JPH07299584A - Superplastic solder - Google Patents

Superplastic solder

Info

Publication number
JPH07299584A
JPH07299584A JP11596894A JP11596894A JPH07299584A JP H07299584 A JPH07299584 A JP H07299584A JP 11596894 A JP11596894 A JP 11596894A JP 11596894 A JP11596894 A JP 11596894A JP H07299584 A JPH07299584 A JP H07299584A
Authority
JP
Japan
Prior art keywords
tin
solder
lead
superplastic
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11596894A
Other languages
Japanese (ja)
Inventor
Mikio Nishihata
三樹男 西畑
Tatsuo Kunimine
辰雄 國峯
Kenji Asami
健次 浅見
Satoshi Kubozono
聰 窪園
Kuniaki Asami
国昭 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DATA MATERIAL KK
NIPPON MINICHIYUA ROPE KK
Nippon Bell Parts Co Ltd
Nihon Handa Co Ltd
Original Assignee
NIPPON DATA MATERIAL KK
NIPPON MINICHIYUA ROPE KK
Nippon Bell Parts Co Ltd
Nihon Handa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DATA MATERIAL KK, NIPPON MINICHIYUA ROPE KK, Nippon Bell Parts Co Ltd, Nihon Handa Co Ltd filed Critical NIPPON DATA MATERIAL KK
Priority to JP11596894A priority Critical patent/JPH07299584A/en
Publication of JPH07299584A publication Critical patent/JPH07299584A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable extra thin working and extra fine wire working by evacuating tin-lead system solder in molten metal and imparting superplasticity to it. CONSTITUTION:The tin-lead alloy (tin: 40-70wt.%, lead: remainder) which is evacuated (degree of vacuum: 10<-1>-10<-5>Torr) in a molten metal (the highest temperature: 500 deg.C) shows an elongation percentage of 1,000% or above in a tension test under the normal room temperature. In addition, the tin-lead alloy which is evacuated (degree of vacuum: 10<-1>-10<-5>Torr) in a molten metal (the highest temperature: 500 deg.C) with a tertiary element added such as antimony, copper, bismuth, silver, phosphorus, indium, etc., shows an elongation percentage of 500% or above in a tension test under the normal room temperature. Thus, an extra thin solder foil and an extra fine solder wire are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超塑性はんだ合金に関
し、詳しくは超塑性的性質を示す錫−鉛系のはんだ合金
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superplastic solder alloy, and more specifically to a tin-lead solder alloy exhibiting superplastic properties.

【0002】[0002]

【従来の技術】錫−鉛系のはんだ合金は、古くからその
製造方法が確立され、使用実績も自動車をはじめ通信機
器,電子機器,半導体などに広く及んでいる。特に、今
日のように半導体における精密接合に適用するには、そ
の均一性や強度およびはんだ付け後の信頼性の向上が不
可欠である。特に、はんだ合金を極薄箔状や極細線状に
加工するには、いわゆる引張試験における伸び率(引張
せん断直前長さ/引張前長さ)が大きいことが第1条件
で、伸び率が大きいほど加工しやすくなる。
2. Description of the Related Art Tin-lead solder alloys have been established for a long time, and their use results are widely used in automobiles, communication devices, electronic devices, semiconductors and the like. In particular, in order to apply to precision bonding in semiconductors as in today's life, it is essential to improve the uniformity, strength and reliability after soldering. In particular, when processing a solder alloy into an ultra-thin foil or ultra-fine wire, the first condition is that the elongation rate in the so-called tensile test (length immediately before tensile shearing / length before tensile) is large, and the elongation rate is large. The easier it is to process.

