くbく7、
l<c<6であり、ビッカース硬さ(Hv)が250≦
Hv≦400であることを第1の特徴とする。B8 Structure of the invention (1) Means for solving the problem The high-strength, high-toughness aluminum alloy according to the present invention has the chemical formula A/! m Feb Yc, a, b,
c is each atomic %, 90<a<94.3×b7,
l<c<6 and Vickers hardness (Hv) is 250≦
The first feature is that Hv≦400.
また本発明に係る高強度高靭性アルミニウム合金は、化
学式AIB Feh Ycで表わされ、a。Further, the high-strength, high-toughness aluminum alloy according to the present invention is represented by the chemical formula AIB Feh Yc, and has a.
b、 cがそれぞれ原子%で、90<a<94.3〈
bく7、l<c<6であり、熱処理後のビッカース硬さ
(Hv)がHv≧180であることを第2の特徴とする
。b and c are each atomic %, 90<a<94.3<
The second characteristic is that 1<c<6, and the Vickers hardness (Hv) after heat treatment is Hv≧180.
さらに本発明に係る高強度高靭性アルミニウム合金の製
造方法は、化学式A/2a F eb Ycで表わされ
、a、b、cがそれぞれ原子%で、90くaく94.3
<b<7.1<c<6であるアルミニウム合金に、該合
金に複相組織が生じる温度域にて熱間成形を施すことを
特徴とする。Furthermore, the method for producing a high-strength, high-toughness aluminum alloy according to the present invention is represented by the chemical formula A/2a F eb Yc, where a, b, and c are each atomic %, and 90×94.3
It is characterized in that an aluminum alloy with <b<7.1<c<6 is subjected to hot forming in a temperature range in which a multi-phase structure is generated in the alloy.
(2)作 用
第1の特徴によれば、非晶質相と過飽和固溶体とが混在
した微細な金属組織が得られ、そのアルミニウム合金は
高硬度であるが高靭性であるため、熱間成形性が良好に
なり、また引張強さも向上する。(2) Effect According to the first feature, a fine metal structure containing a mixture of amorphous phase and supersaturated solid solution is obtained, and the aluminum alloy has high hardness but high toughness, so hot forming is possible. The properties are improved, and the tensile strength is also improved.
たりし、各化学成分の配合割合が前記範囲を逸脱すると
、アルミニウム合金が高硬度で、且つ脆弱になるか、引
張強さが低下するか、または高靭性ではあるが低硬度に
なる。However, if the mixing ratio of each chemical component deviates from the above-mentioned range, the aluminum alloy will have high hardness and become brittle, the tensile strength will decrease, or the aluminum alloy will have high toughness but low hardness.
第2の特徴によれば、熱処理により相分解が行われて微
細な複相組織が出現し、これによりアルミニウム合金は
比較的高硬度で、且つ高靭性となり、また引張強さも向
上する。According to the second characteristic, phase decomposition occurs through heat treatment and a fine multi-phase structure appears, thereby making the aluminum alloy relatively high in hardness and toughness, and also improving in tensile strength.
たりし、各化学成分の配合割合が前記範囲を逸脱すると
、アルミニウム合金が高硬度で、且つ脆弱になるか、ま
たは高靭性ではあるが低硬度になる。However, if the blending ratio of each chemical component deviates from the above range, the aluminum alloy will have high hardness and become brittle, or it will have high toughness but low hardness.
前記製造方法によれば、比較的高い硬度を有すると共に
高靭性なアルミニウム合金が得られ、またその合金製造
と同時に成形が行われる。According to the manufacturing method, an aluminum alloy having relatively high hardness and high toughness can be obtained, and the aluminum alloy can be formed at the same time as the alloy is manufactured.
(3)実施例
本発明に係るアルミニウム合金は次に述べる手法により
製造された。(3) Example An aluminum alloy according to the present invention was manufactured by the method described below.
