JPH02274354A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JPH02274354A
JPH02274354A JP10541189A JP10541189A JPH02274354A JP H02274354 A JPH02274354 A JP H02274354A JP 10541189 A JP10541189 A JP 10541189A JP 10541189 A JP10541189 A JP 10541189A JP H02274354 A JPH02274354 A JP H02274354A
Authority
JP
Japan
Prior art keywords
strain
slab
width
straightening
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10541189A
Other languages
Japanese (ja)
Other versions
JPH078424B2 (en
Inventor
Akira Matsushita
昭 松下
Takeyoshi Ninomiya
二宮 健嘉
Kazuhiko Nagahashi
長橋 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPH02274354A publication Critical patent/JPH02274354A/en
Publication of JPH078424B2 publication Critical patent/JPH078424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent inner cracking in a cast slab from occurring in advance by comparing the total strain calculated with the specific equation from a contributing effect factor for strain difference set according to operational conditions with the limited strain and changing the casting conditions. CONSTITUTION:The widths at upper and lower faces are calculated with a computing element 11 from the signal of a cast slab width measuring instrument 10 at inlet side and outlet side in straightening zone, and an neutral shifting quantity eta and the strain difference epsilon are calculated in every moment from the equation I with a strain computing element 12. Further, information on condition from a casting condition instruction device and measured result from roll gap and arrangement measuring instrument 9 are transmitted to a strain computing element 12, and bulging strain epsilonB and straightened strain epsilonU are obtd. to operate a roll irregular strain epsilonM. Then, each strain is calculated in every moment with the strain computing element 12, and the total strain epsilonT in the cast slab is calculated with the strain computing element 12 referring to the pre-obtd. contributing effect factor alpha and limited strain epsilonC from the casting condition, and compared with the limited strain epsilonC. Then, when the total strain epsilonT becomes more than the limited strain epsilonC, this is outputted to a working instruction device 15 and the development of the inner cracking is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鋼の連続鋳造において、鋳片の内部割れの発生
を未然に予知し、割れが発生すると予知できたときに迅
速に割れの発生を防止する操業方法の変更を行うととも
に、不良鋳片を後行程である圧延行程に供給しないこと
によって、操業トラブル無く無欠陥鋳片を圧延行程に安
定供給する方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is used in continuous steel casting to predict the occurrence of internal cracks in slabs, and to quickly cause cracks to occur when it is predicted that cracks will occur. The present invention relates to a method for stably supplying defect-free slabs to the rolling process without operational troubles by changing the operating method to prevent such problems and not supplying defective slabs to the rolling process, which is a subsequent process.

〔従来の技術) 第9図は一般的な湾曲型連続鋳造設備を示す略側面図で
あり、1は溶鋼を貯留したタンデイツシュ、2は溶鋼を
注入するイマージョンノズル、3は鋳型である。鋳型3
に注入された溶鋼は、鋳型壁面に接する表面より凝固殻
5を生成し、所定断面形状をした鋳片6となる。この鋳
片6は案内支持ロール71で支持されつつ引き抜きロー
ル72で連続的に引き抜かれる。また鋳片6は、芯部に
未凝固の溶鋼4が残存する状態で矯正ロール73群で、
垂直型連鋳機の場合は鉛直方向から水平方向に、湾曲型
連鋳機の場合は湾曲状態から水平状態に矯正(この矯正
ロール73群が配設され水平状態への矯正が行われる域
を以下矯正域と言い、この単 矯正域におる矯正操作を以下槍清に矯正という)され、
完全凝固した機端部8以降でガス切断される。
[Prior Art] FIG. 9 is a schematic side view showing a general curved continuous casting equipment, in which 1 is a tundish that stores molten steel, 2 is an immersion nozzle for injecting molten steel, and 3 is a mold. Mold 3
The molten steel injected into the mold forms a solidified shell 5 from the surface in contact with the mold wall, and becomes a slab 6 having a predetermined cross-sectional shape. This slab 6 is continuously pulled out by a drawing roll 72 while being supported by a guide support roll 71. Further, the slab 6 is processed by a group of straightening rolls 73 with unsolidified molten steel 4 remaining in the core.
In the case of a vertical continuous casting machine, it is straightened from the vertical direction to the horizontal direction, and in the case of a curved continuous casting machine, it is straightened from a curved state to a horizontal state. Hereinafter referred to as the correction area, the correction operation in this single correction area is hereinafter referred to as straight correction),
Gas cutting is performed after the completely solidified machine end 8.

さて、前記矯正ロール73群で水平方向に矯正される際
には、鋳片内部にロール間のバルジングによるバルジン
グ歪ε1、ロール配列の不整によるロール不整歪ε4に
加えて矯正歪εCが加わり、鋳片の内部割れが発生し易
いことが一般に知られている。
Now, when the slab is straightened in the horizontal direction by the group of straightening rolls 73, a straightening strain εC is added to the inside of the slab in addition to bulging strain ε1 due to bulging between the rolls and roll misalignment strain ε4 due to irregular roll arrangement. It is generally known that internal cracks in the pieces are likely to occur.

特に近年、連鋳行程と圧延行程の直行直結化が推進され
ており、このプロセスを効率的に実行するためには、連
鋳行程で極力高温の鋳片を製造する必要がある。高温鋳
片を得るためには、凝固殻5があまり成長していない高
温状態で前記矯正をおこなう必要があり、なお−層内部
割れ発生が生じ易い状態となることは周知の事実である
Particularly in recent years, the direct connection of the continuous casting process and the rolling process has been promoted, and in order to efficiently carry out this process, it is necessary to produce slabs at as high a temperature as possible in the continuous casting process. It is a well-known fact that in order to obtain a high-temperature slab, it is necessary to carry out the above-mentioned straightening in a high temperature state where the solidified shell 5 has not grown much, and this results in a state in which internal cracks are likely to occur.

而して従来より、矯正過程で発生する鋳片の界面歪を推
定し、内部割れの発生を予知し防止する方法が種々検討
されてきた。例えば特開昭51−55730号公報にお
いては、鋳片温度分布を測定して鋳片の内部歪を算定し
、内部割れの発生がない安全な範囲になるように引き抜
き速度を制御する方法が開示されている。また特開昭6
0−24449号公報においては、鋳片の上下面平均幅
、または短辺台形化量を計測し、この計測値に基づいて
鋳片の内質を推定する方法が開示されている。さらに特
開昭61−159254号公報においては、連鋳機の矯
正域に複数の鋳片移送速度検出器を設置し、検出された
鋳片の移送速度から鋳片の内部歪を演算することによっ
て、内部割れの推定を行う方法が開示されている。
Therefore, various methods have been studied to predict and prevent the occurrence of internal cracks by estimating the interfacial strain of the slab that occurs during the straightening process. For example, Japanese Patent Application Laid-Open No. 51-55730 discloses a method of measuring the temperature distribution of the slab to calculate the internal strain of the slab, and controlling the drawing speed to a safe range where no internal cracks occur. has been done. Also, JP-A-6
No. 0-24449 discloses a method of measuring the average width of the upper and lower surfaces of a slab or the amount of short side trapezoidization and estimating the internal quality of the slab based on this measurement value. Furthermore, in JP-A No. 61-159254, a plurality of slab transfer speed detectors are installed in the straightening area of a continuous casting machine, and the internal strain of the slab is calculated from the detected slab transfer speed. , a method for estimating internal cracks is disclosed.

(発明が解決しようとする課題) 前述のように未凝固溶鋼が残存する状態で矯正すると、
界面歪は増大し内部割れが発生し易くなるが、前記従来
技術においては、単なる鋳片の温度分布、あるいは表面
歪の変化と鋳片の内質との相関から、内部割れの発生を
推定するといったような方法のみが検討されてきた。こ
れらの方法の最も大きな問題点は、推定精度そのものが
極端に悪いということであった。その理由としては、ロ
ールのスリップによる鋳片の8送速度の検出誤差が生じ
、それが直接内部割れの推定精度を低下させたり、また
単純に表面歪と鋳片の内質を相関させたために、操業条
件が変化した場合、例えば緩冷却を実施したことによっ
てバルジング歪εb、ロール不整歪ε工が変化するが、
この変化も考慮した本来の界面束を求めているのではな
いために、推定そのものの精度が悪くなったのであった
(Problem to be Solved by the Invention) As mentioned above, when straightening with unsolidified molten steel remaining,
Interfacial strain increases and internal cracks are more likely to occur, but in the above-mentioned conventional technology, the occurrence of internal cracks is estimated simply from the temperature distribution of the slab or the correlation between changes in surface strain and the internal quality of the slab. Only such methods have been considered. The biggest problem with these methods is that the estimation accuracy itself is extremely poor. The reason for this is that a detection error in the feed rate of the slab occurs due to roll slip, which directly reduces the accuracy of estimating internal cracks, or simply because the surface strain and internal quality of the slab are correlated. If the operating conditions change, for example by slow cooling, the bulging strain εb and roll irregularity strain ε will change,
Since the original interfacial flux was not determined in consideration of this change, the accuracy of the estimation itself deteriorated.

この問題点を解決するために本出願人は、案内ロールの
ロール間隔を測定するロール変位計、ロール間のバルジ
ングを計測するバルジング計、鋳片表面温度を測定する
表面温度計、凝固膜厚みを計測する凝固R/![み計を
設置し、それらの計測値と鋳造条件によって鋳造中の鋳
片の歪を算出し、限界値を超えないように鋳片に圧縮力
を作用させる方法を発明し、先に特願昭62−5121
8号(特開昭63−220960号)として出願した。
In order to solve this problem, the applicant has developed a roll displacement meter that measures the distance between the guide rolls, a bulging meter that measures the bulging between the rolls, a surface thermometer that measures the surface temperature of the slab, and a solidified film thickness meter. Measuring coagulation R/! [Invented a method to install a pressure meter, calculate the strain of the slab during casting based on the measured values and casting conditions, and apply compressive force to the slab so as not to exceed the limit value, and filed a patent application earlier. Showa 62-5121
No. 8 (Japanese Unexamined Patent Publication No. 63-220960).