【0003】しかし、錫−鉛系のはんだ合金の物理的お
よび機械的性質ならびに加工的性質についてはあまり明
らかにされておらず、組成と伸び率との関係を調べた実
験研究は図3に示すような報告しかない(西畑三樹男著
「マイクロテスト技術」,第20頁〜第23頁,日刊工
業新聞社,1986年7月発行)。図3から明らかなよ
うに、錫−鉛系のはんだ合金中、伸び率が大きいのは共
晶組成(錫60重量%、鉛40重量%)付近であり、種
々な引張試験の条件で常温で測定した最大伸び率は34
0%程度であった。この値は、普通の金属の10倍くら
いの値である。最大伸び率を大きくできれば、集積回路
などに用いられるはんだ箔をより薄く、はんだ線材をよ
り細くすることができる。
However, physical and mechanical properties and working properties of tin-lead solder alloys have not been clarified, and an experimental study investigating the relationship between composition and elongation is shown in FIG. There is only such a report (Mikio Nishihata, "Microtest Technology", pp. 20-23, Nikkan Kogyo Shimbun, July 1986). As is clear from FIG. 3, in the tin-lead based solder alloy, the greatest elongation is near the eutectic composition (60% by weight of tin, 40% by weight of lead) and at room temperature under various tensile test conditions. Maximum elongation measured is 34
It was about 0%. This value is about 10 times that of ordinary metal. If the maximum elongation can be increased, the solder foil used in integrated circuits and the like can be made thinner and the solder wire can be made thinner.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の錫−鉛
系のはんだ合金では、引張試験における伸び率がいまだ
小さいので、十分な極薄化および極細線化が困難である
という問題点があった。特に、近年は、集積回路等の高
密度化が高まり、錫−鉛系のはんだ合金のより一層の極
薄化および極細線化が強く望まれていた。
The above-described conventional tin-lead solder alloy has a problem that it is difficult to make it extremely thin and fine because the elongation rate in the tensile test is still small. It was In particular, in recent years, the density of integrated circuits and the like has increased, and there has been a strong demand for further thinning and finer wire formation of tin-lead solder alloys.

【0005】そこで、本願発明者等は、錫−鉛系のはん
だ合金について各種の実験を行い、錫−鉛合金(錫40
重量%〜70重量%、鉛残)を溶湯(最高温度500゜
C)中において減圧処理(真空度10-1〜10-5tor
r)することにより、従来は得られなかった伸び率1,
000%以上(超塑性)が得られることを明らかにし
た。
Therefore, the inventors of the present application conducted various experiments on tin-lead solder alloys, and conducted a tin-lead alloy (tin 40
% By weight to 70% by weight, lead residue) in a molten metal (maximum temperature 500 ° C) under reduced pressure (vacuum degree 10 -1 to 10 -5 torr).
r) makes it possible to obtain an elongation rate 1,
It was clarified that 000% or more (superplasticity) can be obtained.

【0006】本発明の目的は、上述の点に鑑み、錫−鉛
系のはんだ合金を溶湯中において減圧処理して超塑性を
付与し極薄加工および極細線加工を可能にした超塑性は
んだ合金を提供することにある。
In view of the above points, an object of the present invention is to provide a superplastic solder alloy capable of performing ultrathin processing and ultrafine wire processing by depressurizing a tin-lead solder alloy in a molten metal to impart superplasticity. To provide.

【0007】また、本発明の他の目的は、錫−鉛合金に
アンチモン,銅,ビスマス,銀,燐,インジュウム等の
第3元素を添加し溶湯中において減圧処理して超塑性を
付与し極薄加工および極細線加工を可能にした超塑性は
んだ合金を提供することにある。
Another object of the present invention is to add a third element such as antimony, copper, bismuth, silver, phosphorus, and indium to a tin-lead alloy and subject it to decompression treatment in a molten metal to impart superplasticity. It is an object of the present invention to provide a superplastic solder alloy that enables thin processing and ultrafine wire processing.

【0008】[0008]

【課題を解決するための手段】本発明の超塑性はんだ合
金は、溶湯(最高温度500゜C)中において減圧処理
(真空度10-1〜10-5torr)した錫−鉛合金(錫
40重量%〜70重量%、鉛残)であって、常温での引
張試験において伸び率が1,000%以上を呈すること
を特徴とする。
The superplastic solder alloy of the present invention is a tin-lead alloy (tin 40) which has been subjected to a reduced pressure treatment (vacuum degree of 10 -1 to 10 -5 torr) in a molten metal (maximum temperature of 500 ° C). (% By weight to 70% by weight, lead residue) and has an elongation of 1,000% or more in a tensile test at room temperature.