即ち、アーク溶解にてA/!−Fe−Y系母合金を溶製
し、次いでAr雰囲気中にて単ロール法(直径250I
II11の銅製ローラ、回転数400Orpm )によ
り一次組織を持つリボン状アルミニウム合金(以下、1
次合金と称す)を作製し、その後1次合金に真空中にて
熱処理を施して二次組織を持つリボン状アルミニウム合
金(以下、2次合金と称す)を得る。That is, A/! in arc melting! -Fe-Y base alloy is melted and then single roll method (diameter 250I) is carried out in an Ar atmosphere.
A ribbon-shaped aluminum alloy with a primary structure (hereinafter referred to as 1
A ribbon-shaped aluminum alloy (hereinafter referred to as a secondary alloy) having a secondary structure is obtained by heat-treating the primary alloy in a vacuum (hereinafter referred to as a secondary alloy).
表Iは各種1次。Table I shows various types of primary.
2次合金の組成および各種物 性を示す。Composition and various items of secondary alloys Show your gender.
表1において、1次、2次合金(+)〜(11)が本発
明に係るアルミニウム合金に該当し、他の1次。In Table 1, primary and secondary alloys (+) to (11) correspond to the aluminum alloys according to the present invention, and other primary alloys.
2次合金(12)〜(27)が比較例アルミニウム合金
に該当する。Secondary alloys (12) to (27) correspond to comparative example aluminum alloys.
各1次、2次合金(1)〜(27)のビッカース硬さは
マイクロビッカース硬度計を用いて測定された。The Vickers hardness of each of the primary and secondary alloys (1) to (27) was measured using a micro Vickers hardness meter.
また密着曲げ試験は、第1図に示すようにリボン状の2
次合金Aを、それの両端部Aa、Abを把持して折曲げ
、中央部分が破断したときの、その中央部分外周面に生
じる円弧Acの直径lを測定することにより行われた。In addition, in the close bending test, two ribbon-shaped
Next, alloy A was held and bent by both ends Aa and Ab, and the diameter l of a circular arc Ac generated on the outer circumferential surface of the central portion when the central portion was broken was measured.
この密着曲げ試験の測定値は、破断ひすみ(εf)とし
て表わされ、2次合金Aの厚さをtとしたとき破断ひす
み(εf)は、
ε 「=
fi−t
となる。The measured value of this contact bending test is expressed as fracture strain (εf), and when the thickness of the secondary alloy A is t, the fracture strain (εf) is ε′=fi−t.
密着曲げ可能状態は、2次合金Aが破断せずにその両端
部Aa、Abが密着した状態であって、このときの破断
歪(εf)は、
ε f= =1t −t
である、この密着曲げが可能である場合は、表Iにおい
て’OJで表わされ、また不可能である場合は「×」で
表わされている。The close bendable state is a state in which the secondary alloy A does not break and its both ends Aa and Ab are in close contact, and the breaking strain (εf) at this time is ε f = =1t - t. If tight bending is possible, it is represented by 'OJ' in Table I, and if it is not possible, it is represented by 'x'.
第2図は、各1次合金(1)〜(27)におけるFeお
よびYの配合割合とビッカース硬さとの関係を示す。各
点の上の数値がビッカース硬さに該当する。FIG. 2 shows the relationship between the mixing ratio of Fe and Y and the Vickers hardness in each of the primary alloys (1) to (27). The value above each point corresponds to Vickers hardness.
表!および第2図において、本発明に係る各1次合金(
1)〜(11)は、Ale Feb Ycにおいて、a
、b、cがそれぞれ原子%で、90<a<94.3<b
<7、l<c<6の条件を満足しており、また非晶質相
と過飽和固溶体とが混在した金属組織を有する。これら
1次合金(1)〜(11)は、ビッカース硬さ(Hv)
が250≦Hv≦400であって高硬度であるが高靭性
であるため、熱間成形性が良好となり、また引張強さも
向上している。table! And in FIG. 2, each primary alloy according to the present invention (
1) to (11) are a in Ale Feb Yc.
, b, and c are each atomic %, and 90<a<94.3<b
<7, l<c<6, and has a metal structure in which an amorphous phase and a supersaturated solid solution are mixed. These primary alloys (1) to (11) have Vickers hardness (Hv)
is 250≦Hv≦400 and has high hardness but high toughness, so hot formability is good and tensile strength is also improved.