これは前述した操業条件による歪の変動をも加味した鋳
片の真の界面束(この界面束を以下総合歪ε↑という)
を時々刻々演算し、この総合歪εTが限界値を超えない
ように鋳片への圧縮力を制御する方法である。
This is the true interfacial flux of the slab that also takes into account the variation in strain due to the operating conditions mentioned above (this interfacial flux is hereinafter referred to as the total strain ε↑).
In this method, the compressive force on the slab is controlled so that the total strain εT does not exceed the limit value.

しかしながらこの方法においても、内部割れの発生の有
無に大きな影響を与える前記圧縮力によって生じる鋳造
方向の歪(以下圧縮歪εcpcと言う)を、モデル計算
あるいはオフラインテストによって求め、総合歪を算出
していた。ところが実際には、鋳片の温度分布の変化、
引抜ロール72のスリップや回転不良、鋳片表面のスケ
ールの付着状態等により圧縮力は変動し、この変動によ
って鋳片に発生する圧縮歪εcpcは時々刻々変化して
いるが、この圧縮歪εC、Cを時々刻々求めていないた
め、結果的に内部割れの発生予測の精度の悪化が生じる
ことになっていた。
However, even in this method, the strain in the casting direction caused by the compressive force (hereinafter referred to as compressive strain εcpc), which has a large effect on whether or not internal cracks occur, is determined by model calculation or offline testing, and the total strain is calculated. Ta. However, in reality, changes in the temperature distribution of the slab,
The compressive force fluctuates due to slips and rotational defects of the drawing roll 72, the adhesion of scale on the surface of the slab, etc., and the compressive strain εcpc generated in the slab due to these fluctuations changes from time to time, but this compressive strain εC, Since C was not determined from moment to moment, the accuracy of predicting the occurrence of internal cracks would deteriorate as a result.

本発明は、前記従来技術における問題点の抜本的な解決
を図ると共に、前述した特願昭62−512111号の
技術のさらに改良を図るもので、実測したロール配列状
態、および鋳造中における鋳片の幅変化状態等より前記
圧縮歪εcpcを正確に求め、この圧縮歪εcpcに基
づき内部割れの発生を精度良く推定し、それを防止する
鋼の連続鋳造方法を提供するものである。
The present invention aims to fundamentally solve the problems in the prior art, and further improves the technology of Japanese Patent Application No. 62-512111 mentioned above. The purpose of the present invention is to provide a continuous steel casting method in which the compressive strain εcpc is accurately determined from the state of width change, etc., the occurrence of internal cracks is accurately estimated based on the compressive strain εcpc, and the occurrence of internal cracks is prevented.

(課題を解決するための手段) 前記課題を解決する本発明は、ロール不整量と当該鋳造
条件とから求まるロール不整歪ε2と、当該鋳造条件か
ら求まるロール間のバルジング歪ε3および矯正歪εC
に加えて、圧縮歪εcpcとから矯正域における鋳片の
凝固界面の総合歪ε7を算出し、この値と予め当該鋳造
条件に応じて決定された鋳片内部割れ発生の限界歪6c
とを比較し、前記総合型εアが限界歪εCを超えたとき
に鋳造条件を変更して内部割れを防止する鋼の連続鋳造
方法において、 少なくとも前記矯正域の入側および出側の2箇所に鋳片
幅測定装置を設け、該幅測定装置により連続鋳造中にお
ける鋳片の上下面の幅を測定し、この幅測定値と鋳造条
件、設備条件より設定される鋳片厚みD、連続鋳造機の
曲率半径Rとを下記(1)式に基づき演算処理して中立
軸移動量ηを求め、次いで前記矯正歪εCと圧縮歪εc
pcとの歪差Δεを下記(4)式に基づいて求めると共
に、この歪差Δεと鋳片の内部割れ発生との予め求めら
れた相関に基づき当該操業条件に応じて設定された歪差
Δεの前記総合歪ε7低減への寄与効果係数αとから、
下記(5)式もしくは(6)式により総合歪εTを時々
刻々算出し、この総合歪εTが限界歪εCを超えたとき
に鋳造条件を変更して内部割れを防止することを特徴と
するものである。
(Means for Solving the Problems) The present invention for solving the above-mentioned problems is based on the roll misalignment strain ε2 found from the amount of roll misalignment and the casting conditions, and the bulging strain ε3 and correction strain εC between the rolls found from the casting conditions.
In addition, the total strain ε7 of the solidification interface of the slab in the straightening zone is calculated from the compressive strain εcpc, and this value is combined with the critical strain 6c for internal cracking of the slab previously determined according to the casting conditions.
In a continuous casting method for steel in which internal cracking is prevented by changing the casting conditions when the comprehensive type εA exceeds the critical strain εC, A slab width measuring device is installed at the site, and the width of the upper and lower surfaces of the slab during continuous casting is measured by the width measuring device, and the slab thickness D, which is set based on this width measurement value, casting conditions, and equipment conditions, is determined by continuous casting. The radius of curvature R of the machine is calculated based on the following formula (1) to obtain the neutral axis movement amount η, and then the corrective strain εC and the compressive strain εc are calculated.
The strain difference Δε with respect to PC is determined based on the following equation (4), and the strain difference Δε is set according to the operating conditions based on the predetermined correlation between this strain difference Δε and the occurrence of internal cracks in the slab. From the contribution effect coefficient α to the overall strain ε7 reduction,
The total strain εT is calculated from time to time using the following formula (5) or (6), and when the total strain εT exceeds the critical strain εC, the casting conditions are changed to prevent internal cracking. It is.

ただし、ΔB= (B□+BL、−BF、−BL、) 
/2・・・・・・・・・(2) Bo  −(Brx+ BLX)/2””・・・(3)
・・・・・・・・・(4) ただし、 η :中立軸移動量 εus:鋳片表面の矯正歪(%) Δε:矯正歪εCと前記圧縮歪εCPCの歪差(%) D :鋳片厚み S  :@固殻厚み ΔB:矯正矯正側入側側の鋳片上下面平均幅の差 Bo :矯正域入側の鋳片上下面の平均幅BFx:矯正
域矯正の下面の鋳片幅 B Lll :矯正域入側の上面の鋳片幅Bp、:矯正
域矯正の下面の鋳片幅 B 、、 :矯正域出側の上面の鋳片幅Δさく0の場合 εT =ε鋪 +ε8 +α×Δε   −・・…(5
)Δε≧0の場合 εT=ε−+ε♂+Δε    ・・・・・・(6)た
だし、εT:総合歪(%) ε2 ;ロール不整歪(%) εM:バルジング歪(%) α :Δεの総合歪ε7低減への寄与効果係数 R,:i番目のロールの曲率半径 (作 用) 鋼の連続鋳造において、従来の内部割れ発生の推定精度
を向上させる必要があると考えた本発明者らは、鋳片に
発生する歪を精度よく推定する方法について研究を重ね
た。
However, ΔB= (B□+BL, -BF, -BL,)
/2・・・・・・・・・(2) Bo −(Brx+ BLX)/2””・・・(3)
・・・・・・・・・(4) However, η: Neutral axis movement amount εus: Straightening strain on the slab surface (%) Δε: Strain difference between the straightening strain εC and the compressive strain εCPC (%) D: Casting Thickness S: @ Solid shell thickness ΔB: Difference in the average width of the upper and lower surfaces of the slab on the entry side of the straightening side Bo: Average width of the upper and lower surfaces of the slab on the entrance side of the straightening area BFx: Width of the slab on the lower surface of the straightening area B Lll : Width of the slab on the upper surface on the entrance side of the straightening area Bp, : Width of the slab on the lower surface of the straightening area B, , : Width of the slab on the upper surface on the exit side of the straightening area Δ When the thickness is 0, εT = ε〪 +ε8 +α×Δε -...(5
) When Δε≧0, εT=ε−+ε♂+Δε ・・・・・・(6) However, εT: Total strain (%) ε2 ; Roll irregularity strain (%) εM: Bulging strain (%) α : of Δε Contribution effect coefficient R to overall strain ε7 reduction: radius of curvature of the i-th roll (effect) The present inventors believed that it was necessary to improve the conventional estimation accuracy of internal crack occurrence in continuous casting of steel. conducted extensive research on a method for accurately estimating the strain that occurs in slabs.

まず一般的に、鋳造中の鋳片に発生する歪は下記(7)
式のように表すことができる。
First of all, in general, the strain that occurs in slabs during casting is as follows (7)
It can be expressed as follows.

εT=ε舖+εB+εU−εcpc  = ・・・(7
)ただし、εT:18造中の鋳片に発生する総合歪(%
) ε−二ロール不整歪(%) εa =バルジング歪(%) εC;矯正歪(%) εcpc  :圧縮歪(%) なお歪の符号は、引張歪を正、圧縮歪を負と定義して用
いた。前記(7)式の右辺第2項第3項のバルジング歪
ε5、矯正歪εCは、二次冷却水量、鋳造速度、鋳片幅
、鋳片厚み、等の鋳造条件や曲げ矯正時の曲率半径やロ
ールピッチ等の連鋳機の形式によって変化し、例えば下
記(8)式および(9)式のように算出できることは周
知である。
εT=ε舖+εB+εU−εcpc=...(7
) However, εT: 18The total strain (%) generated in the slab during construction
) ε - Two-roll irregular strain (%) εa = Bulging strain (%) εC: Corrective strain (%) εcpc: Compressive strain (%) The sign of strain is defined as tensile strain as positive and compressive strain as negative. Using. The bulging strain ε5 and straightening strain εC in the second and third terms on the right-hand side of equation (7) are determined by the casting conditions such as the amount of secondary cooling water, casting speed, slab width, slab thickness, and the radius of curvature during bend straightening. It is well known that it changes depending on the type of continuous casting machine such as roll pitch and roll pitch, and can be calculated, for example, as shown in equations (8) and (9) below.