【0009】また、本発明の超塑性はんだ合金は、アン
チモン,銅,ビスマス,銀,燐,インジュウム等の第3
元素を添加し溶湯(最高温度500゜C)中において減
圧処理(真空度10-1〜10-5torr)した錫−鉛合
金であって、常温での引張試験において伸び率が500
%以上を呈することを特徴とする。
Further, the superplastic solder alloy of the present invention is made of antimony, copper, bismuth, silver, phosphorus, indium and the like.
It is a tin-lead alloy that has been subjected to decompression treatment (vacuum degree of 10 -1 to 10 -5 torr) in a molten metal (maximum temperature 500 ° C) with an element added, and has an elongation of 500 in a tensile test at room temperature.
It is characterized by exhibiting at least%.

【0010】[0010]

【作用】本発明の超塑性はんだ合金では、錫は母材と合
金となって接合する作用をし、鉛は合金の融点を低下さ
せ流動性および可撓性を増加させる作用をする。
In the superplastic solder alloy of the present invention, tin acts as an alloy with the base material to bond it, and lead acts to lower the melting point of the alloy and increase the fluidity and flexibility.

【0011】また、添加されるアンチモンおよび銅は硬
さを増す作用をし、ビスマスおよびインジュウムは合金
の融点を低下させる作用をし、銀は母材の銀食われを防
止する作用をし、燐は脱酸作用をする。
Further, the added antimony and copper have the function of increasing the hardness, bismuth and indium have the function of lowering the melting point of the alloy, and silver has the function of preventing silver erosion of the base material and phosphorus. Has a deoxidizing effect.

【0012】[0012]

【実施例】まず、純度99.99重量%の錫および鉛を
用いて表1に示した実施例1ないし4の組成に配合し、
黒鉛るつぼに入れ、高周波誘導溶解炉にて最高温度50
0゜Cで加熱し真空度10-1torrに減圧しながら溶
解して溶湯とし、ついで真空度を10-3〜10-5tor
rにさらに減圧して溶湯を必要に応じて攪拌しながら溶
湯中に溶存する不純物(非金属介在物)やガスを十分に
放逐して清浄化した。次に、溶湯を鋳型に注入し冷却し
てインゴットを作成した。
EXAMPLES First, tin and lead having a purity of 99.99% by weight were blended into the compositions of Examples 1 to 4 shown in Table 1,
Place in a graphite crucible and heat up to 50 in a high frequency induction melting furnace.
It is heated at 0 ° C and melted under reduced pressure to a vacuum degree of 10 -1 torr to form a molten metal, and then the vacuum degree is 10 -3 to 10 -5 torr.
The pressure was further reduced to r, and the impurities (non-metallic inclusions) and gas dissolved in the molten metal were sufficiently discharged while the molten metal was stirred as needed to be cleaned. Next, the molten metal was poured into a mold and cooled to prepare an ingot.

【0013】[0013]

【表1】 [Table 1]

【0014】次に、このようにして作成されたインゴッ
トを常温にて圧延加工して板厚1mmの板状に仕上げ、
その板状のものを、図4に示すJIS13号B試験片に
打抜き加工し、それを試験片として温度20〜25゜C
において引張試験を行った。そのときの引張速度は、1
〜10mm/minであった。
Next, the ingot thus prepared is rolled at room temperature to finish into a plate having a thickness of 1 mm,
The plate-shaped material was punched into a JIS No. 13B test piece shown in FIG. 4 and used as a test piece at a temperature of 20 to 25 ° C.
The tensile test was conducted at. The pulling speed at that time is 1
It was -10 mm / min.

