JPH02273521A - Volatile organic liquid aqueous solution-concentrated film and its manufacture - Google Patents

Volatile organic liquid aqueous solution-concentrated film and its manufacture

Info

Publication number
JPH02273521A
JPH02273521A JP9297589A JP9297589A JPH02273521A JP H02273521 A JPH02273521 A JP H02273521A JP 9297589 A JP9297589 A JP 9297589A JP 9297589 A JP9297589 A JP 9297589A JP H02273521 A JPH02273521 A JP H02273521A
Authority
JP
Japan
Prior art keywords
polymer
organic liquid
membrane
aqueous solution
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9297589A
Other languages
Japanese (ja)
Other versions
JP2814536B2 (en
Inventor
Hidetsugu Iwatani
岩谷 英嗣
Yoshinari Fujii
能成 藤井
Masatoshi Aoyama
雅俊 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1092975A priority Critical patent/JP2814536B2/en
Publication of JPH02273521A publication Critical patent/JPH02273521A/en
Application granted granted Critical
Publication of JP2814536B2 publication Critical patent/JP2814536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To manufacture a film to concentrate and separate selectively organic liquid from volatile organic liquid aqueous solution by adding solution of a polymer having fluorine containing alkyl to solution of an acrylonitrile group polymer. CONSTITUTION:Solution of a polymer having fluoroalkyl and whose structure unit is represented by the formula I (representing R1 to R3 =H, alkyl having 1 to 20 carbons, fluoroalkyl, R4= fluoroalkyl having 1 to 20 carbons, X = ester bonding, amide bonding and the like) is added to an acrylonitrile group polymer such as polyacrylonitrile. Then, said mixed solution is manufactured in the form of a porous film of acrylonitrile group polymer. Said film concentrates and separates the organic liquid from the volatile organic liquid aqueous solution with good selectivity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本願発明は、揮発性有機液体成分をその水溶液から濃縮
分離する膜分離法に使用する分離膜とその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a separation membrane used in a membrane separation method for concentrating and separating a volatile organic liquid component from an aqueous solution thereof, and a method for manufacturing the same.

(従来σ)技術) −・般に7、反応系あるいは種々のプロセス内“C生成
あるいは蓄積し、てくる有機液体の水溶液から、該有機
液体を濃縮(2つつ系外に分離(7”C取り出すニーズ
は非常に多い。膜分離法に関する技術は、逆λ:3透法
、限外ろ過沃、拡散透析法9、血液透析法、電気透析法
9.7ガス分離法、およびパ、ベーパレジElン法等の
技術と12で7、近年、目覚ま(2,<発展しでいるが
、j7かし、従来の分離技術では1、低濃度σ)fl−
磯波体の水溶液から有機液体成分を効率よく省工t、ル
ギー的に分離することは困難であった。
(Conventional σ) technology) - In general, from an aqueous solution of an organic liquid that is generated or accumulated in a reaction system or various processes, the organic liquid is concentrated (separated to the outside of the system (7) There are many needs for extraction.Technologies related to membrane separation methods include inverse λ:3 filtration method, ultrafiltration method, diffusion dialysis method9, hemodialysis method, electrodialysis method9.7 Gas separation method, and vapor separation method. In recent years, there has been an awakening (2.
It has been difficult to efficiently separate organic liquid components from an aqueous solution of surfactants in a labor-saving and energy-saving manner.

現在注目されているパーベーパレーション法においでも
、f′f機液体の水溶液からの分離を試みると、はとん
どすべての膜素材は水を選択的に透過させ。、また、大
容量の装置を高い真空度に保つ等/處1・〕だ必要から
、エーネルギ・−・多消費型プロセスとなる等の問題点
があった。
Even in the pervaporation method, which is currently attracting attention, when attempting to separate f'f liquid from an aqueous solution, almost all membrane materials allow water to permeate selectively. In addition, since it is necessary to maintain a large-capacity device at a high degree of vacuum, there are problems such as an energy-intensive process.

そこで、温度をしたる駆動力とする、液−液系の揮発性
有機液体成分を濃縮する、疎水性高分子の多孔性膜を用
いた°”、−ツブヒル輸送型膜分離法や、2膜の2次側
に不活性気体を流1.;シ過液を捕集゛・Jろ分離法等
を特願昭60−38810シー3−公報、特願昭62−
2’BlB号公報によりta案1また。
Therefore, we have developed a two-membrane transport membrane separation method using a porous hydrophobic polymer membrane that uses temperature as a driving force to concentrate volatile organic liquid components in a liquid-liquid system. Flowing an inert gas to the secondary side of
TA plan 1 was also published according to the 2'BlB publication.