比較例としての1次合金(12) 、 (13) 。Primary alloys (12) and (13) as comparative examples.
(15)〜(24)は、非晶質相と過飽和固溶体とが混
在した金属組織を有する。この場合、1次合金(12)
、 (13)はFeおよびYの配合割合が小さいの
で引張強さが低く、また1次合金(15)〜(24)は
高硬度であり、且つ脆弱である。(15) to (24) have metal structures in which an amorphous phase and a supersaturated solid solution are mixed. In this case, the primary alloy (12)
, (13) has a low tensile strength because the proportion of Fe and Y is small, and the primary alloys (15) to (24) have high hardness and are brittle.
また1次合金(14)は過飽和固溶体であって、高靭性
ではあるがFeおよびYの配合割合が小さいので引張強
さが低い。Further, the primary alloy (14) is a supersaturated solid solution, and although it has high toughness, the blending ratio of Fe and Y is low, so the tensile strength is low.
さらに1次合金(25)〜(27)は非晶質相であって
、高靭性ではあるが低硬度である。Furthermore, the primary alloys (25) to (27) are amorphous phases and have high toughness but low hardness.
第3図は、各2次合金(1)〜(27)におけるFeお
よびYの配合割合とビッカース硬さとの関係を示す。各
点の上の数値がピンカース硬さに該当する。FIG. 3 shows the relationship between the mixing ratio of Fe and Y and the Vickers hardness in each of the secondary alloys (1) to (27). The value above each point corresponds to the Pinkers hardness.
表1および第3図において、本発明に係る2次合金(1
)〜(11)は、Aim F eb ycにおいて、a
、b、cがそれぞれ原子%で、90<a<94.3<b
<7、l<c<6の条件を満足しており、また熱処理に
より相分解が行なわれて微細な複相組織が出現し、その
結果、ビッカース硬さ180以上と比較的高硬度であっ
て、引張強さも向上しており、その上密着曲げ試験結果
より高靭性であることが明らかである。In Table 1 and FIG. 3, the secondary alloy (1
) to (11) are a in Aim Feb yc.
, b, and c are each atomic %, and 90<a<94.3<b
<7, l<c<6, and phase decomposition occurs through heat treatment, resulting in the appearance of a fine multi-phase structure, resulting in relatively high hardness with a Vickers hardness of 180 or more. , the tensile strength has also improved, and it is clear from the close bending test results that it has high toughness.
比較例としての2次合金(12)〜(14)、(16)
〜(19)は高靭性ではあるが低硬度であり、また2次
合金(15) 、 (20)〜(27)は高硬度であ
って低靭性である。Secondary alloys (12) to (14), (16) as comparative examples
- (19) have high toughness but low hardness, and secondary alloys (15) and (20) - (27) have high hardness but low toughness.
第4.第5図は、1次合金に対する熱処理温度と、得ら
れた2次合金における破断ひすみ(図中、線X)および
ピンカース硬さ(図中、線y)との関係を示す。第4図
は本発明に係る2次合金(8)CA1.qzF es
Yt )に、第5図は比較例としての2次合金(26)
(AI!、+oF es Ys )に、それぞれ該
当する。熱処理条件は、各温度にて1時間加熱、その後
徐冷である。4th. FIG. 5 shows the relationship between the heat treatment temperature for the primary alloy and the fracture strain (line X in the figure) and Pinkers hardness (line y in the figure) of the obtained secondary alloy. FIG. 4 shows secondary alloy (8) CA1. according to the present invention. qzF es
Yt), Figure 5 shows the secondary alloy (26) as a comparative example.
(AI!, +oF es Ys ) respectively. The heat treatment conditions were heating at each temperature for 1 hour, followed by slow cooling.