RP :ロールピッチ vC:鋳造速度 R:ガス定数 T :凝固殻平均温度 ・・・・・・(9) ただし、D=鋳片厚み R,:i番目のロールの曲率半径 この(9)式においてSは凝固殻厚みであり、この凝固
殻厚みSが零(S = Omm=鋳片表面)の場合、(
9)式は、 ・・・・・・(8) ただし、 al :鋳片の断面形状計数(= 0.13)a、;ク
リープ定数= 0.56 x 106x axp(−5
8000/ (RX (T+ 273> ) )a、:
定数(= (0,23x Rp / S ) −0,4
5)P :溶鋼静圧 ・・・・・・(9−1) となり、前述した周知の鋳片表面の矯正歪εusを求め
る式となる。つまり鋳片表面の矯正歪εusは鋳造条件
から決定される鋳片厚みDと、設備条件から定まるロー
ルの曲率半径Rとから求めることができる。鋳片厚みD
はより正確に当該鋳造時に実測した値を用いることでも
よいことは言うまでもない。
RP: Roll pitch vC: Casting speed R: Gas constant T: Solidified shell average temperature... (9) However, D = slab thickness R,: radius of curvature of the i-th roll In this equation (9) S is the solidified shell thickness, and when this solidified shell thickness S is zero (S = Omm = slab surface), (
Equation 9) is as follows: (8) where, al: Cross-sectional shape factor of slab (= 0.13) a; Creep constant = 0.56 x 106x axp (-5
8000/(RX(T+273>))a,:
Constant (= (0,23x Rp/S) -0,4
5) P: Static pressure of molten steel (9-1) This is the well-known formula for determining the correction strain εus on the surface of the slab. In other words, the correction strain εus on the surface of the slab can be determined from the thickness D of the slab determined from the casting conditions and the radius of curvature R of the roll determined from the equipment conditions. Slab thickness D
Needless to say, the value actually measured at the time of casting may be used more accurately.

つぎに、前記(7)式の右辺第1項のロール不整歪ε2
の算出方法についてであるが、これについては本出願人
が先に出願した特願昭63−157929号に示したよ
うに、連続する3対の案内ロールを単位測定対象として
、両端部ロール表面を結ぶ接線に対する中央部ロールの
出入量を内外ロール毎に測定し、予め設定されている基
準の出入量とからロール不整量δ4を求め、下記(lO
)式によりロール不整歪εMの算出が可能である。
Next, the roll irregularity strain ε2 of the first term on the right side of the above equation (7)
Regarding the calculation method, as shown in Japanese Patent Application No. 63-157929 previously filed by the present applicant, three consecutive pairs of guide rolls are used as the unit measurement object, and the surfaces of both end rolls are calculated. Measure the amount of movement in and out of the center roll with respect to the connecting tangent line for each inner and outer roll, calculate the amount of roll irregularity δ4 from the preset reference amount of movement, and calculate the amount of roll irregularity δ4 as shown below (lO
) The roll misalignment strain εM can be calculated using the equation.

ただし、に :鋳片の変形形態に基づく係数(=50〜
1200) δM:ロール不整量 さて近年では、高温かつ無欠陥の鋳片を製造するために
、鋳片に圧縮力を付与して前記矯正歪εりを軽減した状
態で鋳片を矯正する鋳造方式が採用されている。この圧
縮力によって軽減される鋳片の歪量すなわち前記圧縮歪
εCPCは、前述したように従来におい、ては予め実験
によって求めるか、あるいは計算によって推定するとい
う方法しか提案されておらず、鋳造中の鋳片の状態変化
からそれを正確に求めるまでには至っていないのが実体
であった。そのため前述したように、結果的に内部割れ
の発生推定の精度が悪いという問題が生じていた。
However, :Coefficient based on the deformation form of the slab (=50~
1200) δM: Roll irregularity amount Now, in recent years, in order to produce high-temperature and defect-free slabs, a casting method has been developed in which compressive force is applied to the slab to straighten the slab while reducing the straightening strain ε. has been adopted. The amount of strain in the slab that is reduced by this compressive force, that is, the compressive strain εCPC, has only been proposed in the past, as described above, by determining it in advance through experiments or estimating it by calculation. In reality, it has not yet been possible to accurately determine this from the change in the state of the slab. As a result, as described above, a problem arises in that the accuracy of estimating the occurrence of internal cracks is low.

本発明者らはこの問題を解決するために、圧縮歪εcp
cを鋳造中の鋳片の状態変化から正確に求める方法につ
いて研究したところ、矯正域の入側と出側の鋳片の幅を
実測することによりそれが可能であることを知見した。
In order to solve this problem, the present inventors have developed a compressive strain εcp
We researched a method to accurately determine c from changes in the condition of the slab during casting, and found that it is possible to do so by actually measuring the width of the slab at the entrance and exit sides of the straightening zone.

以下にその方法について詳述する。The method will be explained in detail below.

第2図は鋳片6の断面形状変化を模式的に示した図であ
る。第2図(a)には鋳片6aが前述した圧縮力や矯正
を受ける前の鋳片の断面形状を示し、この鋳片5aが前
述した矯正を受けた後の鋳片6bの断面形状を第2図(
b)に示した。矩形であった鋳片が矯正を受けると、鋳
片の上面側は引張力を受けるために鋳片幅が縮小し、対
して下面側は圧縮を受けるために鋳片幅が拡大する。ま
た矯正を受けない状態で圧縮力だけを受けると、第2図
(c)のように鋳片6Cの上下面とも鋳片幅が拡大する
FIG. 2 is a diagram schematically showing changes in the cross-sectional shape of the slab 6. FIG. 2(a) shows the cross-sectional shape of the slab 6a before it is subjected to the above-mentioned compressive force and straightening, and the cross-sectional shape of the slab 6b after the slab 5a has been subjected to the above-mentioned straightening. Figure 2 (
Shown in b). When a rectangular slab undergoes straightening, the width of the slab decreases on the upper side of the slab because it receives tensile force, while the width of the slab expands on the bottom side of the slab because it receives compression. Further, if only compressive force is applied without straightening, the width of the slab 6C will expand on both the upper and lower surfaces as shown in FIG. 2(c).

矯正と圧縮を同時に受ける場合の鋳片の断面形状を第2
図(d)に示したが、鋳片6dの上下面に発生する歪の
程度によって複雑に鋳片の幅は変化する。この第2図か
ら鋳片幅の変化状況を時々刻々把握することによって、
鋳片に発生している歪の状態を求めることが可能である
ことが判る。
The cross-sectional shape of the slab when subjected to straightening and compression at the same time is
As shown in Figure (d), the width of the slab 6d changes in a complex manner depending on the degree of strain generated on the upper and lower surfaces of the slab 6d. By grasping the changes in the slab width from time to time from this Figure 2,
It can be seen that it is possible to determine the state of strain occurring in the slab.

次に第3図は、矯正を受けている状態の鋳片に圧縮力が
作用したときの、鋳片の矯正歪εUの低減効果を説明す
るための図面である。矯正のみを受けている場合の矯正
歪εCの分布を第3図中に実線aで示した。前述したよ
うに矯正を受けている鋳片の上面には引張歪が生じ、下
面には圧縮歪が生じている。ここで言う矯正歪εCとは
、第3図中の凝固界面Sに発生している引張歪εMのこ
とである。この状態の鋳片に圧縮力が作用した場合の鋳
片内の矯正歪の分布を第3図中に大実線すで示した。こ
の圧縮力により鋳片の矯正歪εUの分布が圧縮方向に変
位していることが判り、凝固界面Sの引張歪もそれにと
もなって61からεbに軽減されている(第3図では圧
縮力により凝固界面の矯正歪εUが零になった状態を示
している)。圧縮力によるこの歪軽減量、すなわち圧縮
歪εCPeは第3図中に示した大きざ(εCPC)であ
る。なお一般的には、この圧縮力による凝固界面の歪の
減少効果を、第3図中のηで示した中立軸B!a量とし
て表現する。本発明においては、この中立軸移動量ηを
用いて後述する歪差Δε等を求めるようにした。
Next, FIG. 3 is a drawing for explaining the effect of reducing the straightening strain εU of the slab when a compressive force is applied to the slab that is undergoing straightening. The distribution of the correction strain εC in the case of only correction is shown in FIG. 3 by a solid line a. As mentioned above, tensile strain is generated on the upper surface of the slab undergoing straightening, and compressive strain is generated on the lower surface. The corrective strain εC herein refers to the tensile strain εM occurring at the solidification interface S in FIG. The large solid line in FIG. 3 shows the distribution of correction strain within the slab when compressive force is applied to the slab in this state. It is found that the distribution of the straightening strain εU of the slab is displaced in the compression direction due to this compressive force, and the tensile strain at the solidification interface S is also reduced from 61 to εb (Fig. 3 shows that due to the compressive force (This shows the state in which the corrective strain εU at the solidification interface has become zero). The amount of strain reduction due to compressive force, that is, compressive strain εCPe, is the magnitude (εCPC) shown in FIG. In general, the effect of reducing strain at the solidification interface due to this compressive force is expressed by the neutral axis B!, indicated by η in Figure 3. Express as a quantity. In the present invention, this neutral axis movement amount η is used to calculate the strain difference Δε, etc., which will be described later.