(発明が解決1〜ようとする課題) しか【7ながら1、特願昭60・38810号公報、特
應j昭62−27218号公報の提案に使用されている
膜の場合には、その分離性能は充分満足の得られるもの
ではなか−った。また1、特願昭62−103.5号公
報、特願昭62−4036号公報、特願昭62−149
087号公報では高い分離性能を得るために膜表面1ご
シリ−s−>系ポリ′79、ケト・ン樹脂あるいはポリ
(1−川・リメチルシリル−1,−プロピン)等のポリ
マをコー用・I、た複合膜を提案1.たが、コーティン
グに用いるポリマによって。膜表面の開孔部が閉塞(5
、分離性能の低下を招きやすく、また1、:わを避ける
ために複雑なコーティング操作が必要になる等の欠点が
あった。
(Problems to be solved by the invention) However, in the case of the membranes used in the proposals of Japanese Patent Application No. 60-38810 and Japanese Patent Application No. 62-27218, the separation The performance was not fully satisfactory. Also 1, Japanese Patent Application No. 1988-103.5, Japanese Patent Application No. 4036-1982, Japanese Patent Application No. 1988-149
No. 087 discloses that in order to obtain high separation performance, the membrane surface is coated with a polymer such as poly'79, ketone resin, or poly(1-trimethylsilyl-1,-propyne). I proposed a composite membrane 1. However, depending on the polymer used for the coating. The pores on the membrane surface are blocked (5
, the separation performance tends to deteriorate, and 1.: In order to avoid wrinkles, complicated coating operations are required.

(課題を解決するt−めの手段) 本発明は、アクリYコニトリル系ポリマからなる多孔性
膜において、含フッ素アルキル基を有するポリ(・をA
む組成物からなる1′−どを特徴とする揮発性有機液体
水溶液濃縮膜及び子の製造方法に関するものである。
(T-th Means for Solving the Problems) The present invention provides a porous film made of an acrylic Yconitrile polymer.
The present invention relates to a method for producing a volatile organic liquid aqueous solution concentrating membrane and a membrane comprising a composition comprising 1'-.

本発明で用いる膜の微細孔径は平均孔径で20人息子7
.1000Å以下であることが好まし、い。平均孔径が
20八より小さい場合、気体の状態であっても揮発性有
機液体成分が優先的に透過せず、1000人より大きい
場合、必然的に存在する細孔径分布のために9、膜の一
次側に供給する揮発性有機液体は液体の状態でも膜を透
過1.易く、膜分離を実施するJ、l (!:ができな
い。ただ11、多孔性膜はその孔径が膜の表面の開孔部
は比較的小さく9、内部になると孔径が拡大[5ている
など全体的に不均一であるので、それらの平均的な孔径
から考えられる水溶液1.一対イ゛る不透性よりも、実
際の水溶液に対する不透性は大きいと考えられる3、本
願発明の膜は、状膜の平均孔径に対1.て、1/10以
下のスt・−クス゛1′径を持ら、かつ状膜に対して実
質的に不透性を示す物質の分離に好11t L <用い
られる。平均微細孔′−1−径に対し、てストークス半
径の比が1/10より大きい場合は分離対9物質である
揮発性有機液体成分が水に対し2て優先的に透過し、な
い。また、本発明において、「実質的に不透性であるJ
とは、液体の状態では膜に対して不透性であり、気体の
状態では透過することをいう、。本発明では骨部対τ)
物質は気化した状態で膜を透過する方法に使用するため
膜は濡れることなく分離対9物質を分離づる。
The average pore size of the membrane used in the present invention is 20 son 7.
.. The thickness is preferably 1000 Å or less. If the average pore size is smaller than 208, volatile organic liquid components will not preferentially permeate even in the gaseous state, and if it is larger than 1000, due to the necessarily existing pore size distribution9, the membrane The volatile organic liquid supplied to the primary side passes through the membrane even in liquid state.1. However, in porous membranes, the pores on the surface of the membrane are relatively small9, and the pores expand inside [5, etc.]. Since they are non-uniform throughout, the membrane of the present invention is thought to have greater impermeability to aqueous solutions than the average pore size of the membranes. It is suitable for separating substances that have a diameter of 1/10 or less of the average pore diameter of the membrane and are substantially impermeable to the membrane. <Used. If the ratio of the Stokes radius to the average micropore diameter is greater than 1/10, the volatile organic liquid component, which is a separated substance, will permeate preferentially over water. In addition, in the present invention, "substantially impermeable J
This means that it is impermeable to the membrane in its liquid state, but permeable in its gaseous state. In the present invention, bone vs. τ)
Since the substance is used in the method of permeating through the membrane in a vaporized state, the membrane separates nine substances without getting wet.

