JPH0227380B2 - - Google Patents

Info

Publication number
JPH0227380B2
JPH0227380B2 JP56131596A JP13159681A JPH0227380B2 JP H0227380 B2 JPH0227380 B2 JP H0227380B2 JP 56131596 A JP56131596 A JP 56131596A JP 13159681 A JP13159681 A JP 13159681A JP H0227380 B2 JPH0227380 B2 JP H0227380B2
Authority
JP
Japan
Prior art keywords
weight
parts
polycarbonate resin
acrylic
elastic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56131596A
Other languages
Japanese (ja)
Other versions
JPS5834850A (en
Inventor
Osamu Oohara
Kazuo Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP13159681A priority Critical patent/JPS5834850A/en
Publication of JPS5834850A publication Critical patent/JPS5834850A/en
Publication of JPH0227380B2 publication Critical patent/JPH0227380B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリカーボネート樹脂組成物、更に詳
しくは機械的物性特に低温での耐衝撃性に優れた
ポリカーボネート樹脂組成物に関する。 ポリカーボネート樹脂は高度の耐衝撃性を具備
し、自己消火性であり、耐熱性が他の樹脂に比し
て高く、しかも電気特性及び寸法安定性が優れて
いることから、エンジニアリングプラスチツクと
して広く使用されている。 しかし、ポリカーボネート樹脂を成形品として
使用する際には、成形品の厚さによる衝撃強度依
存性が高く、例えば3.2mm厚さ(1/8″インチ厚
さ)のアイゾツトノツチ付衝撃値は延性破壊を示
すのに対し、6.4mm厚さ(1/4″インチ厚さ)で
は脆性破壊を示し、厚さが厚い領域で衝撃強度が
低下するという問題がある。この問題解決のため
に、例えば特公昭40−13663号公報にはポリカー
ボネートとポリエチレンとのブレンド樹脂が、特
公昭40−13664号公報にはポリカーボネートとエ
チレン−プロピレンブロツク共重合体とのブレン
ド樹脂が提案されている。しかしながら、いずれ
のブレンド樹脂も常温での耐衝撃性は改良される
ものの、低温(0℃以下)での耐衝撃性は不十分
であり、その改良が望まれている。 本発明者らは、寒冷雰囲気中においても高い衝
撃性を有する成形品を与えるポリカーボネート樹
脂組成物を得るべく鋭意研究した結果、ポリカー
ボネート樹脂に特定割合のポリオレフインとアク
リル系弾性重合体を配合せしめることが極めて有
効であることを見い出し、本発明に到達したもの
である。 即ち、本発明は(A)ポリカーボネート樹脂100重
量当り、(B)ポリエチレン、ポリプロピレン及びポ
リメチルペンテンからなる群から選ばれた少なく
とも一種のポリオレフン0.5〜10重量部及び(C)ブ
タジエン8〜31重量%を共重合したアクリルゴム
を幹成分とするアクリル系弾性重合体0.5〜10重
量部を配合せしめてなることを特徴とするポリカ
ーボネート樹脂組成物である。 本発明のポリカーボネート樹脂組成物は、1/
4″インチ厚さの衝撃強度、特に低温での強度が大
幅に改良されているので、低温での耐衝撃性が要
求される用途、例えばバンパー等の自動車部品や
冷凍庫部品等に広く使用できる。本発明の特徴で
ある寒冷雰囲気中における高い耐衝撃性は、ポリ
オレフインとアクリル系弾性重合体とを組合せ配
合することによつて初めて得られるものであつ
て、これら成分を単独で配合しても本発明の目的
とする寒冷雰囲気中における耐衝撃性は得られな
い。従つて、本発明のポリカーボネート樹脂組成
物の優れた特性は、ポリカーボネート樹脂、ポリ
オレフイン並びにアクリル系弾性重合体の相互作
用によつて達成されると推考されるが、その作用
機構は詳らかでない。 本発明に用いられる(A)成分のポリカーボネート
樹脂は、通常酸受容体および分子量調整剤の存在
下での2価フエノールとホスゲン等のカーボネー
ト前駆体との反応、或いは2価フエノールとジフ
エニルカーボネート等のカーボネート前駆体との
エステル交換反応によつて製造される。ここで使
用しうる2価フエノールはビスフエノール類が好
ましく、とくに2,2−ビス(4−ヒドロキシフ
エニル)プロパン(以下ビスフエノールAと称
す)が好ましい。また、ビスフエノールAの一部
または全部を他の2価フエノールで置換してもよ
い。ビスフエノールA以外の2価フエノールと
は、例えばハイドロキノン、4,4−ジヒドロキ
シジフエニル、ビス(4−ヒドロキシフエニル)
アルカン、ビス(4−ヒドロキシフエニル)シク
ロアルカン、ビス(4−ヒドロキシフエニル)ス
ルフイツド、ビス(4−ヒドロキシフエニル)ス
ルホン、ビス(4−ヒドロキシフエニル)スルホ
キシド、ビス(4−ヒドロキシフエニル)ケト
ン、ビス(4−ジヒドロキシフエニル)エーテル
の如き化合物またはビス(3,5−ジブロモー4
−ヒドロキシフエニル)プロパンの如きハロゲン
化ビスフエノール類である。ポリカーボネート樹
脂はこれら2価フエノールのホモポリマーまたは
2種以上のコポリマー或いはこれらのブレンド物
であつてもよい。また、ポリカーボネート樹脂は
その一部が分岐されていてもよく、例えば多官能
性芳香族化合物を2価フエノール及びカーボネー
ト前駆体と反応させた熱可塑性ランダム分岐ポリ
カーボネートも含む。 本発明に用いられる(B)成分のポリエチレン、ポ
リプロピレン、及び/又はポリメチルペンテンは
通常販売されているものでよいが、溶融特性がポ
リカーボネート樹脂に近いものが好ましい。 本発明で用いる(C)成分のアクリル系弾性重合体
は、アクリル酸エステルを主成分とし、これにブ
タジエンを共重合したアクリルゴムを幹成分とす
るアクリル系弾性重合体であり、具体的にはアク
リル酸エステル(例えば2−エチルヘキシルアク
リレート、n−ブチルアクルレート等)35〜60重
量部(54〜92重量%)、ブタジエン5〜20重量部
(8〜31重量%)、メチルメタクリレート0〜10重
量部(0〜15重量%)及び架橋剤(例えばエチレ
ンジメタクリレート等)0.6〜1.3重量部(0.9〜
2.0重量%)を乳化重合させて得られるゴムラテ
ツクスに凝集剤を加えて平均粒径を0.13〜0.20μ
に調整したラテツクス状ゴム65重量部(100重量
%)に対して、第1グラフト成分としてスチレン
5〜15重量部、メチルメタクリレート5〜10重量
部、アクリロニトリル0〜10重量部及び架橋剤
(例えばエチレンジメタクリレート、ジビニルベ
ンゼン等)0.1〜0.3重量部よりなる混合モノマー
20〜25重量部をグラフト重合させ、更に第2グラ
フト成分としてメチルメタクリレート10〜15重量
部及び架橋剤(例えばエチレンジメタクリレー
ト、ジビニルベンゼン等)0.1〜0.3重量部よりな
る混合モノマー10〜15重量部をグラフト重合させ
ることによつて製造されたグラフト共重合体であ
る。かかるアクリル系弾性重合体は呉羽化学工業
(株)からHIA−15として市販されており、容易に
入手することができる。 本発明において、これらの配合比はポリカーボ
ネート樹脂(A)100重量部に対して、ポリオレフイ