さてこの圧縮歪εcpcを求める方法について、種々検
討を重ねた本発明者らは、前述した圧縮力および矯正が
作用している状態では鋳片の上下面の幅が変化すること
に着目し、この上下面幅比と、一般にポアソン比と称さ
れる鋳片の鋳造方向と、幅方向の歪比νcpcとを基に
下記(11)式を創案し、実操業への適否を調査検討し
た。
The inventors of the present invention have conducted various studies regarding the method of determining this compressive strain εcpc, and have focused on the fact that the width of the upper and lower surfaces of the slab changes when the compressive force and straightening described above are applied. The following equation (11) was created based on the upper and lower surface width ratio, the casting direction of the slab generally referred to as Poisson's ratio, and the strain ratio νcpc in the width direction, and its suitability for actual operation was investigated.

この(11)式において、ΔBは鋳片の矯正成人側の上
下面平均幅と出側の上下面平均幅との差であり、下記(
2)式より求めることができる。
In this equation (11), ΔB is the difference between the average width of the upper and lower surfaces of the straightened adult side of the slab and the average width of the upper and lower surfaces of the outlet side, and is expressed as follows:
2) It can be obtained from the formula.

ΔB ” (Bry+ BLyBFII  BLX) 
/ 2・・・・・・ (2)ただし、B□:入側の下面
の鋳片幅 BLII:入側の上面の鋳片幅 BWy:出側の下面の鋳片幅 BLy:出側の上面の鋳片幅 またB、は前記ΔBを求めるための基準となる鋳片上下
面平均幅で、矯正域入側の鋳片幅から下記(3)式より
求めることとした。
ΔB” (Bry+ BLyBFII BLX)
/ 2... (2) However, B□: Width of the slab on the lower surface of the entry side BLII: Width of the slab on the upper surface of the entry side BWy: Width of the slab on the lower surface of the exit side BLy: Top surface of the exit side The slab width or B is the average width of the upper and lower surfaces of the slab, which serves as a reference for determining the above-mentioned ΔB, and was determined from the slab width on the entrance side of the straightening area using the following formula (3).

Bo ” (Brx+ BLIll) / 2    
 ”・”・(3)本発明者らは、前記(11)式中のν
cpcを実験的に求めるために、圧縮力がかかる前、矯
正終了位置に配設された複数の案内ロール7の表面に突
起を形成して鋳造を実施した。前記突起によってロール
1回転毎に鋳片表面に疵が付くが、その疵の間隔を鋳片
を冷片にした後に測定し、各測定位置におけるこの値の
変化から鋳片の圧縮力によって生じる鋳造方向の歪、つ
まり圧縮歪εcpcを下記(12)式で算出した。
Bo” (Brx+BLIll) / 2
"・"・(3) The present inventors have determined that ν in the above formula (11)
In order to experimentally determine cpc, casting was performed by forming protrusions on the surfaces of a plurality of guide rolls 7 disposed at the straightening end position before compressive force was applied. The protrusions cause scratches on the surface of the slab each time the roll rotates, but the spacing between the scratches is measured after the slab is turned into a cold slab, and the change in this value at each measurement position indicates the casting caused by the compressive force of the slab. Strain in the direction, that is, compressive strain εcpc, was calculated using the following equation (12).

Δ1 εCPC=   X  1GG (%)     ・−
−−−−(12)! ただし、Δn=J2o−n。
Δ1 εCPC=X 1GG (%) ・-
-----(12)! However, Δn=J2o−n.

X、:出側のロールマーク間隔 10:入側のロールマーク間隔 1 ;入側ロールのロール周長 また同時に突起を形成したロールを設置した当該位置の
鋳片幅を、後述する第5図に示した光学式の鋳片幅装置
により測定し、その値の変化から幅方向の歪(ΔB/B
o x  1oo)を算出した。この両者の関係の調査
結果の一例を示したのが第4図である。第4図を見て明
らかなように、関係にばらつきはあるが、前記νcpc
はどのような鋳造条件でもほぼ!とみなすことができた
X,: Roll mark interval on the exit side 10: Roll mark interval on the input side 1; The roll circumference of the input roll and the width of the slab at the position where the roll with protrusions is installed at the same time are shown in Figure 5, which will be described later. The strain in the width direction (ΔB/B
ox 1oo) was calculated. FIG. 4 shows an example of the results of an investigation into the relationship between the two. As is clear from FIG. 4, although there are variations in the relationship, the νcpc
is almost any casting condition! It could be considered as

このようにνcpcが約1であることから、前記(11
)式は下記(13)式として表すことができ、鋳造中に
おけるΔBと80を実測することにより、当該鋳造時に
おける圧縮歪εcpcを求めることができる。
Since νcpc is approximately 1 in this way, the above (11
) can be expressed as the following equation (13), and by actually measuring ΔB and 80 during casting, the compressive strain εcpc during casting can be determined.

εcpc ”ΔB/BoX100(%)  ・旧・・(
13)さて第3図に示したように、この圧縮歪εcpc
により矯正歪εUは軽減されるが、圧縮歪εcpcによ
って軽減された後の歪(第3図中のε1)を求める方法
を以下に説明する。
εcpc ”ΔB/BoX100(%) ・Old...(
13) Now, as shown in Figure 3, this compressive strain εcpc
Although the corrective strain εU is reduced by the compressive strain εcpc, a method for determining the strain (ε1 in FIG. 3) after being reduced by the compressive strain εcpc will be described below.

まず(13)式にて求められる圧縮歪εCPCは、鋳片
幅を測定した入側と出側間で鋳片の受ける鋳造方向の歪
と等価なものであり、第3図に示したように矯正を受け
る位置で前記出側の鋳片幅を測定すると、その矯正を受
ける時の矯正歪εCの軽減量は前記(13)式で求まる
値である。よって圧縮歪εcpcによって軽減された後
の歪は、前記(9)式で求まる矯正歪εcpcから(1
3)式で求まる圧縮歪εcpcを減じればよい。
First, the compressive strain εCPC obtained from equation (13) is equivalent to the strain in the casting direction that the slab undergoes between the entrance and exit sides where the width of the slab is measured, and as shown in Figure 3. When the width of the slab on the outlet side is measured at the position where the slab is straightened, the amount of reduction in the straightening strain εC when the slab is straightened is a value determined by the above equation (13). Therefore, the strain after being reduced by the compressive strain εcpc is calculated as (1
3) The compressive strain εcpc determined by equation 3) may be reduced.

しかし入側と出側の鋳片幅測定位置の中間で矯正を受け
る場合、例えば多点矯正連続鋳造機において、入側を矯
正前、出側を最終矯正後の位置で鋳片幅を測定した場合
には1.各矯正位置での矯正歪の軽減量は前記(13)
式で求まる値として評価することはできない。つまり前
記(13)式で求まる値は、出側の鋳片幅測定装置まで
に鋳片が受けた歪に基づいて求まる値であり、よって入
側と出側間の矯正位置では、出側の鋳片幅測定装置位置
までに鋳片が受けた歪とは当然具なるためである。鋳片
が受けた歪と(13)式で求まる圧縮歪εC、Cの関係
は、第3図に示した中立軸移動量ηを用いると下記(1
4)式のように表すことができる。
However, when straightening is performed between the entrance and exit side measurement positions, for example in a multi-point straightening continuous casting machine, the width of the slab is measured at the entrance side before straightening and the exit side after final straightening. In case 1. The amount of correction distortion reduction at each correction position is as described in (13) above.
It cannot be evaluated as a value determined by an expression. In other words, the value determined by the above equation (13) is a value determined based on the strain that the slab has undergone up to the exit side slab width measuring device. Therefore, at the straightening position between the entry side and the exit side, This is because the strain that the slab undergoes up to the location of the slab width measuring device is, of course, a factor. The relationship between the strain experienced by the slab and the compressive strain εC, C determined by equation (13) is expressed as follows (1) using the neutral axis movement amount η shown in Fig.
4) It can be expressed as follows.

よって、(14)式にて求まる圧縮歪εCPCによって
前記各矯正位置における矯正歪εCを軽減した後の歪は
(9)式〜(14)式で求めることができ、以下の(4
)式のように表すことができる。
Therefore, the strain after the correction strain εC at each correction position is reduced by the compressive strain εCPC determined by the equation (14) can be obtained from the equations (9) to (14), and the following (4)
) can be expressed as the formula.

・・・・・・・・・(4) すなわち前記中立軸移動量ηを求めることにより、矯正
を受ける時の鋳片の歪状態を把握することができる。ま
た前記中立軸移動量りは、(13)式、  (14)式
から以下の(1)式のように表すことができる。
(4) That is, by determining the neutral axis movement amount η, it is possible to grasp the strain state of the slab when undergoing straightening. Further, the neutral axis movement amount can be expressed as the following equation (1) from equations (13) and (14).

(1)式中の鋳片厚みDと鋳片表面の矯正歪εusは、
前述したように鋳造条件、設備条件等より決定される連
続鋳造機の固有の値であり、鋳造中は変化しないものと
して差支えが無い。また後述する(17)〜(20)式
中の凝固殻厚みSを、Oma+として求めても良い。矯
正を受ける時の鋳片の歪状態を把握するため、には、鋳
片幅の変化、すなわち(1)式中のΔB、Boと、凝固
殻厚みSを時々刻々求めればよい。前記凝固殻厚みSは
、周知の方法によって2次冷却条件、鋳造速度、鋼種等
の鋳造条件を基にモデル計算によって推定するか、もし
くは電磁超音波計等を利用したシェル厚測定器で実測す
るなどして求めればよい。
The slab thickness D and correction strain εus on the slab surface in equation (1) are:
As mentioned above, it is a value specific to the continuous casting machine determined by casting conditions, equipment conditions, etc., and there is no problem in assuming that it does not change during casting. Further, the solidified shell thickness S in equations (17) to (20) described later may be determined as Oma+. In order to understand the strain state of the slab when undergoing straightening, it is sufficient to find the change in the width of the slab, that is, ΔB and Bo in equation (1), and the solidified shell thickness S from time to time. The solidified shell thickness S is estimated by a well-known method by model calculation based on casting conditions such as secondary cooling conditions, casting speed, and steel type, or is actually measured with a shell thickness measuring device using an electromagnetic ultrasonic meter or the like. You can find it by doing something like this.