【0015】図1は、引張試験の結果を示し、共晶付近
(錫40〜70重量%、鉛残)で従来までの種々な結果
からは想像もできない最大伸び率1,000%以上のも
のが存在することが明らかになった。
FIG. 1 shows the results of a tensile test, in which a maximum elongation of 1,000% or more in the vicinity of a eutectic (tin 40 to 70% by weight, lead residue) cannot be imagined from various results up to now. It became clear that there exist.

【0016】このような大きな値の伸び率を呈する理由
については十分には明らかではないが、はんだ合金の溶
湯中の減圧処理によってはんだ合金中に溶存する不純物
(非金属介在物)やガス等が除かれるため、共晶組成に
おける組成間結合が強化されるのではないかということ
がその一因と推測される。はんだ合金中に溶存する不純
物は、はんだ合金の原材料である錫および鉛の地金の鉱
石および製造工程により持ち込まれたり、残存する電解
液,硫黄化合物等により含有されてきたりするものであ
る。
Although the reason why such a large elongation is exhibited is not fully clear, impurities (non-metallic inclusions), gas, etc., dissolved in the solder alloy due to the depressurization treatment in the melt of the solder alloy are not found. It is presumed that one of the reasons is that the inter-component bond in the eutectic composition is strengthened because it is removed. Impurities dissolved in the solder alloy are introduced by the ore of the tin and lead ingots which are the raw materials of the solder alloy and the manufacturing process, or are contained by the remaining electrolytic solution, sulfur compounds and the like.

【0017】次に、実施例1ないし4の超塑性はんだ合
金について、圧延機によって箔状の圧延加工を行ったと
ころ、実施例1ないし4の超塑性はんだ合金のいずれに
ついても板厚10μmまで圧延できることが認められ
た。
Next, the superplastic solder alloys of Examples 1 to 4 were rolled into a foil by a rolling mill. All of the superplastic solder alloys of Examples 1 to 4 were rolled to a plate thickness of 10 μm. It was recognized that it was possible.

【0018】続いて、実施例1ないし4の超塑性はんだ
合金を線引加工機によって細線状の線引加工を行ったと
ころ、実施例1ないし4の超塑性はんだ合金のいずれに
ついても線径10μmまでの極細線を得ることができる
ことが認められた。
Subsequently, when the superplastic solder alloys of Examples 1 to 4 were subjected to thin wire drawing processing by a wire drawing machine, the wire diameter of each of the superplastic solder alloys of Examples 1 to 4 was 10 μm. It was recognized that it was possible to obtain ultrafine wires up to.

【0019】また、純度99.99重量%の錫および鉛
ならびにアンチモン,銅,ビスマス,銀,燐,インジュ
ウム等の第3元素を用いて表2に示した実施例5ないし
10の組成に配合し、黒鉛るつぼに入れ、高周波誘導溶
解炉にて最高温度500゜Cで加熱し真空度10-1to
rrに減圧しながら溶解して溶湯とし、ついで真空度を
10-3〜10-5torrにさらに減圧して溶湯を必要に
応じて攪拌しながら溶湯中に溶存する不純物(非金属介
在物)やガスを十分に放逐して清浄化した。次に、溶湯
を鋳型に注入し冷却してインゴットを作成した。
Further, tin and lead having a purity of 99.99% by weight, and a third element such as antimony, copper, bismuth, silver, phosphorus, and indium were added to the compositions of Examples 5 to 10 shown in Table 2. , Put in a graphite crucible, and heat in a high-frequency induction melting furnace at a maximum temperature of 500 ° C and a vacuum degree of 10 -1 to
Impurities (non-metallic inclusions) dissolved in the molten metal are melted under reduced pressure to rr to form a molten metal, and then the vacuum degree is further reduced to 10 -3 to 10 -5 torr while stirring the molten metal as needed. The gas was thoroughly discharged and cleaned. Next, the molten metal was poured into a mold and cooled to prepare an ingot.