ン(B)並びにアクリル系弾性重合体(C)はそれぞれ
0.5〜10重量部であり、更に好ましくはそれぞれ
1〜5重量部である。(B)、(C)成分の配合量が上述
の範囲より少なくてもまた多くても、本発明の樹
脂組成物のような耐衝撃性は得られず、更に上述
の範囲を超えると層剥離を生じて成形品の外観を
損なつたり、耐熱性が低下したりするので好まし
くない。 本発明のポリカーボネート樹脂組成物の調製は
任意の方法で行なうことができる。その方法とし
て、例えばポリカーボネート樹脂(A)にポリエチレ
ン、ポリプロピレン、ポリメチルペンテン等のポ
リオレフイン(B)とアクリル系弾性重合体(C)を加
え、V型ブレンダー、スーパーミキサー等を用い
て混合する方法或いは押出機、コニーダーなどを
用い溶融状態で混合する方法;(B)成分と(C)成分を
あらかじめ混練ロール、バンバリーミキサーにて
混合し、これをポリカーボネート樹脂(A)に直接ま
たは溶融状態で混合する方法などがある。とくに
多段に混合する方法は混練度がよくなるので好ま
しい。 本発明のポリカーボネート樹脂成分には、更に
その改質を目的として他の添加剤、例えばガラス
繊維、カーボン繊維の如き強化剤、熱安定剤、酸
化防止剤、発泡剤、光安定剤、難燃剤、可塑剤、
離型剤、帯電防止剤、充填剤などを添加すること
ができる。また、例えばポリスチレン、ポリメチ
ルメタクリレート、AS樹脂、ABS樹脂、ポリエ
ステル、ポリフエニレンオキサイド等の他の樹脂
を混合することができる。 以下に本発明を実施例を以つて説明する。尚、
実施例中の部は重量部を意味する。また耐衝撃性
は下記の方法によつて評価した。 低温での耐衝撃性評価法: 予め乾燥したペレツトを射出成形機を用いて64
mm×12.7mm×3.18mmの衝撃試験片に成形した。該
試験片は0.25mmRのノツチを付けたのち、0℃、
−20℃、−30℃の恒温器中に1時間放置した。そ
の後試験片を恒温器からとり出し、直ちにアイゾ
ツト衝撃試験機(東洋精機(株)製)にて衝撃強度を
測定した。衝撃強度が大きい程、耐衝撃性のよい
ことを表わす。 実施例1〜7及び比較例1〜4 予め乾燥したポリカーボネート樹脂(帝人化成
(株)製;パンライトL−1225)100部に第1表に示
す量のポリオレフインおよびアクリル系弾性重合
体(呉羽化学工業(株);HIA−5)を加え、V型
ブレンダーを用いて混合し、30mmφ押出機(中央
機械(株)製);VSK−30)で押出しペレツト化し
た。得られたペレツトは前記の方法で射出成形
し、耐衝撃性を評価した。その結果を第1表に示
す。
The present invention relates to a polycarbonate resin composition, and more particularly to a polycarbonate resin composition having excellent mechanical properties, particularly impact resistance at low temperatures. Polycarbonate resin has a high degree of impact resistance, is self-extinguishing, has higher heat resistance than other resins, and has excellent electrical properties and dimensional stability, so it is widely used as an engineering plastic. ing. However, when polycarbonate resin is used as a molded product, the impact strength is highly dependent on the thickness of the molded product. For example, the impact value of a 3.2 mm thick (1/8 inch thick) isotnotted impact value is less than ductile fracture. However, at a thickness of 6.4 mm (1/4 inch), brittle fracture occurs, and impact strength decreases in the thicker region. To solve this problem, for example, Japanese Patent Publication No. 40-13663 proposed a blend resin of polycarbonate and polyethylene, and Japanese Patent Publication No. 40-13664 proposed a blend resin of polycarbonate and an ethylene-propylene block copolymer. has been done. However, although the impact resistance of all blend resins is improved at room temperature, the impact resistance at low temperatures (below 0° C.) is insufficient, and improvement thereof is desired. The inventors of the present invention have conducted extensive research to obtain a polycarbonate resin composition that can provide molded products with high impact resistance even in cold environments.As a result, the present inventors have discovered that a specific proportion of polyolefin and acrylic elastic polymer can be blended into polycarbonate resin. We have found that this is extremely effective and have arrived at the present invention. That is, the present invention provides (A) per 100 weight of polycarbonate resin, (B) 0.5 to 10 parts by weight of at least one polyolefin selected from the group consisting of polyethylene, polypropylene, and polymethylpentene, and (C) 8 to 31 weight % of butadiene. This is a polycarbonate resin composition characterized in that it contains 0.5 to 10 parts by weight of an acrylic elastic polymer whose main component is acrylic rubber copolymerized with acrylic rubber. The polycarbonate resin composition of the present invention has 1/