次に本発明者らは、曲率半径が、10.5.12゜If
f、 30mの4点曲げ方式(湾曲型)の連続鋳造機に
おける実操業において、前述した方法で求めた中立軸移
動量ηと圧縮力の関係を調査した。中立軸移動量ηを求
めるための鋳片幅は、第5図に示したように矯正成人側
と出側の2箇所に光学式の鋳片幅測定装置ioを設置し
、この鋳片幅測定装置lOによって連続鋳造中における
鋳片幅を時々刻々測定した。鋳片幅測定装置10の検出
信号は鋳片幅演算装置11に入力され、この鋳片幅演算
装置11において鋳片の上下面の幅を算出すると共に、
その算出値を前記(1)式に基づいて演算処理し、中立
軸移動量ηを求めた。また鋳造条件は第1表に示した通
りであり、圧縮力は水平部の引抜きロール72の制動力
を調整し、40屯から100屯の範囲で制第  1  
表 第6図は、求めた中立軸移動量ηと圧縮力の関係の調査
結果の一例を示す図面である。また第1表の鋳造条件で
の最終矯正位置における矯正歪εUは、前述した(9)
式に基づいて算出すると概略O1!3%である。一方第
1表の鋳造条件において、圧縮力は約75屯に制御され
ることが多く、この75屯の圧縮力が作用している状態
における鋳片幅の変化から求めた前記中立軸移動量ηは
、第6図より約801111であった。この時の圧縮歪
εcpcを(14)式にて算出すると約0.28%であ
り、而してこの状態では矯正歪εCより圧縮歪(−CP
Cが太きく、第3図に示すように矯正によって生じる引
張歪は圧縮歪εcpcによって零になる。ところでこの
ように圧縮歪εCPCが矯正歪εUを低減する効果を有
することは従来より知られていたが、従来は前記(7)
式に示されるように、(ε−+66+εu)から圧縮歪
εcpcを減することのみによって単純に総合型ε↑を
求めていた。しかしながら、圧縮歪εcpcが矯正歪ε
Uより大きい場合の圧縮歪εcpcと矯正歪εCどの差
、つまり前述の場合のΔεを(4)式にて算出すると約
−0,15%にも達するが、この値の前記総合型εTへ
の影響は従来技術では全く考慮されていなかった。
Next, the inventors found that the radius of curvature is 10.5.12° If
f, In actual operation of a 30 m four-point bending type (curved type) continuous casting machine, the relationship between the neutral axis movement amount η determined by the method described above and the compressive force was investigated. The slab width for determining the neutral axis movement amount η is determined by installing an optical slab width measuring device io at two locations, one on the straightening adult side and the other on the exit side, as shown in Fig. 5. The slab width was measured every moment during continuous casting using the device IO. The detection signal of the slab width measuring device 10 is input to the slab width calculation device 11, which calculates the width of the upper and lower surfaces of the slab, and
The calculated value was processed based on the above equation (1) to determine the neutral axis movement amount η. The casting conditions are as shown in Table 1, and the compression force is controlled within the range of 40 tons to 100 tons by adjusting the braking force of the horizontal drawing roll 72.
Table 6 is a drawing showing an example of the investigation results of the relationship between the determined neutral axis movement amount η and the compressive force. In addition, the correction strain εU at the final correction position under the casting conditions shown in Table 1 is as described above (9).
When calculated based on the formula, it is approximately O1!3%. On the other hand, under the casting conditions shown in Table 1, the compression force is often controlled to about 75 tons, and the neutral axis movement amount η obtained from the change in slab width under the condition where this 75 tons compression force is applied was about 801111 from FIG. When the compressive strain εcpc at this time is calculated using equation (14), it is approximately 0.28%, and in this state, the compressive strain (-CP
C is thick, and as shown in FIG. 3, the tensile strain caused by straightening becomes zero due to the compressive strain εcpc. By the way, it has been known for a long time that the compressive strain εCPC has the effect of reducing the orthodontic strain εU, but conventionally the above-mentioned (7)
As shown in the formula, the comprehensive type ε↑ was simply obtained by subtracting the compressive strain εcpc from (ε−+66+εu). However, the compressive strain εcpc is the corrective strain ε
When the difference between the compressive strain εcpc and the corrective strain εC when it is larger than U, that is, Δε in the above case, is calculated using equation (4), it reaches about -0.15%. The influence was not considered at all in the prior art.

そこで本発明者らは、圧縮歪εcpcと矯正歪εCとの
差Δeが前記総合歪εTに与える影響について調査した
Therefore, the present inventors investigated the influence of the difference Δe between the compressive strain εcpc and the corrective strain εC on the total strain εT.

第1表で示した鋳造条件で圧縮力と圧縮歪6 CPCと
の関係を調査したときに、圧縮力を約40屯と極端に低
下した場合の鋳片を冷片にした後に観察すると、内部割
れが発生しており、すなわち総合型εTが限界歪εCを
超えていた。この圧縮力が約40屯の時の前記中立軸移
動ff1nは約40u+m(前記Δεは−0,02%)
であり、前述した矯正歪εCより大きい。しかし圧縮力
を約75屯にし、前記中立軸移動量ηを約75■(前記
Δεは−0,14%)とすると内部割れが発生しなくな
り、すなわち総合型εTが限界歪εC以下となった。こ
のことから前記Δεは、ロール不整歪ε2およびバルジ
ング歪εBをも低減させる、すなわち、総合型εTを低
減させる方向に寄与していることが推定できた。このと
ぎの各測定データをもとに以下のような想定に基づぎ前
記Δεの影響を調査した。
When investigating the relationship between compressive force and compressive strain 6 CPC under the casting conditions shown in Table 1, it was found that when the compressive force was extremely reduced to approximately 40 tons, the internal Cracks had occurred, that is, the comprehensive type εT exceeded the critical strain εC. When this compressive force is about 40 tons, the neutral axis movement ff1n is about 40u+m (the above Δε is -0.02%)
, which is larger than the above-mentioned corrective strain εC. However, when the compressive force was set to about 75 tons and the neutral axis movement amount η was set to about 75 ■ (the above Δε is -0.14%), no internal cracks occurred, that is, the overall type εT became less than the critical strain εC. . From this, it was estimated that Δε contributes to reducing the roll misalignment strain ε2 and the bulging strain εB, that is, to reducing the overall type εT. Based on each of the measured data, the influence of Δε was investigated based on the following assumptions.

つまり前記Δεが総合歪εTの低減へ寄与する割合を寄
与効果係数αと仮定し、前記(7)式にこの寄与効果係
数αを採り入れた総合型εTの算出式を創案し、調査検
討を加えた。
In other words, assuming that the contribution rate of Δε to the reduction of the total strain εT is the contribution effect coefficient α, we devised a calculation formula for the total type εT that incorporates this contribution effect coefficient α into the above equation (7), and conducted research and study. Ta.

前述したように寄与効果係数αは、矯正歪εUより圧縮
歪εcpcが大ぎい、つまりΔεが負の場合にのみ総合
型εTに採り入れる考えであるため、本発明者らは総合
歪εTを表現するための歪算出式を、Δεが正の場合と
負の場合の2通りを検討し、以下の(5)式と(6)式
として表した。
As mentioned above, the contribution effect coefficient α is considered to be incorporated into the comprehensive type εT only when the compressive strain εcpc is larger than the corrective strain εU, that is, when Δε is negative, so the inventors express the total strain εT. Two types of distortion calculation formulas were considered, one in which Δε is positive and one in which Δε is negative, and expressed as the following equations (5) and (6).

ΔさくOの場合 6丁 =ε−+εB +α×Δε   ・・−・・1(
5)Δε≧0の場合 εT8ε緬+εS+Δε    ・・・・・・(6)こ
こでα=Iであれば、従来の考え方である(7)式と同
一となり、(5)式と(6)式も当然等しくなる。
In the case of ΔSakuO, 6 pieces = ε−+εB +α×Δε ・・・−・・1(
5) When Δε≧0, εT8ε第+εS+Δε (6) Here, if α=I, the formula is the same as the conventional concept (7), and the formulas (5) and (6) Of course, they are also equal.

また前述したように、(5)式のΔεは総合型εTを低
減するということが、圧縮力と圧縮歪εcpcを調査し
たときの鋳片の内部割れと圧縮力の関係から明らかであ
ることから、(5)式の寄与効果係数αはα〉0と考え
られる。
Furthermore, as mentioned above, it is clear from the relationship between internal cracks in slabs and compressive force when compressive force and compressive strain εcpc are investigated that Δε in equation (5) reduces the overall type εT. , the contribution effect coefficient α in equation (5) is considered to be α>0.

さて具体的な寄与効果係数αの求め方であるが、αは前
述したようにΔεの総合歪εT低減へ寄与する効果係数
であるので、Δさく0の状態を考えなければならず、よ
って(5)式から以下の(15)式が導出できる。
Now, regarding the specific method for determining the contributing effect coefficient α, since α is the effect coefficient that contributes to the reduction of the total strain εT of Δε as mentioned above, we must consider the state of Δ×0, and therefore ( The following equation (15) can be derived from equation 5).