第4図線Xから明らかなように、2次合金(8)の場合
は、熱処理温度300″Cにて破断ひずみが最低値とな
るが、それ以上の熱処理温度域では相分解が行われて微
細な複相組織が出現するので破断ひずみが上昇し、熱処
理温度を350〜400°Cの範囲に設定することによ
って破断ひずみεf=1に回復し、したがって高靭性と
なる。As is clear from the line Since a fine multiphase structure appears, the fracture strain increases, and by setting the heat treatment temperature in the range of 350 to 400°C, the fracture strain εf=1 is recovered, resulting in high toughness.
また第4図線yから明らかなように、ビッカース硬さに
ついては熱処理温度300°Cにて最高値となり、それ
以上の熱処理温度域ではビッカース硬さが低下するが、
熱処理温度350〜400°Cにおいては200以上の
値を有し、したがって比較的高硬度である。Furthermore, as is clear from the line y in Figure 4, the Vickers hardness reaches its maximum value at a heat treatment temperature of 300°C, and in the heat treatment temperature range higher than that, the Vickers hardness decreases.
It has a value of 200 or more at a heat treatment temperature of 350 to 400°C, and therefore has a relatively high hardness.
一般に、アルミニウム合金を用いた粉末冶金分野では、
300〜450 ’Cにて素材の脱ガス処理および熱間
押出し加工等の熱間成形作業を行うので1次合金(8)
の場合は、前記熱処理温度350〜400 ”Cを脱ガ
ス温度および熱間成形温度に設定することによって、2
次合金(8)の製造と同時にその高靭性を利用して低圧
力下にて成形作業を行うことが可能となり、また得られ
た2次合金(8)は高強度高靭性といった機械的特性を
備えている。Generally, in the field of powder metallurgy using aluminum alloys,
Primary alloy (8) because hot forming operations such as degassing and hot extrusion of the material are performed at 300 to 450'C.
In the case of 2.
Simultaneously with the production of secondary alloy (8), it is possible to perform molding work under low pressure by taking advantage of its high toughness, and the obtained secondary alloy (8) also has mechanical properties such as high strength and high toughness. We are prepared.
第5図において、2次合金(26)の場合は、線Xから
明らかなように一旦低下した破断ひずみはεf=1には
回復せず、したがって前記2次合金(8)に比較して熱
間成形性が悪い。In FIG. 5, in the case of the secondary alloy (26), the fracture strain once decreased does not recover to εf=1, as is clear from the line Poor formability.
第6図は1次合金(8)および2次合金(8)の金属組
織を示す透過型電子顕微鏡写真であり、同図(a)は1
次合金(8)に該当し、また同図(b)は2次合金(8
)において熱処理条件を温度350°C11時間に設定
した場合に、さらに同図(C)は2次合金(8)におい
て熱処理条件を温度500°C11時間に設定した場合
にそれぞれ該当する。Figure 6 is a transmission electron micrograph showing the metallographic structures of the primary alloy (8) and the secondary alloy (8);
This corresponds to the next alloy (8), and the figure (b) shows the secondary alloy (8).
), the heat treatment conditions were set at a temperature of 350° C. for 11 hours, and FIG.
第5図(a)から明らかなように、1次合金(8)は非
晶質相と過飽和固溶体とが混在した微細な金属組織を有
する。As is clear from FIG. 5(a), the primary alloy (8) has a fine metal structure in which an amorphous phase and a supersaturated solid solution are mixed.
また同図(b)から明らかなように、2次合金(8)に
おいては、熱処理条件を前記のように特定することによ
り相分解が行われて微細な複相組織が出現している。こ
の場合、高強度高靭性の面から各相の大きさは0.4μ
m以下であることが望ましい。Further, as is clear from FIG. 2(b), in the secondary alloy (8), phase decomposition is performed by specifying the heat treatment conditions as described above, and a fine multi-phase structure appears. In this case, the size of each phase is 0.4μ in terms of high strength and high toughness.
It is desirable that it is less than m.
さらに同図(C)においては、熱処理温度が高いために
成長が起って金属組織が粗大化することが明らかである
。これは、第4図線Xからも分かるように2次合金(8
)の低靭性化および低硬度化を招来。Furthermore, in the same figure (C), it is clear that growth occurs due to the high heat treatment temperature and the metal structure becomes coarse. As can be seen from the line X in Figure 4, the secondary alloy (8
) leads to lower toughness and hardness.