The impact strength of the 4" inch thickness, especially at low temperatures, has been greatly improved, so it can be widely used in applications that require impact resistance at low temperatures, such as automobile parts such as bumpers and freezer parts. The high impact resistance in a cold atmosphere, which is a feature of the present invention, can only be obtained by combining polyolefin and acrylic elastomer. The object of the invention, impact resistance in a cold atmosphere, cannot be achieved. Therefore, the excellent properties of the polycarbonate resin composition of the invention are achieved through the interaction of the polycarbonate resin, polyolefin, and acrylic elastic polymer. However, its mechanism of action is not clear. The polycarbonate resin (A) component used in the present invention is usually made of a carbonate such as divalent phenol and phosgene in the presence of an acid acceptor and a molecular weight modifier. It is produced by a reaction with a precursor, or a transesterification reaction between a divalent phenol and a carbonate precursor such as diphenyl carbonate.The divalent phenols that can be used here are preferably bisphenols, particularly 2,2 -Bis(4-hydroxyphenyl)propane (hereinafter referred to as bisphenol A) is preferred.Also, part or all of bisphenol A may be replaced with other divalent phenols. Examples of phenols include hydroquinone, 4,4-dihydroxydiphenyl, and bis(4-hydroxyphenyl).
Alkane, bis(4-hydroxyphenyl)cycloalkane, bis(4-hydroxyphenyl) sulfide, bis(4-hydroxyphenyl) sulfone, bis(4-hydroxyphenyl) sulfoxide, bis(4-hydroxyphenyl) ) ketones, bis(4-dihydroxyphenyl) ether or bis(3,5-dibromo 4
halogenated bisphenols such as -hydroxyphenyl)propane. The polycarbonate resin may be a homopolymer or a copolymer of two or more of these dihydric phenols, or a blend thereof. Further, the polycarbonate resin may be partially branched, and includes, for example, a thermoplastic randomly branched polycarbonate obtained by reacting a polyfunctional aromatic compound with a divalent phenol and a carbonate precursor. The polyethylene, polypropylene, and/or polymethylpentene used in the present invention as component (B) may be any commonly available commercially available polyethylene, but those having melting properties close to those of polycarbonate resin are preferred. The acrylic elastic polymer as component (C) used in the present invention is an acrylic elastic polymer whose main component is acrylic ester and acrylic rubber copolymerized with butadiene. Acrylic acid ester (e.g. 2-ethylhexyl acrylate, n-butyl acrylate, etc.) 35-60 parts by weight (54-92% by weight), butadiene 5-20 parts by weight (8-31% by weight), methyl methacrylate 0-10 parts by weight part (0-15% by weight) and crosslinking agent (e.g. ethylene dimethacrylate etc.) 0.6-1.3 parts by weight (0.9-15% by weight)
A flocculant is added to the rubber latex obtained by emulsion polymerization of 2.0% by weight) to reduce the average particle size to 0.13 to 0.20μ.
To 65 parts by weight (100% by weight) of latex-like rubber adjusted to Mixed monomer consisting of 0.1 to 0.3 parts by weight of dimethacrylate, divinylbenzene, etc.
20 to 25 parts by weight are graft-polymerized, and further 10 to 15 parts by weight of a mixed monomer consisting of 10 to 15 parts by weight of methyl methacrylate and 0.1 to 0.3 parts by weight of a crosslinking agent (e.g. ethylene dimethacrylate, divinylbenzene, etc.) This is a graft copolymer produced by graft polymerizing. Such acrylic elastic polymer is manufactured by Kureha Chemical Industry Co., Ltd.