【0020】[0020]

【表2】 [Table 2]

【0021】次に、このようにして作成されたインゴッ
トを常温にて圧延加工して板厚1mmの板状に仕上げ、
その板状のものを、図4に示すJIS13号B試験片に
打抜き加工し、それを試験片として温度20〜25゜C
において引張試験を行った。そのときの引張速度は、1
〜10mm/minであった。
Next, the ingot thus produced is rolled at room temperature to finish into a plate having a thickness of 1 mm,
The plate-shaped material was punched into a JIS No. 13B test piece shown in FIG. 4 and used as a test piece at a temperature of 20 to 25 ° C.
The tensile test was conducted at. The pulling speed at that time is 1
It was -10 mm / min.

【0022】引張試験の結果を図2に示す。図2に見ら
れるように、第3元素を添加しても従来では得られなか
った伸び率500%以上のものが得られた。
The results of the tensile test are shown in FIG. As shown in FIG. 2, even when the third element was added, the elongation rate of 500% or more, which was not obtained in the past, was obtained.

【0023】実施例5ないし10の超塑性はんだ合金に
ついても、圧延機によって箔状の圧延加工を行ったとこ
ろ、実施例5ないし10の超塑性はんだ合金のいずれに
ついても板厚10μmまで圧延できることが認められ
た。
The superplastic solder alloys of Examples 5 to 10 were also foil-shaped by a rolling mill, and it was found that any of the superplastic solder alloys of Examples 5 to 10 could be rolled to a plate thickness of 10 μm. Admitted.

【0024】また、実施例5ないし10の超塑性はんだ
合金を線引加工機によって細線状の線引加工を行ったと
ころ、実施例5ないし10の超塑性はんだ合金のいずれ
についても線径10μmまでの極細線を得られることが
認められた。
When the superplastic solder alloys of Examples 5 to 10 were subjected to thin wire drawing by a wire drawing machine, the wire diameters of all of the superplastic solder alloys of Examples 5 to 10 were up to 10 μm. It was confirmed that the ultrafine wire of

【0025】[0025]

【発明の効果】以上説明したように、本発明の超塑性は
んだ合金によれば、錫−鉛合金(錫40重量%〜70重
量%、鉛残)を溶湯(最高温度500゜C)中において
減圧処理(真空度10-1〜10-5torr)することに
よって、常温での引張試験における伸び率を1,000
%以上とすることができるので、錫−鉛系のはんだ合金
のより一層の極薄化および極細線化が可能になるという
効果がある。
As described above, according to the superplastic solder alloy of the present invention, a tin-lead alloy (tin 40% by weight to 70% by weight, lead residue) is melted in a molten metal (maximum temperature 500 ° C). By applying a reduced pressure treatment (vacuum degree of 10 -1 to 10 -5 torr), the elongation percentage in a tensile test at room temperature is 1,000.
%, It is possible to make the tin-lead solder alloy further thinner and thinner.

【0026】また、本発明の超塑性はんだ合金によれ
ば、錫−鉛合金にアンチモン,銅,ビスマス,銀,燐,
インジュウム等の第3元素を添加し溶湯(最高温度50
0゜C)中において減圧処理(真空度10-1〜10-5
orr)することによって、常温での引張試験における
伸び率を500%以上とすることができるので、錫−鉛
系のはんだ合金のより一層の極薄化および極細線化が可
能になるという効果がある。
Further, according to the superplastic solder alloy of the present invention, tin-lead alloy is added to antimony, copper, bismuth, silver, phosphorus,
Molten metal (maximum temperature 50
Decompression treatment (vacuum degree of 10 -1 to 10 -5 t in 0 ° C)
orr), the elongation percentage in the tensile test at room temperature can be set to 500% or more, so that it is possible to make the tin-lead solder alloy further thinner and thinner. is there.