する。do.
表■は、各種2次合金の複相組織における同定化合物と
、未同定化合物(unidentifiedCOllp
Ound 、表中、u、i、c )を示す。表■におい
て、「○」は化合物が存在することを表わす。Table ■ shows the identified compounds and unidentified compounds in the multiphase structures of various secondary alloys.
Ound, u, i, c) in the table. In Table 2, "○" indicates the presence of a compound.
第7図は2次合金(8)において、熱処理温度を300
°Cに設定したときの時間と破断ひずみとの関係を示す
。同図より、熱処理温度を300°Cと低く設定しても
、30時間以上加熱することにより、相分解の発生によ
る破断ひずみの回復が認められる。Figure 7 shows secondary alloy (8) at a heat treatment temperature of 300°C.
The relationship between time and fracture strain when set at °C is shown. The figure shows that even if the heat treatment temperature is set as low as 300°C, the fracture strain due to phase decomposition is recovered by heating for 30 hours or more.
第8図は、Heアトマイズ法を適用して得られた粉末状
1次合金(8)における粒径とビッカース硬さとの関係
を示す。点2は、単ロール法により得られリボン状1次
合金(8)のビッカース硬さを示す。FIG. 8 shows the relationship between particle size and Vickers hardness in a powdered primary alloy (8) obtained by applying the He atomization method. Point 2 indicates the Vickers hardness of the ribbon-shaped primary alloy (8) obtained by the single roll method.
この粉末状1次合金(8)の粒径が25μmよりも小さ
い場合(即ち、粒径く25μm、Ilv≧250)には
、粉末状1次合金(8)の金属組織は、大部分が過飽和
固溶体であり、前記リボン状1次合金(8)と同等であ
ることが6I認された。When the particle size of this powdered primary alloy (8) is smaller than 25 μm (that is, the particle size is 25 μm, Ilv≧250), the metal structure of the powdered primary alloy (8) is mostly supersaturated. 6I was found to be a solid solution and equivalent to the ribbon-shaped primary alloy (8).
前記粉末状1次合金(8)を、400°Cまで加熱した
後、熱間押出し加工を行って直径10m、長さ1BOf
fIfflの丸棒状2次合金(8)を得たところ、その
2次合金(8)の引張強さは約90kgf力がで、また
シャルピー衝撃値は約1.3 kg −m/cdであっ
た。After heating the powdered primary alloy (8) to 400°C, hot extrusion processing was performed to obtain a powder having a diameter of 10 m and a length of 1 BOf.
When a round bar-shaped secondary alloy (8) of fIffl was obtained, the tensile strength of the secondary alloy (8) was approximately 90 kgf force, and the Charpy impact value was approximately 1.3 kg-m/cd. .
このシャルピー衝撃値は、通常の急冷凝固アルミニウム
合金の0.3〜0.5kg−m/c−に比べて優れてい
る。これは前記2次合金(8)の高硬度高靭性に起因す
る。This Charpy impact value is superior to 0.3 to 0.5 kg-m/c- of ordinary rapidly solidified aluminum alloys. This is due to the high hardness and high toughness of the secondary alloy (8).
また熱間押出し加工において、押出圧は50〜80kg
f/+がであり、通常の急冷凝固アルミニウム合金の8
0〜100 kg f 7m”に比べて低下している。In addition, in hot extrusion processing, the extrusion pressure is 50 to 80 kg.
f/+ is 8 for ordinary rapidly solidified aluminum alloys.
0-100 kg f 7m".
これは前記2次合金(8)の前記温度における高靭性化
に起因する。This is due to the high toughness of the secondary alloy (8) at the temperature.
表■は、過飽和固溶体である他の2次合金の組成と相分
解温度を示す。Table 3 shows the composition and phase decomposition temperature of other secondary alloys that are supersaturated solid solutions.