It is commercially available as HIA-15 from Co., Ltd. and is easily available. In the present invention, the blending ratio of polyolefin (B) and acrylic elastic polymer (C) is 100 parts by weight of polycarbonate resin (A), respectively.
The amount is 0.5 to 10 parts by weight, and more preferably 1 to 5 parts by weight. Even if the blending amount of components (B) and (C) is less than or greater than the above-mentioned range, the impact resistance like that of the resin composition of the present invention cannot be obtained, and if it exceeds the above-mentioned range, the layer may peel off. This is undesirable because it impairs the appearance of the molded product and reduces its heat resistance. The polycarbonate resin composition of the present invention can be prepared by any method. As a method, for example, a polyolefin (B) such as polyethylene, polypropylene, polymethylpentene, etc. and an acrylic elastic polymer (C) are added to a polycarbonate resin (A) and mixed using a V-type blender, a super mixer, etc.; Method of mixing in a molten state using an extruder, co-kneader, etc.; Components (B) and (C) are mixed in advance using a kneading roll or a Banbury mixer, and this is mixed directly with the polycarbonate resin (A) or in a molten state. There are methods. In particular, a method of mixing in multiple stages is preferred because it improves the degree of kneading. The polycarbonate resin component of the present invention may further contain other additives for the purpose of modification, such as reinforcing agents such as glass fiber and carbon fiber, heat stabilizers, antioxidants, blowing agents, light stabilizers, flame retardants, plasticizer,
A mold release agent, an antistatic agent, a filler, etc. can be added. Further, other resins such as polystyrene, polymethyl methacrylate, AS resin, ABS resin, polyester, and polyphenylene oxide can be mixed. The present invention will be explained below using examples. still,
Parts in the examples mean parts by weight. Moreover, impact resistance was evaluated by the following method. Impact resistance evaluation method at low temperature: Pre-dried pellets are molded using an injection molding machine.
It was molded into an impact test piece measuring mm x 12.7 mm x 3.18 mm. The test piece was made with a notch of 0.25mmR and then heated to 0°C.
It was left in a thermostat at -20°C and -30°C for 1 hour. Thereafter, the test piece was taken out of the thermostat, and its impact strength was immediately measured using an Izotsu impact tester (manufactured by Toyo Seiki Co., Ltd.). The higher the impact strength, the better the impact resistance. Examples 1 to 7 and Comparative Examples 1 to 4 Pre-dried polycarbonate resin (Teijin Kasei Co., Ltd.)
Polyolefin and acrylic elastic polymer (Kureha Chemical Industry Co., Ltd.; HIA-5) in the amounts shown in Table 1 are added to 100 parts of Panlite L-1225 (manufactured by Panlite L-1225), and mixed using a V-type blender. Then, it was extruded into pellets using a 30 mmφ extruder (manufactured by Chuo Kikai Co., Ltd.; VSK-30). The obtained pellets were injection molded by the method described above, and the impact resistance was evaluated. The results are shown in Table 1.