膜の分離性能を有利に発現するためには、平均孔径のほ
かに体積空孔率がより大きく、膜の内部に比較的大きい
空孔を有することが必要である。
In order to advantageously exhibit the separation performance of a membrane, it is necessary to have a larger volume porosity in addition to the average pore diameter, and to have relatively large pores inside the membrane.

体積空孔率は通常20%以)二、好まし1くは40%以
上で膜の機械的特性を損なわない範囲で高い程有利であ
る。また、透過水量は5L−500111m1h−’m
mtig−”rn 2、窒素の透過眼は0.005=1
. Ocm’  (STP)cr−2s−’cmll(
−’の範囲にあることが好まl、い、。
The volume porosity is usually 20% or more, preferably 40% or more, and it is advantageous to have a higher volume porosity within a range that does not impair the mechanical properties of the membrane. In addition, the amount of permeated water is 5L-500111ml1h-'m
mtig-”rn 2, nitrogen penetration eye is 0.005=1
.. Ocm' (STP) cr-2s-'cmll(
It is preferable that it is in the range of -'.

本発明で用いるアクリ1ニアニトリル系ポリマとしては
、例えば、ポリアクリロニトリルホモボ+17、アクリ
ロニトリルーテトラフルオロエチjノン共屯合体、アク
リロニトリル−六フッ化プロピI/ン′4(重合体、あ
るいは、これらの混合物などが挙げられるが、好ましく
は、ポリアクリロニトリルを少なくとも50重量%以上
含有することが必要である。
Examples of the acrylonitrile-based polymer used in the present invention include polyacrylonitrile homobo+17, acrylonitrile-tetrafluoroethynone copolymer, acrylonitrile-propylene hexafluoride I/N'4 (polymer, or Examples include mixtures, but preferably it is necessary to contain at least 50% by weight of polyacrylonitrile.

該アクリロニトリル系ポリマの平均分子量としては、通
常入手できるポリマの分子量で十分であり、重量平均分
子量で5万〜50万、好ましくはlO万〜30万位の範
囲が良い。
As the average molecular weight of the acrylonitrile polymer, the molecular weight of commonly available polymers is sufficient, and the weight average molecular weight is preferably in the range of 50,000 to 500,000, preferably 100,000 to 300,000.

含フッ素アルキル基を有する置換基を持つポリマとして
は種々のものが挙げられるが、好ましくは、含フッ素ア
ルキル基を持つポリマが一般式[Iコ、 I  83 4C−C−)        [I] R2X  Ra [式中、R1、R2、亀は、水素原子、炭素原子数1〜
20の炭化水素基あるいはフルオロアルキル基から選ば
れる一種以上の置換基、亀は炭素原子数1〜20のフル
オロアルキル基、Xはエステル結合、アミド結合、エー
テル結合、スルホアミド結合のいずれかを示す。]で、
表される構造単位を有するフッ素系ポリマを挙げること
ができる。−般式[1,]において、R1,R2、Rs
は同一でも異なっていてもよく、水素原子または炭素数
1〜20の炭化水素基、たとえばメチル基、エチル基、
オクチル基、オクタデシル基等のアルキル基、フェニル
基等のアリール基、およびトリメチルシリル基、n−オ
クチルジメチルシリル基等のケイ素含有有機基、塩素原
子等のハロゲン原子、パーフルオロアルキル基等のハロ
ゲン原子含有有機基から選ばれる置換基等を挙げること
ができる。さらに好ましくは、一般式[I]中の81、
lが水素原子、出がメチル基、−が炭素数7のパーフル
オロアルキル基、Xがエステル結合であることが好まし
い。
There are various polymers having a substituent having a fluorine-containing alkyl group, but preferably a polymer having a fluorine-containing alkyl group has the general formula [I, I 83 4C-C-) [I] R2X Ra [In the formula, R1, R2, and turtle are hydrogen atoms, carbon atoms 1 to
One or more substituents selected from 20 hydrocarbon groups or fluoroalkyl groups, the turtle represents a fluoroalkyl group having 1 to 20 carbon atoms, and X represents any one of an ester bond, an amide bond, an ether bond, and a sulfamide bond. ]in,
Examples include fluorine-based polymers having the structural units shown below. - In the general formula [1,], R1, R2, Rs
may be the same or different, and may be a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, such as a methyl group, an ethyl group,
Contains alkyl groups such as octyl group and octadecyl group, aryl groups such as phenyl group, silicon-containing organic groups such as trimethylsilyl group and n-octyldimethylsilyl group, halogen atoms such as chlorine atom, and halogen atom such as perfluoroalkyl group. Examples include substituents selected from organic groups. More preferably, 81 in general formula [I],
It is preferable that 1 is a hydrogen atom, OUT is a methyl group, - is a perfluoroalkyl group having 7 carbon atoms, and X is an ester bond.