表 ■
表■より明らかなように各2次合金(A)〜(F)は相
分解温度が低く、したがって本発明に係る2次合金(8
)に比べて脱ガス処理および熱間成形性の点において劣
る。Table ■ As is clear from Table ■, each of the secondary alloys (A) to (F) has a low phase decomposition temperature, and therefore the secondary alloy (8
) is inferior in terms of degassing treatment and hot formability.
C1発明の効果
第(1)〜第(3)項記載の発明によれば、熱間成形性
の良好な高強度高靭性アルミニウム合金を提供すること
かできる。C1 Effects of the Invention According to the inventions described in items (1) to (3), it is possible to provide a high-strength, high-toughness aluminum alloy with good hot formability.
第(4)項記載の発明によれば、高強度で、且つ高靭性
であり、また所定の形態を有するアルミニウム合金を得
ることができ、その上熱間成形圧力の低下に伴い製造設
備の小形化および設備コストの低減を図り、延いてはア
ルミニウム合金の製造コストを安価にすることができる
。According to the invention described in item (4), it is possible to obtain an aluminum alloy that has high strength and high toughness and has a predetermined shape, and also reduces the size of manufacturing equipment due to the reduction in hot forming pressure. This makes it possible to reduce the cost of production and equipment, and in turn, reduce the cost of manufacturing aluminum alloys.
第1図は密着曲げ試験法の説明図、第2図は1次合金に
おけるFeおよびYの配合割合とビッカース硬さとの関
係を示すグラフ、第3図は2次合金におけるFeおよび
Yの配合割合とビッカース硬さとの関係を示すグラフ、
第4.第5図は二種の2次合金における熱処理温度と破
断ひすみおよびビッカース硬さとの関係を示すグラフ、
第6図(a)は1次合金の金属組織を示す顕微鏡写真、
第6図(b)、 (C)は2次合金の金属組織を示す顕
微鏡写真、第7図は2次合金における熱処理温度を30
0°Cに設定した場合の熱処理時間と破断ひずみとの関
係を示すグラフ、第8図は粉末状1次合金の粒径とビッ
カース硬さとの関係を示すグラフである。Figure 1 is an explanatory diagram of the contact bending test method, Figure 2 is a graph showing the relationship between the blending ratio of Fe and Y in the primary alloy and Vickers hardness, and Figure 3 is the blending ratio of Fe and Y in the secondary alloy. A graph showing the relationship between and Vickers hardness,
4th. Figure 5 is a graph showing the relationship between heat treatment temperature, fracture strain, and Vickers hardness for two types of secondary alloys;
Figure 6(a) is a micrograph showing the metal structure of the primary alloy;
Figures 6(b) and (C) are micrographs showing the metal structure of the secondary alloy, and Figure 7 shows the heat treatment temperature of the secondary alloy at 30°C.
FIG. 8 is a graph showing the relationship between heat treatment time and fracture strain when the temperature is set at 0°C, and FIG. 8 is a graph showing the relationship between particle size and Vickers hardness of a powdered primary alloy.
Claims (4)
b、cがそれぞれ原子%で、90<a<94、3<b<
7、1<c<6であり、ビッカース硬さ(Hv)が25
0≦Hv≦400であることを特徴とする高強度高靭性
アルミニウム合金。(1) Represented by the chemical formula Al_aFe_bY_c, a,
b and c are each atomic %, 90<a<94, 3<b<
7, 1<c<6 and Vickers hardness (Hv) is 25
A high-strength, high-toughness aluminum alloy, characterized in that 0≦Hv≦400.
b、cがそれぞれ原子%で、90<a<94、3<b<
7、1<c<6であり、熱処理後のビッカース硬さ(H
v)がHv≧180であることを特徴とする高強度高靭
性アルミニウム合金。(2) Represented by the chemical formula Al_aFe_bY_c, a,
b and c are each atomic %, 90<a<94, 3<b<
7, 1<c<6, and the Vickers hardness (H
A high-strength, high-toughness aluminum alloy, characterized in that v) is Hv≧180.
組織の各相の大きさが0.4μm以下である、第(2)
項記載の高強度高靭性アルミニウム合金。(3) Item (2), which has a multi-phase structure produced by the heat treatment, and the size of each phase of the multi-phase structure is 0.4 μm or less.