【表】 第1表から、本発明の樹脂組成物は低温での耐
衝撃性に優れていることが判る。 実施例8及び比較例5〜7 予め乾燥したポリカーボネート樹脂(帝人化成
(株)製;パンライトL−1225)95部に第2表に示す
量のポリエチレン及びアクリル系弾性重合体を加
え実施例1と同様に行い、結果を第2表に示し
た。衝撃試験片の厚さは1/8″とした。 なお、ここで使用したポリエチレン及びアクリ
ル系弾性重合体は下記のものである。 ポリエチレンは実施例1で使用したハイゼツク
ス3300−Fである。 アクリル系弾性重合体KM−330はローム・ア
ンド・ハース社製アクリロイドKM−330であり、
その組成は特開昭56−143239号公報によれば重量
比でn−ブチルアクリレート/1,3−ブチレン
ジアクリレート/ジアリルマレエート/メチルメ
タクリレート=79.2/0.4/0.4/20.0である。 アクリル系弾性重合体Aは下記の方法で製造し
たものである。 2‐エチルヘキシルアクリレート 76重量% ブタジエン 23重量% エチレンジメタクリレート 1重量% よりなる単量体混合物65重量部、水200重量部及
び重合触媒を45℃で撹拌して重合させた後、安定
剤を加えてから塩酸水溶液を徐々に添加してラテ
ツクスを凝集させた。得られたゴム粒子の平均粒
径は約0.18μであつた。次いで苛性ソーダ水溶液
を加えて塩基性になし、 スチレン 60重量% メチルメタクリレート 40重量% よりなる単量体混合物25重量部、ジビルニルベン
ゼン0.1重量部及び重合触媒を加えて60℃で重合
を継続し、更にジビニルベンゼン1重量%を含有
するメチルメタクリレート10重量部及び重合触媒
を加えて60℃で重合を継続した。重合完結後安定
剤を添加し、酸析、脱水、乾燥してアクリル系弾
性重合体を約98%の収率で得た。
Table 1 shows that the resin composition of the present invention has excellent impact resistance at low temperatures. Example 8 and Comparative Examples 5 to 7 Pre-dried polycarbonate resin (Teijin Kasei Co., Ltd.)
Polyethylene and acrylic elastic polymer in the amounts shown in Table 2 were added to 95 parts of Panlite L-1225 (manufactured by Panlite L-1225) and the same procedure as in Example 1 was carried out, and the results are shown in Table 2. The thickness of the impact test piece was 1/8". The polyethylene and acrylic elastic polymer used here are as follows. The polyethylene is Hi-Zex 3300-F used in Example 1. Acrylic The elastomeric polymer KM-330 is acryloid KM-330 manufactured by Rohm and Haas.
According to JP-A-56-143239, its composition is n-butyl acrylate/1,3-butylene diacrylate/diallyl maleate/methyl methacrylate=79.2/0.4/0.4/20.0 in weight ratio. Acrylic elastic polymer A was produced by the following method. 65 parts by weight of a monomer mixture consisting of 76% by weight of 2-ethylhexyl acrylate, 23% by weight of butadiene, and 1% by weight of ethylene dimethacrylate, 200 parts by weight of water, and a polymerization catalyst were stirred and polymerized at 45°C, and then a stabilizer was added. Then, an aqueous hydrochloric acid solution was gradually added to coagulate the latex. The average particle size of the obtained rubber particles was about 0.18μ. Next, an aqueous solution of caustic soda was added to make it basic, and 25 parts by weight of a monomer mixture consisting of 60% by weight of styrene and 40% by weight of methyl methacrylate, 0.1 part by weight of divinylbenzene, and a polymerization catalyst were added, and the polymerization was continued at 60°C. Then, 10 parts by weight of methyl methacrylate containing 1% by weight of divinylbenzene and a polymerization catalyst were added, and the polymerization was continued at 60°C. After the polymerization was completed, a stabilizer was added, followed by acid precipitation, dehydration, and drying to obtain an acrylic elastic polymer with a yield of about 98%.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 (A)ポリカーボネート樹脂100重量部当り、(B)
ポリエチレン、ポリプロピレン及びポリメチルペ
ンテンからなる群から選ばれた少なくとも一種の
ポリオレフイン0.5〜10重量部及び(C)ブタジエン
8〜31重量%を共重合したアクリルゴムを幹成分
とするアクリル系弾性重合体0.5〜10重量部を配
合せしめてなることを特徴とするポリカーボネー
ト樹脂組成物。
1 (A) per 100 parts by weight of polycarbonate resin, (B)
0.5 to 10 parts by weight of at least one polyolefin selected from the group consisting of polyethylene, polypropylene, and polymethylpentene, and 0.5 parts by weight of an acrylic elastic polymer whose main component is acrylic rubber copolymerized with 8 to 31 parts by weight of (C) butadiene. A polycarbonate resin composition characterized in that it contains up to 10 parts by weight.
JP13159681A 1981-08-24 1981-08-24 Polycarbonate resin composition Granted JPS5834850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13159681A JPS5834850A (en) 1981-08-24 1981-08-24 Polycarbonate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13159681A JPS5834850A (en) 1981-08-24 1981-08-24 Polycarbonate resin composition