フッ素系ポリマの含有量は、アクリロニトリル系ポリマ
に対して通常IQQppm〜20%の範囲が好適であり
、好ましくは300ppm〜5%が良い。
The content of the fluorine-based polymer is generally suitably in the range of IQQ ppm to 20%, preferably 300 ppm to 5%, based on the acrylonitrile polymer.

このような、アクリロニトリル系ポリマからなる多孔性
膜は、アクリロニトリル系ポリマの溶液に、含フッ素ア
ルキル基を有するポリマの溶液を加えた混合溶液を用い
て作製することができる。
Such a porous membrane made of an acrylonitrile-based polymer can be produced using a mixed solution in which a solution of a polymer having a fluorine-containing alkyl group is added to a solution of an acrylonitrile-based polymer.

アクリロニトリル系ポリマの溶媒としては、例えば、N
−メチル−2−ピロリドン、ジメチルホルムアミド、ジ
メチルアセトアミド、ジエチルアセトアミド、ジエチル
ホルムアミド、ヘキサメチルホスホルアミド、テトラメ
チル尿素、ジメチルスルホキシドなどが挙げられる。こ
の溶液の濃度としては10重量%〜50重量%が好まし
い。含フッ素アルキル基を有するポリマの溶媒としては
、例えば、炭素数が1〜4で水素原子の少なくとも一つ
がフッ素原子で置換された炭化水素誘導体が挙げられる
が、特に、室温で液体状態にあり取扱い易い1.2.2
−トリクロロ −1.2.2− トリフルオロエタンが
好ましい。また、この溶液をアクリロニトリル系ポリマ
の溶液に加える量については、含フッ素アルキル基を有
するポリマの溶液の濃度が極端に低いと、所定量の含フ
ッ素アルキル基を有するポリマを加えるために多量の溶
液を加える必要が生じ、溶媒同志が相分離を起こす可能
性がある。逆に、含フッ素アルキル基を有する置換基を
もつポリマの溶液の濃度が高すぎると、粘度が高(なり
、また、加える溶液量が極端に少なくなるため、アクリ
ロニトリル系ポリマの溶媒中に均一に分散しなくなる。
Examples of solvents for acrylonitrile polymers include N
-Methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, diethylacetamide, diethylformamide, hexamethylphosphoramide, tetramethylurea, dimethylsulfoxide and the like. The concentration of this solution is preferably 10% by weight to 50% by weight. Examples of solvents for polymers having a fluorine-containing alkyl group include hydrocarbon derivatives having 1 to 4 carbon atoms and at least one hydrogen atom substituted with a fluorine atom, but are particularly suitable for handling because they are in a liquid state at room temperature. Easy 1.2.2
-Trichloro-1.2.2- Trifluoroethane is preferred. Regarding the amount of this solution to be added to the acrylonitrile polymer solution, if the concentration of the solution of the polymer having fluorine-containing alkyl groups is extremely low, a large amount of solution will be required to add a predetermined amount of the polymer having fluorine-containing alkyl groups. It may become necessary to add a solvent, and phase separation may occur between the solvents. On the other hand, if the concentration of a solution of a polymer having a substituent having a fluorine-containing alkyl group is too high, the viscosity will be high (and the amount of solution added will be extremely small), so it will not be possible to distribute the solution uniformly in the solvent of the acrylonitrile polymer. No longer dispersed.

混合後の溶液の溶媒量に対して、含フッ素アルキル基を
有するポリマの溶液の溶媒の量が0.1〜40%の範囲
にあることが好ましい。上述のように、膜の製造方法に
おいて、アクリロニトリル系ポリマへの含フッ素アルキ
ル基を有するポリマの添加方法が、単に製膜時の原液ポ
リマに所定量の含フッ素アルキル基を有する置換基を持
つポリマの溶液を加えるだけで良いので、この製造方法
によれば膜表面の開孔部や微細孔を閉塞させずに、容易
に製膜することができる。
The amount of solvent in the solution of the polymer having a fluorine-containing alkyl group is preferably in the range of 0.1 to 40% with respect to the amount of solvent in the solution after mixing. As mentioned above, in the membrane manufacturing method, the method for adding a polymer having a fluorine-containing alkyl group to an acrylonitrile-based polymer is simply adding a predetermined amount of a polymer having a substituent having a fluorine-containing alkyl group to the stock polymer solution during membrane formation. Since it is only necessary to add a solution of 1 to 2, it is possible to easily form a membrane without clogging the openings or micropores on the surface of the membrane.