【0027】さらに、上述のことにより、集積回路,超
集積回路,自動車部品等の機能用をはじめとして、複合
材料の中間材等としても、広い応用範囲を持つことがで
きる極薄のはんだ箔および極細のはんだ線材を提供する
ことができるという効果がある。
Further, as described above, the ultrathin solder foil and the ultrathin solder foil which have a wide range of applications can be used not only for the functions of integrated circuits, super integrated circuits, automobile parts, etc. but also as intermediate materials of composite materials and the like. There is an effect that an extremely fine solder wire can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の各実施例1ないし4に係る超塑性はん
だ合金の錫の添加量と伸び率との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the amount of tin added and the elongation of superplastic solder alloys according to Examples 1 to 4 of the present invention.

【図2】本発明の他の各実施例5ないし10に係る超塑
性はんだ合金と伸び率との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between superplastic solder alloys and elongations according to other examples 5 to 10 of the present invention.

【図3】従来のはんだ合金における錫の添加量と伸び率
との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of tin added and the elongation in a conventional solder alloy.

【図4】本発明の超塑性はんだ合金の引張試験に使用さ
れるJIS13号B試験片を示す平面図である。
FIG. 4 is a plan view showing a JIS No. 13B test piece used for a tensile test of the superplastic solder alloy of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C22K 3:00 (72)発明者 西畑 三樹男 千葉県八千代市大和田新田601番地36 日 本ベルパーツ株式会社内 (72)発明者 國峯 辰雄 千葉県八千代市大和田新田601番地36 日 本ベルパーツ株式会社内 (72)発明者 浅見 健次 東京都墨田区大平1丁目29番4号 ニホン ハンダ株式会社内 (72)発明者 窪園 聰 大阪府貝塚市王子118番地 日本ミニチュ アロープ株式会社内 (72)発明者 浅見 国昭 千葉県市原市姉ケ崎海岸82番地1 日本デ ータマテリアル株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location // C22K 3:00 (72) Inventor Mikio Nishihata 601, Owada-Nitta, Yachiyo-shi, Chiba 36 Nihon Bell Parts Co., Ltd. (72) Inventor Tatsuo Kunimine 601, Owada Nitta, Yachiyo City, Chiba Prefecture 36 days This Bell Parts Co., Ltd. (72) Inventor Kenji Asami 1-29-4 Odaira, Sumida-ku, Tokyo Nihon Handa Co., Ltd. (72) Inventor Satoshi Kubozono 118, Oji, Kaizuka City, Osaka Prefecture Japan Miniature Rope Co., Ltd. (72) Inventor, Kuniaki Asami 82 No. 1, Anegasaki Coast, Ichihara City, Chiba Japan Data Materials Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 溶湯(最高温度500゜C)中において
減圧処理(真空度10-1〜10-5torr)した錫−鉛
合金(錫40重量%〜70重量%、鉛残)であって、常
温での引張試験において伸び率が1,000%以上を呈
することを特徴とする超塑性はんだ合金。
1. A tin-lead alloy (40% by weight to 70% by weight of tin, residual lead) which has been subjected to a reduced pressure treatment (vacuum degree of 10 -1 to 10 -5 torr) in a molten metal (maximum temperature of 500 ° C.) A superplastic solder alloy having an elongation of 1,000% or more in a tensile test at room temperature.
【請求項2】 請求項1記載の錫−鉛合金に、アンチモ
ン,銅,ビスマス,銀,燐,インジュウム等の第3元素
を添加し溶湯(最高温度500゜C)中において減圧処
理(真空度10-1〜10-5torr)した合金であっ
て、常温での引張試験において伸び率が500%以上を
呈することを特徴とする超塑性はんだ合金。
2. The tin-lead alloy according to claim 1, added with a third element such as antimony, copper, bismuth, silver, phosphorus, indium and the like, and subjected to a pressure reduction treatment (maximum temperature 500 ° C.) in a molten metal (maximum temperature 500 ° C.). A superplastic solder alloy having an elongation of 500% or more in a tensile test at room temperature, which is an alloy of 10 -1 to 10 -5 torr).
【請求項3】 請求項1または2記載の超塑性はんだ合
金を、常温以下で圧延加工して極薄としたことを特徴と
するはんだ箔。
3. A solder foil obtained by rolling the superplastic solder alloy according to claim 1 or 2 at an ordinary temperature or lower to make it ultrathin.
【請求項4】 請求項1または2記載の超塑性はんだ合
金を、常温以下で線引加工して極細としたことを特徴と
するはんだ線材。
4. A solder wire material, characterized in that the superplastic solder alloy according to claim 1 or 2 is drawn by drawing at an ordinary temperature or less to make it ultrafine.
JP11596894A 1994-05-02 1994-05-02 Superplastic solder Pending JPH07299584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11596894A JPH07299584A (en) 1994-05-02 1994-05-02 Superplastic solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11596894A JPH07299584A (en) 1994-05-02 1994-05-02 Superplastic solder