Publications (2)

Publication Number Publication Date
JPS5834850A JPS5834850A (en) 1983-03-01
JPH0227380B2 true JPH0227380B2 (en) 1990-06-15

Family

ID=15061749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13159681A Granted JPS5834850A (en) 1981-08-24 1981-08-24 Polycarbonate resin composition

Country Status (1)

Country Link
JP (1) JPS5834850A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837277A (en) * 1986-12-16 1989-06-06 Mitsui Petrochemical Industries, Ltd. Poly(4-methyl-1-pentane) composition and articles molded therefrom
JP5431758B2 (en) * 2009-03-24 2014-03-05 帝人株式会社 Polycarbonate resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649751A (en) * 1979-08-27 1981-05-06 Gen Electric Polycarbonate composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649751A (en) * 1979-08-27 1981-05-06 Gen Electric Polycarbonate composition

Also Published As

Publication number Publication date
JPS5834850A (en) 1983-03-01

Similar Documents

Publication Publication Date Title
JPS6212940B2 (en)
JP4054042B2 (en) Thermoplastic resin composition and molded article thereof
JPH0781066B2 (en) Impact-modified polyoxymethylene mixture
EP0463368A2 (en) Flame retardant blends of polycarbonate, ABS and a polyalkylmethacrylate having increased weld line strength
JP2997544B2 (en) Fire resistant polycarbonate blend
DE60020521T2 (en) HALOGEN-FREE FLAME-REDUCING POLYCARBONATE RESIN COMPOSITION AND SHAPED OBJECTS
CA1219390A (en) Self-extinguishing thermoplastic moulding compositions of polycarbonate and abs-polymers
JPS6212943B2 (en)
EP0122601B2 (en) Polycarbonate resin composition
JPS6212936B2 (en)
JPH0227380B2 (en)
JP3474251B2 (en) Fiber reinforced thermoplastic resin composition
KR101003698B1 (en) Flame Retardant Thermoplastic Resin Composition Having Good Scratch Resistance
JPH0245659B2 (en)
JPS6212941B2 (en)
JPH07126510A (en) Resin composition and molded article
JPS6212939B2 (en)
JPH0114942B2 (en)
JPS6212942B2 (en)
JPS62265344A (en) Polycarbonate resin composition
EP0769522B1 (en) Antistatic agent for polymer compositions
JPS6212816B2 (en)
JPH07228764A (en) Flame-retardant resin composition
JPS6332101B2 (en)
KR0174762B1 (en) Polycarbonate resin composition