この(15)式において、右辺の総合型ε1は未知であ
るので、(15)式によって寄与効果係数αを求めるこ
とはできない。一方前記(5)式からΔεは常に負であ
り、α〉Oであることから、Δεが最小値のときに総合
型εTも最小値になる。
In this equation (15), since the comprehensive type ε1 on the right side is unknown, the contribution effect coefficient α cannot be determined by the equation (15). On the other hand, from equation (5) above, Δε is always negative and α>O, so when Δε is the minimum value, the comprehensive type εT also becomes the minimum value.

また内部割れが発生している場合、総合型εTは当然内
部割れが発生する最小の限界歪εCより大(ε7≧εM
)であるので、内部割れが発生した時の前記Δεの最小
値をΔε2として求めると、その時の総合型εTが概略
内′部割れが発生する最小の限界歪εCと等しいと判断
できるので、以下の(16)式が導出できる。この(1
6)式に当該鋳造条件から予め内部割れが発生する最小
の限界歪εCを求めておき、代入することによって前記
寄与効果係数αを算出することかできる。
In addition, when internal cracks occur, the comprehensive type εT is naturally larger than the minimum critical strain εC at which internal cracks occur (ε7≧εM
) Therefore, if the minimum value of Δε when an internal crack occurs is found as Δε2, then it can be determined that the total type εT at that time is approximately equal to the minimum critical strain εC at which an internal crack occurs, so the following Equation (16) can be derived. This (1
The contribution effect coefficient α can be calculated by determining in advance the minimum critical strain εC at which internal cracks occur from the casting conditions and substituting it into equation 6).

ただし、Δε−:ε−側れが発生したととのΔεの最小
値 εC:内部割れが発生する最小の限 界歪(%) 第1表の鋳造条件の下での前記Δεと内部割れ発生の関
係を第7図に示した。本例の鋳造条件で内部割れが発生
する最小の限界歪εCは、オフライン試験により0.7
0%であることが判明しているので、前述した方法で寄
与効果係数αを算出するために、便宜上各Δεにおける
総合型εアは前記限界歪g C(0,7Q%)に等しい
として第7図に示した。第7図中の口は内部割れの発生
が無かった場合、■は内部割れ発生の場合を示す。
However, Δε-: Minimum value of Δε when ε-side deviation occurs εC: Minimum critical strain at which internal cracking occurs (%) The relationship is shown in Figure 7. The minimum critical strain εC at which internal cracking occurs under the casting conditions of this example was determined to be 0.7 by off-line testing.
0%, so in order to calculate the contribution effect coefficient α using the method described above, for convenience, we assume that the comprehensive type εa at each Δε is equal to the critical strain g C (0,7Q%). It is shown in Figure 7. The opening in FIG. 7 indicates the case where no internal cracks occurred, and the symbol ■ indicates the case where internal cracks occurred.

内部割れの発生とΔεには相関があり、本例の鋳造条件
であれば、前記Δεが約−0,11%以上で内部割れが
発生することになる。すなわち、Δε工= −0,11
%である。また、前記限界歪εCは0.70%であるこ
とが判明しており、またロール不整歪εMは前記(lO
)式より0.55%、バルジング歪εBは前記(8)式
より0.20%として求まった。
There is a correlation between the occurrence of internal cracks and Δε, and under the casting conditions of this example, internal cracks will occur when Δε is approximately -0.11% or more. That is, Δε engineering = −0,11
%. Furthermore, it has been found that the critical strain εC is 0.70%, and the roll misalignment strain εM is the (lO
) was determined to be 0.55%, and the bulging strain εB was determined to be 0.20% from the above formula (8).

而して寄与効果係数αは、前記(16)式より約0.4
5と求めることができる。従ってこの鋳造条件における
前記Δεが総合歪εTに与える影響は、その値の約45
%であるという新たな知見が得られた。
Therefore, the contribution effect coefficient α is approximately 0.4 from equation (16) above.
It can be calculated as 5. Therefore, under these casting conditions, the influence of Δε on the total strain εT is approximately 45% of that value.
%.

このように当該鋳造条件に応じて、前記歪差Δεと鋳片
の内部割れ発生との予め求められた相関に基づき、総合
歪εT低減への寄与効果係数αを求め、設定しておくこ
とにより総合歪εアを正確に把握することが可能となる
In this way, depending on the casting conditions, the contribution effect coefficient α to the overall strain εT reduction can be determined and set based on the predetermined correlation between the strain difference Δε and the occurrence of internal cracks in the slab. It becomes possible to accurately grasp the total strain εa.

さて第1表の鋳造条件の下で、前述した方法によフて鋳
造条件を変更した際の矯正域における鋳造中に測定した
各型および鋳片を、−旦冷却した後に内部割れの有無を
さらに調査した結果を第2表に示す、なお本調査では、
限界歪εCは割れが発生する限界値つまりその値を超え
ると内部割れが発生するという値を用いた。
Now, under the casting conditions shown in Table 1, the molds and slabs measured during casting in the straightening area when the casting conditions were changed using the method described above were cooled down and checked for the presence or absence of internal cracks. The results of further investigation are shown in Table 2.In this investigation,
As the critical strain εC, a limit value at which cracking occurs, that is, a value beyond which internal cracking occurs is used.

第2表に示した通り、通常操業をm続していた鋳片番号
1〜4においては、中立軸移動量ηが75am〜85鵬
lと変動はあるものの十分大きいため、総合型εTは限
界歪εC以下、すなわち内部割れの発生は無いと推定で
きた。そのときの鋳片を冷片とし、内部割れの発生を調
査すると割れの発生が無く、推定と実態は一致した。さ
らに鋳片番号5〜8においては、圧縮力を極端に低減し
中立軸移動量ηを12a+m〜50■■とした。その結
果総合歪εTは限界歪εC以上、すなわち内部割れの発
生があると推定できた。そのときの鋳片を冷片とし、内
部割れの発生を調査すると割れの発生が有り、推定と実
態は良く一致した。またその状態から鋳片番号9におい
ては、圧縮力を増大し中立軸移動量りを約9haに増す
ように操業条件を変更することにより、総合型εTは限
界歪εC以下となり、内部割れの発生の無い状態とした
。そのときの割れ発生の推定結果と実体も合致している
As shown in Table 2, for slab numbers 1 to 4, which had been in normal operation for m, the neutral axis movement η varied from 75 am to 85 am, which was sufficiently large, so the comprehensive type εT reached its limit. It was estimated that the strain was less than εC, that is, no internal cracks occurred. When the cast slab at that time was used as a cold slab and the occurrence of internal cracks was investigated, no cracks were found, and the estimation and reality matched. Furthermore, in slab numbers 5 to 8, the compressive force was extremely reduced, and the neutral axis movement amount η was set to 12a+m to 50■■. As a result, it was estimated that the total strain εT was greater than the critical strain εC, that is, internal cracking occurred. When the cast slab at that time was used as a cold slab and the occurrence of internal cracking was investigated, cracking was found, and the estimation and actual condition were in good agreement. In addition, for slab No. 9, by increasing the compressive force and changing the operating conditions to increase the neutral axis movement to about 9 ha, the overall type εT becomes less than the critical strain εC, which prevents the occurrence of internal cracks. It was assumed that there was no such thing. The estimated results of crack occurrence at that time also match the reality.

以上のように前記中立軸移動量ηを時々刻々測定しなが
ら、前述した総合歪式によって得た総合歪εTが限界歪
εC以上となったときに内部割れ精 が発生したと推定することが、非常に濁度良くできるこ
とが確認できた。
As described above, while measuring the neutral axis movement amount η from time to time, it is possible to estimate that an internal crack has occurred when the total strain εT obtained by the above-mentioned total strain formula exceeds the critical strain εC. It was confirmed that very good turbidity could be obtained.

内部割れの発生が推定できた場合には、例えば圧縮力を
増大する、鋳造速度を低下する、2次冷却水量を増大す
る等の周知の操業アクションにより、効率的に内部割れ
の発生を未然に防止することも可能であることが確認で
きた。
If the occurrence of internal cracks is estimated, the occurrence of internal cracks can be effectively prevented by taking well-known operational actions such as increasing the compression force, decreasing the casting speed, and increasing the amount of secondary cooling water. It was confirmed that it is possible to prevent this.

また前述した説明では、鋳片幅測定装置10は矯正帯の
前後の2箇所に設置した例で説明したが、矯正途中にも
鋳片幅測定装置lOを設置することにより、矯正途中の
鋳片の総合型ε1も前述した方法を用いれば精度良く算
出することかできる。
In addition, in the above explanation, the slab width measuring device 10 is installed at two locations before and after the straightening band, but by installing the slab width measuring device 10 also during straightening, it is possible to The comprehensive type ε1 of can also be calculated with high accuracy by using the method described above.

即ち前記第2図で説明したように、鋳片が矯正を受ける
と鋳片幅が変化し、この鋳片幅を測定することによって
実際に鋳片に発生している矯正歪εCが算出できる。
That is, as explained in FIG. 2, when the slab is straightened, the width of the slab changes, and by measuring this width, the straightening strain εC actually occurring in the slab can be calculated.

第5図に示したように、矯正域の入側と出側にのみ鋳片
幅測定装置10を設置した場合には、(9)式に基づい
て矯正歪εCを算出し、総合型εTに採り入れればよい
、しかし例えば矯正途中にさらに1台の鋳片幅測定装置
lOを設置すれば、矯正途中の鋳片に発生している実際
の矯正歪εUを把握することができる。矯正域の入側と
出側に加えて矯正途中にも鋳片幅測定装置10を設置し
、これによって測定される鋳片幅の値から矯正歪εCを
算出する方法の一例を以下に示す。
As shown in Fig. 5, when the slab width measuring device 10 is installed only on the entrance and exit sides of the straightening area, the straightening strain εC is calculated based on equation (9), and the total type εT is However, if, for example, one additional slab width measuring device 1O is installed during straightening, it is possible to grasp the actual straightening strain εU occurring in the slab during straightening. An example of a method of installing a slab width measuring device 10 during straightening in addition to the entrance and exit sides of the straightening area and calculating the straightening strain εC from the value of the slab width measured by this device will be described below.