Publications (1)

Publication Number Publication Date
JPH07299584A true JPH07299584A (en) 1995-11-14

Family

ID=14675599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11596894A Pending JPH07299584A (en) 1994-05-02 1994-05-02 Superplastic solder

Country Status (1)

Country Link
JP (1) JPH07299584A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033488A (en) * 1996-11-05 2000-03-07 Samsung Electronics Co., Ltd. Solder alloy
JP2010512250A (en) * 2007-12-31 2010-04-22 トゥクサン ハイ‐メタル シーオー エルティディ Lead-free solder alloy and manufacturing method thereof
JP2019536892A (en) * 2016-09-27 2019-12-19 メタロ ベルジウム Method for producing improved solder and high purity lead

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033488A (en) * 1996-11-05 2000-03-07 Samsung Electronics Co., Ltd. Solder alloy
JP2010512250A (en) * 2007-12-31 2010-04-22 トゥクサン ハイ‐メタル シーオー エルティディ Lead-free solder alloy and manufacturing method thereof
JP2019536892A (en) * 2016-09-27 2019-12-19 メタロ ベルジウム Method for producing improved solder and high purity lead
US11839938B2 (en) 2016-09-27 2023-12-12 Metallo Belgium Solder and method for producing high purity lead

Similar Documents

Publication Publication Date Title
KR930005072B1 (en) Copper alloy for electronic instrument and method of manufacturing the same
JP2008056977A (en) Copper alloy and its production method
JP5050753B2 (en) Manufacturing method of copper alloy for electrical and electronic parts with excellent plating properties
JPH02221344A (en) High strength cu alloy having hot rollability and heating adhesiveness in plating
JPH0718354A (en) Copper alloy for electronic appliance and its production
JP2873770B2 (en) Palladium fine wire for wire bonding of semiconductor devices
JP5054876B2 (en) Hardened Fe-Ni alloy for manufacturing integrated circuit grids and method of manufacturing the same
TWI280286B (en) Cu-Ni-Si-Mg based copper alloy strip
JPH07299584A (en) Superplastic solder
JPH1060636A (en) Aluminum base target for sputtering and its production
JP2002194461A (en) Copper alloy for lead frame and its production method
JP2000144284A (en) High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
JPH10324935A (en) Copper alloy for lead frame, and its production
JP2007270314A (en) Copper alloy having excellent hot workability and its production method
JP3410125B2 (en) Manufacturing method of high strength copper base alloy
JP2007100136A (en) Copper alloy for lead frame excellent in uniform plating property
JP4175920B2 (en) High strength copper alloy
JPH032341A (en) High strength and high conductivity copper alloy
JP3306585B2 (en) Cu alloy rolled sheet with fine crystals and precipitates and low distribution ratio
JPH0978162A (en) Copper alloy for electronic equipment and its production
JP2007270269A (en) Copper alloy having excellent hot workability and its production method
JPS59177339A (en) Fine pd alloy wire for wire-bonding of semiconductor device
JPH07268573A (en) Production of high strength and high conductivity copper alloy for electronic equipment
JP2662209B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JP2673781B2 (en) Method for producing high strength and high conductivity copper alloy material for electronic equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030611