High-strength, high-toughness aluminum alloy described in Section 1.
b、cがそれぞれ原子%で、90<a<94、3<b<
7、1<c<6であるアルミニウム合金に、該合金に複
相組織が生じる温度域にて熱間成形を施すことを特徴と
する高強度高靭性アルミニウム合金の製造方法。(4) Represented by the chemical formula Al_aFe_bY_c, a,
b and c are each atomic %, 90<a<94, 3<b<
7. A method for producing a high-strength, high-toughness aluminum alloy, which comprises hot forming an aluminum alloy in which 1<c<6 in a temperature range in which a multi-phase structure is produced in the alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9702589A JP2849920B2 (en) | 1989-04-17 | 1989-04-17 | Manufacturing method of high strength and high toughness aluminum alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9702589A JP2849920B2 (en) | 1989-04-17 | 1989-04-17 | Manufacturing method of high strength and high toughness aluminum alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02274834A true JPH02274834A (en) | 1990-11-09 |
JP2849920B2 JP2849920B2 (en) | 1999-01-27 |
Family
ID=14180886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9702589A Expired - Lifetime JP2849920B2 (en) | 1989-04-17 | 1989-04-17 | Manufacturing method of high strength and high toughness aluminum alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2849920B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5498393A (en) * | 1993-08-09 | 1996-03-12 | Honda Giken Kogyo Kabushiki Kaisha | Powder forging method of aluminum alloy powder having high proof stress and toughness |
-
1989
- 1989-04-17 JP JP9702589A patent/JP2849920B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5498393A (en) * | 1993-08-09 | 1996-03-12 | Honda Giken Kogyo Kabushiki Kaisha | Powder forging method of aluminum alloy powder having high proof stress and toughness |
Also Published As
Publication number | Publication date |
---|---|
JP2849920B2 (en) | 1999-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5397403A (en) | High strength amorphous aluminum-based alloy member | |
JP2864287B2 (en) | Method for producing high strength and high toughness aluminum alloy and alloy material | |
JPH0673479A (en) | High strength and high toughness al alloy | |
JPH04218637A (en) | Manufacture of high strength and high toughness aluminum alloy | |
JPS5887244A (en) | Copper base spinodal alloy strip and manufacture | |
US3562024A (en) | Cobalt-nickel base alloys containing chromium and molybdenum | |
US4440572A (en) | Metal modified dispersion strengthened copper | |
JPH02197535A (en) | Manufacture of intermetallic compound | |
JP2865499B2 (en) | Superplastic aluminum-based alloy material and method for producing superplastic alloy material | |
US5391242A (en) | High-strength and high-conductivity copper alloy sheet | |
JP3238516B2 (en) | High strength magnesium alloy and method for producing the same | |
FI87239B (en) | EN FOERBAETTRAD METALLEGERING PAO BASIS AV KOPPAR, SPECIELLT FOER FRAMSTAELLNING AV ELEKTRONISKA AKPONENTER. | |
JPH02274834A (en) | High strength and high toughness aluminum alloy and its manufacture | |
US4428778A (en) | Process for producing metallic chromium plates and sheets | |
CZ302590B6 (en) | Tantalum-based alloy, products in which the alloy is contained and process of its manufacture | |
JP2000001727A (en) | Fine wire composed of nickel-containing gold alloy for connecting semiconductor component element, its production, and use thereof | |
JP3407054B2 (en) | Copper alloy with excellent heat resistance, strength and conductivity | |
US3017268A (en) | Copper base alloys | |
US4404028A (en) | Nickel base alloys which contain boron and have been processed by rapid solidification process | |
EP0137180B1 (en) | Heat-resisting aluminium alloy | |
US3963485A (en) | Method of producing sintered titanium base articles | |
JPS60125345A (en) | Aluminum alloy having high heat resistance and wear resistance and manufacture thereof | |
JPH05148568A (en) | High density powder titanium alloy for sintering | |
US3107998A (en) | Copper-zirconium-arsenic alloys | |
JP3000373B2 (en) | Aluminum-based amorphous alloy |