δBI −(art−BLI)−(Brl−+  BL
I−+)・・・・・・(1’l) δBo  =  (Bry  Bi、y)  −(BP
、  BLII)・・・・・・(20) ただし εuo:人側出側の鋳片幅測定装置間の鋳片表
面の矯正歪の合計 (%) Brl:i番目の鋳片幅測定装置によ る下面の鋳片幅 BLI  :i番目の鋳片幅測定装置による上面の鋳片
幅 B、ニー1:  (t−i)各面の鋳片幅測定装置によ
る下面の鋳片幅 BLI−1:  (i −1)番目の鋳片幅測定装置に
よる上面の鋳片幅 以上のように複数の部位において鋳片の幅を測定するこ
とにより、実際の鋳片に生じている矯正歪εuB+ ε
Uを求めることができ、この値を時々刻々算出し、前述
した(1)式、(4)式、(5)式もしくは(6)式の
ευに代入することにより、より正確な総合歪εTを把
握することができる。
δBI −(art-BLI)−(Brl−+ BL
I−+)・・・・・・(1'l) δBo = (Bry Bi, y) −(BP
, BLII) ... (20) where εuo: Total correction strain (%) on the slab surface between the slab width measuring devices on the exit side Brl: Bottom surface measured by the i-th slab width measuring device Slab width BLI: Top slab width B measured by the i-th slab width measuring device, Knee 1: (t-i) Bottom slab width BLI-1 measured by each side slab width measuring device: (i -1) By measuring the width of the slab at multiple locations, such as the width of the slab on the top surface or higher, using the second slab width measuring device, the correction strain εuB+ ε occurring in the actual slab can be determined.
By calculating this value from time to time and substituting it into ευ in the above-mentioned equations (1), (4), (5), or (6), a more accurate total strain εT can be obtained. can be understood.

また鋳片幅測定装置10についても、前述した光学式に
限定するものではなく、例えば接触式の鋳片幅測定装置
を用いることも可能であり、設置する場所の雰囲気から
装置のメンテナンス性を考慮し、適宜測定装置の種類を
決定し用いればよい。
Furthermore, the slab width measuring device 10 is not limited to the above-mentioned optical type; for example, it is also possible to use a contact type slab width measuring device, and the ease of maintenance of the device is taken into consideration depending on the atmosphere of the place where it is installed. However, the type of measuring device may be determined and used as appropriate.

加えて前記限界歪εMを、内部割れが発生するときの歪
より実行上差し支えない範囲で小さい値とすることによ
り、内部割れの発生を皆無にすることも可能である。
In addition, by setting the critical strain εM to a value smaller than the strain at which internal cracks occur within a practically acceptable range, it is possible to completely eliminate the occurrence of internal cracks.

また内部割れを防止するために、前記圧縮力を過大に鋳
片に作用させると、内部割れ以外の鋳片の内部欠陥、例
えば鋳片の中心偏析の悪化や中心割れが発生することに
もつながり、さらに前記圧縮力を過大にすると、引き抜
きロールの摩耗が激しくなり、ロール寿命が短くなると
いう問題も発生する。よって前記圧縮力は、内部割れが
発生しない必要最小限を鋳片に作用させることが望まし
く、本発明によってそれも実現できることが可能である
In addition, if excessive compressive force is applied to the slab in order to prevent internal cracks, it may lead to internal defects in the slab other than internal cracks, such as worsening of center segregation or center cracks in the slab. Furthermore, if the compressive force is increased too much, the drawing roll will be severely worn and the life of the roll will be shortened. Therefore, it is desirable that the compressive force be applied to the slab at the minimum necessary level without causing internal cracks, and this can also be achieved by the present invention.

〔実施例〕〔Example〕

連鋳機能力、月産16万屯、機長37mの連鋳機におい
て本発明の鋳造方法を実施した。前述した作用の説明と
同様な方法で、鋳造条件毎に前記Δεが鋳片の歪低減へ
寄与する効果係数αを求めた。
The casting method of the present invention was carried out in a continuous casting machine with continuous casting capability, monthly production of 160,000 tons, and machine length of 37 m. In the same manner as in the explanation of the effect described above, the effect coefficient α at which the Δε contributes to the reduction of strain in the slab was determined for each casting condition.

第3表−に鋳造条件と前記予め求めた寄与効果係数αを
示す。
Table 3 shows the casting conditions and the contribution effect coefficient α determined in advance.

第  3  表 第1図は本実施例に基づく連続鋳造設備の全体構成図で
ある。この第1図における機器構成は、基本的には前述
した第5図と同一であり、矯正域の入側と出側の2箇所
に光学式の鋳片幅測定装置lOを設置し、鋳片幅測定装
置10からの信号によって鋳片幅演算装置11にて鋳片
の上下面の幅を算出し、その情報を歪演算装置12に伝
送し、前記中立軸移動量り、並びに前記歪差Δεを時々
刻々算出する構成とした。
Table 3 FIG. 1 is an overall configuration diagram of the continuous casting equipment based on this example. The equipment configuration in Fig. 1 is basically the same as in Fig. 5 described above, and an optical slab width measuring device IO is installed at two locations, one on the entrance side and one on the exit side of the straightening area, and The width of the upper and lower surfaces of the slab is calculated by the slab width calculating device 11 based on the signal from the width measuring device 10, and the information is transmitted to the strain calculating device 12, and the neutral axis movement amount and the strain difference Δε are calculated. It is configured to calculate every moment.

また鋳造条件指示装置13からの鋳造条件情報と、ロー
ル間隔およびロール配列測定装置9からの両測定結果も
、前記歪演算装置12に伝送され、当該鋳造条件からバ
ルジング歪ε8、矯正歪6uを求め、ロール間隔とロー
ル配列測定結果よりロール不整歪ε−を演算する。そし
て前記歪演算装置12によって前述した方法に従って各
型を時々刻々算出し、また、当該鋳造条件から予め求め
ておいた寄与効果係数αと限界歪εCとを参照し、前記
方法にて鋳片の総合歪εTを該歪演算装W12で演算し
、且つ限界歪εCと比較を行う。そして総合歪εTが限
界歪以上εCとなったときで警報装置14にアラームを
出し、またその情報から操業者がしかるべき処置を採れ
るように(本実施例では圧縮力を壜大するように)作業
指示をその作業指示装置15に出力し、内部割れの発生
を防止することにした。
Further, the casting condition information from the casting condition indicating device 13 and the measurement results from the roll spacing and roll arrangement measuring device 9 are also transmitted to the strain calculating device 12, and the bulging strain ε8 and corrective strain 6u are calculated from the casting conditions. , the roll misalignment strain ε- is calculated from the roll spacing and roll arrangement measurement results. Then, the strain calculating device 12 calculates each mold moment by moment according to the method described above, and also refers to the contribution effect coefficient α and critical strain εC determined in advance from the casting conditions. The total strain εT is calculated by the strain calculation unit W12 and compared with the limit strain εC. Then, when the total strain εT exceeds the critical strain εC, an alarm is issued to the alarm device 14, and the operator can take appropriate measures based on the information (in this embodiment, the compressive force is increased). It was decided to output work instructions to the work instruction device 15 to prevent internal cracks from occurring.

本装置で操業した結果を第8図に示すが、本発明に基づ
く方法を採用することにより、内部割れの発生車数率の
指数が従来の約lθ%から約2%へと激減した。
The results of operation using this device are shown in FIG. 8, and by adopting the method based on the present invention, the index of the number of cars with internal cracks was drastically reduced from about lθ% in the conventional method to about 2%.

(発明の効果) 以上のように、本発明法を実操業に適用することに′よ
り、鋳片の内部割れ発生を未然に予知し、しかるべき処
置を採ることによって割れ発生の防止が可能となり、優
れた効果が発揮できることが確認できた。
(Effects of the invention) As described above, by applying the method of the present invention to actual operations, it becomes possible to predict the occurrence of internal cracks in slabs and prevent the occurrence of cracks by taking appropriate measures. It was confirmed that excellent effects could be exhibited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した一実施例を示す連続鋳造設備
の全体構成図、第2図は (a)〜 (d)鋳片の断面
形状の変化状況を模式的に示した鋳片断面図、第3図は
矯正を受ける鋳片に圧縮力が作用した時の鋳片内の歪分
布を模式的に示した図面、第4図は鋳造方向の歪と幅方
向の歪の関係を示す図面、第5図は圧縮力と圧縮歪の関
係を調査するための試験装置図、第6図は圧縮力と中立
軸移動量の関係を示す図面、第7図は寄与効果係数αを
求めるための説明図、第8図は本発明法を実操業に適用
したことによる内部割れの発生状況を示す図、第9図は
従来の方法を説明する連続鋳造設備の略側面図である。 1・・・タンデイツシュ、2・・・イマージョンノズル
、3・・・鋳型、4・・・溶鋼、5・・・凝固殻、6・
・・鋳片、7・・・案内ロール、71・・・案内支持ロ
ール、72・・・引抜ロール、73・・・矯正ロール、
8・・・カッタ9・・・ロール間隔計とロール配列測定
装置、10・・・鋳片幅測定装置、11・・・鋳片幅演
算装置、12・・・歪演算装置、13・・・鋳造条件指
示装置、14・・・警報装置、15・・・作業指示装置
、 代理人 弁理士 秋 沢 政 光 他1名 汀2図 7i1図 13図 錘造力百の歪(”/、) 25図 圧縮力0毛) オフ図 28図
Figure 1 is an overall configuration diagram of continuous casting equipment showing an embodiment of the present invention, and Figures 2 (a) to (d) are cross sections of slabs schematically showing changes in the cross-sectional shape of slabs. Figure 3 is a diagram schematically showing the strain distribution inside the slab when compressive force is applied to the slab undergoing straightening, and Figure 4 shows the relationship between strain in the casting direction and strain in the width direction. Figure 5 is a diagram of the test equipment for investigating the relationship between compressive force and compressive strain, Figure 6 is a diagram showing the relationship between compressive force and neutral axis movement, and Figure 7 is for determining the contribution effect coefficient α. FIG. 8 is a diagram showing the occurrence of internal cracks when the method of the present invention is applied to actual operation, and FIG. 9 is a schematic side view of continuous casting equipment illustrating the conventional method. DESCRIPTION OF SYMBOLS 1... Tanditetsu, 2... Immersion nozzle, 3... Mold, 4... Molten steel, 5... Solidified shell, 6...
... Slab, 7... Guide roll, 71... Guide support roll, 72... Drawing roll, 73... Straightening roll,
8... Cutter 9... Roll distance meter and roll arrangement measuring device, 10... Slab width measuring device, 11... Slab width calculating device, 12... Strain calculating device, 13... Casting condition indicating device, 14... Alarm device, 15... Work instruction device, Agent: Patent attorney Masamitsu Akizawa and one other name 2 Figure 7i 1 Figure 13 Weight making force 100 distortion (''/,) 25 (Fig. Compressive force 0 hair) Off Fig. 28 Fig.

Claims (1)

【特許請求の範囲】 ロール不整量と当該鋳造条件とから求まるロール不整歪
ε_Mと、当該鋳造条件から求まるロール間のバルジン
グ歪ε_Bおよび矯正歪ε_Uに加えて、圧縮歪ε_C
_P_Cとから矯正域における鋳片の凝固界面の総合歪
ε_Tを算出し、この値と予め当該鋳造条件に応じて決
定された鋳片内部割れ発生の限界歪ε_Cとを比較し、
前記総合歪ε_Tが限界歪ε_Cを超えたときに鋳造条
件を変更して内部割れを防止する鋼の連続鋳造方法にお
いて、 少なくとも前記矯正域の入側および出側の2箇所に鋳片
幅測定装置を設け、該幅測定装置により連続鋳造中にお
ける鋳片の上下面の幅を測定し、この幅測定値と鋳造条
件、設備条件より設定される鋳片厚みD、連続鋳造機の
曲率半径Rとを下記(1)式に基づき演算処理して中立
軸移動量ηを求め、次いで前記矯正歪ε_Uと圧縮歪ε
_C_P_Cとの歪差Δεを下記(4)式に基づいて求
めると共に、この歪差Δεと鋳片の内部割れ発生との予
め求められた相関に基づき当該操業条件に応じて設定さ
れた歪差Δεの前記総合歪ε_T低減への寄与効果係数
αとから、下記(5)式もしくは(6)式により総合歪
ε_Tを時々刻々算出し、この総合歪ε_Tが限界歪ε
_Cを超えたときに鋳造条件を変更して内部割れを防止
することを特徴とする鋼の連続鋳造方法。 ▲数式、化学式、表等があります▼・・・・・・・(1
) ただし、▲数式、化学式、表等があります▼・・・・・
・・・・(2) ▲数式、化学式、表等があります▼・・・・・・・・・
(3) ▲数式、化学式、表等があります▼・・・・・・・・・
(4) ただし、 η:中立軸移動量 ε_U_S:鋳片表面の矯正歪(%) ▲数式、化学式、表等があります▼ Δε:矯正歪ε_Uと前記圧縮歪ε_C_P_Cの歪差
(%) D:鋳片厚み S:凝固殻厚み ΔB:矯正域入側と出側の鋳片上下面平均幅の差 B_O:矯正域入側の鋳片上下面の平均幅 B_P_x:矯正域入側の下面の鋳片幅 B_L_x:矯正域入側の上面の鋳片幅 B_F_y:矯正域出側の下面の鋳片幅 B_L_y:矯正域出側の上面の鋳片幅 Δε<0の場合 ε_T=ε_M+ε_B+α×Δε・・・・・・(5)
Δε≧0の場合 ε_T=ε_M+ε_B+Δ_ε・・・・・・(6)た
だし、ε_T:総合歪(%) ε_M:ロール不整歪(%) ε_B:バルジング歪(%) α:Δεの総合歪ε_T低域への寄与効 果係数 R_i:i番目のロールの曲率半径
[Claims] In addition to the roll misalignment strain ε_M found from the roll misalignment amount and the casting conditions, and the bulging strain ε_B and corrective strain ε_U between the rolls found from the casting conditions, the compressive strain ε_C
From _P_C, calculate the total strain ε_T of the solidification interface of the slab in the straightening area, and compare this value with the critical strain ε_C for occurrence of internal cracks in the slab, which has been determined in advance according to the casting conditions,
In the continuous casting method for steel in which internal cracking is prevented by changing the casting conditions when the total strain ε_T exceeds the critical strain ε_C, slab width measuring devices are provided at least at two locations, one on the entry side and one on the exit side of the straightening area. The width of the upper and lower surfaces of the slab during continuous casting is measured using the width measuring device, and the thickness D of the slab set based on this width measurement value, casting conditions, and equipment conditions, and the radius of curvature R of the continuous casting machine are calculated. is calculated based on the following formula (1) to obtain the neutral axis movement amount η, and then the correction strain ε_U and the compressive strain ε
The strain difference Δε with respect to _C_P_C is determined based on the following equation (4), and the strain difference Δε is set according to the operating conditions based on the predetermined correlation between this strain difference Δε and the occurrence of internal cracks in the slab. The total strain ε_T is calculated from time to time by the following formula (5) or (6) from the contribution effect coefficient α to the total strain ε_T reduction, and this total strain ε_T is the critical strain ε
A continuous casting method for steel, characterized in that when the temperature exceeds _C, the casting conditions are changed to prevent internal cracks. ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・・・・(1
) However, there are ▲mathematical formulas, chemical formulas, tables, etc.▼・・・・・・
・・・・・・(2) ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・・・・
(3) ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・・・・
(4) However, η: Neutral axis movement amount ε_U_S: Straightening strain on the slab surface (%) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Δε: Strain difference (%) between the straightening strain ε_U and the compressive strain ε_C_P_C D: Slab thickness S: Solidified shell thickness ΔB: Difference between the average width of the upper and lower surfaces of the slab on the entrance side and exit side of the straightening area B_O: Average width of the upper and lower surfaces of the slab on the entrance side of the straightening area B_P_x: Width of the slab on the lower surface on the entrance side of the straightening area B_L_x: Width of the slab on the upper surface of the straightening area entrance side B_F_y: Slab width of the lower surface of the straightening area exit side B_L_y: Slab width of the upper surface of the straightening area exit side When Δε<0 ε_T=ε_M+ε_B+α×Δε... ...(5)
When Δε≧0, ε_T=ε_M+ε_B+Δ_ε・・・・・・(6) However, ε_T: Total strain (%) ε_M: Roll irregularity strain (%) ε_B: Bulging strain (%) α: Total strain of Δε ε_T low range Contribution effect coefficient R_i: radius of curvature of the i-th roll
JP10541189A 1989-01-27 1989-04-25 Continuous casting method for steel Expired - Lifetime JPH078424B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1825089 1989-01-27
JP1-18250 1989-01-27

Publications (2)

Publication Number Publication Date
JPH02274354A true JPH02274354A (en) 1990-11-08
JPH078424B2 JPH078424B2 (en) 1995-02-01

Family

ID=11966435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10541189A Expired - Lifetime JPH078424B2 (en) 1989-01-27 1989-04-25 Continuous casting method for steel

Country Status (1)

Country Link
JP (1) JPH078424B2 (en)

Also Published As

Publication number Publication date
JPH078424B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
US5242010A (en) Method for controlling the taper of narrow faces of a liquid-cooled mold
CN116738518B (en) Numerical simulation verification method for crack position under continuous casting light reduction and internal quality control method
JPH02274354A (en) Method for continuously casting steel
Gregurich et al. In-depth analysis of continuous caster machine behavior during casting with different roll gap taper profiles
KR102480616B1 (en) Casting method of cast steel
CN115229149A (en) Method for determining blank shell/liquid core thickness and solidification end point of continuous casting blank based on liquid level fluctuation of crystallizer in pressing process
JP4461075B2 (en) Continuous casting method
JP5862595B2 (en) Method for determining solidification completion position of slab, solidification completion position determination device for slab, and method for manufacturing slab
US11858019B2 (en) Slab manufacturing method and control device
JPH0359781B2 (en)
JP4501892B2 (en) Method and apparatus for estimating molten metal temperature in continuous casting mold
JPS63220957A (en) Method for continuously casting steel having less internal crack
JPH0745096B2 (en) Continuous casting method
KR100848650B1 (en) Method of Roll Gap Control of the Coil in Accordance with Temperature and Casting Speed Variation
CN113165061B (en) Method for determining the position of the burner end of a cast metal product
JP3062723B2 (en) Measurement method of slab surface dent shape due to solidification shrinkage in mold
JPH02147B2 (en)
JPH0211258A (en) Method for continuously casting steel
JPS6024449A (en) Method for estimating internal quality of continuously cast piece
JPH0512066B2 (en)
JPH04178253A (en) Method and device for evaluating flowing state at inner part of casting mold for continuous casting
JP2001198658A (en) Slab measuring method in continuous casting
JPH10263657A (en) Method for measuring roll profile and device therefor
JPH04143056A (en) Method for deciding surface defect on continuously cast slab
KR20040020481A (en) A Method for Calculating the Roll Life in a Continuous Casting