膜の形状は、シート状の膜、・中空糸状の膜等、どのよ
うな形態の膜でも用いることができるが、実用的見地か
らは中空糸膜が有利である。
Any membrane shape can be used, such as a sheet-like membrane, a hollow fiber-like membrane, etc., but hollow fiber membranes are advantageous from a practical standpoint.

シート状の膜は、上述のアクリロニトリル系ポリマの溶
液と含フッ素アルキル基を有するポリマの溶液の混合溶
液を、固体表面、支持体あるいは葬礼性支持膜の−1−
に−・定の厚みで流延、吐出あるいはコーティング(7
、一定時間溶媒を蒸発させた後、溶媒を凝固溶媒と置換
1.て得られる。ここで、固体表面内は、該ポリマ混合
溶液の溶媒あるいは置換づ−る溶媒に溶解!7ない固体
の平滑な表面であり、ガラス板、ポリテトラフルオロエ
ヂlノン製の板7、金属板等を用いることができる。ま
た、支持体とは、該ポリマ混合溶液の溶媒あるいは置換
する溶媒に溶解しない実質的に分離性能を有し7ない膜
強度補強材であり9、不織布5、布、金属メッシ、。
The sheet-like membrane is prepared by applying a mixed solution of the above-mentioned acrylonitrile polymer solution and a fluorine-containing alkyl group-containing polymer solution to a solid surface, a support, or a funerary support membrane.
- Casting, dispensing or coating at a constant thickness (7
, After evaporating the solvent for a certain period of time, the solvent is replaced with a coagulation solvent.1. can be obtained. Here, the inside of the solid surface is dissolved in the solvent of the polymer mixed solution or the substituting solvent! It is a solid, smooth surface without any material 7, and a glass plate, a plate 7 made of polytetrafluoroethylene, a metal plate, etc. can be used. In addition, the support is a membrane strength reinforcing material that does not dissolve in the solvent of the polymer mixed solution or the solvent to be substituted, and has substantially no separation performance, 9, nonwoven fabric 5, cloth, metal mesh, etc.

などを用いることができる。さらにまた、多孔性支持膜
点は、該ポリマ混合溶液の溶媒あるいは置換する溶媒に
溶解しない多孔性膜であり、無機の多孔性膜として、多
孔性ガラス、多孔性セラミックス等、有機の多孔性膜と
1.て、種々のポリマの多孔性膜を用いることができる
。ここで、有機の多孔性支持膜のポリマとl−では、ポ
リエヂしノン1、ポリプロピレン、ポリテト・ラフルオ
ロエヂ1ノンおよび以■−のポリマの共重合体、ポリフ
ッ化ビニリデン、ポリアクリル酸、ポリアクリル酸エス
テル、ポリメタクリル酸7.、ポリメタクリル酸エステ
ル、ポリアクリルアミド、ポリビニルアルコールなどの
ビニルポリマ類とその共重合体およびそれらのブレンド
ポリマ、ポリエステル類、ポリアミド類、ポリシロキサ
ン類、ポリホスファゼン類5、セルロース類ポリマ等が
挙げられる。
etc. can be used. Furthermore, the porous support membrane is a porous membrane that does not dissolve in the solvent of the polymer mixed solution or the solvent to be substituted, and an organic porous membrane such as porous glass, porous ceramics, etc. and 1. Porous membranes of various polymers can be used. Here, the polymers of the organic porous support membrane include polyedinone 1, polypropylene, polytetrafluoroedinone, and copolymers of the following polymers, polyvinylidene fluoride, polyacrylic acid, and polyacrylic acid. Ester, polymethacrylic acid7. , polymethacrylic acid ester, polyacrylamide, polyvinyl alcohol, and other vinyl polymers, copolymers thereof, blend polymers thereof, polyesters, polyamides, polysiloxanes, polyphosphazenes 5, cellulose polymers, and the like.

一方、中空糸状の膜の場合には、上述のアクリロニトリ
ル系ポリマの溶液と含フッ素アルキル基を有するポリマ
の溶液の混合溶液を、、環状の11金から中心部に流体
を流し、つつ中空状に吐出する方法、中空糸状支持膜の
表面にコーティングし一定時間溶媒を蒸発させた後9、
溶媒を凝固溶媒と置換する方法等がある3、環状の11
金を用いる場合、中心部に流す流体は、液体では、水、
アルコール等の凝固性液体、非相溶性液体、およびその
混合液体等、気体とj〜では、空気、窒素、アルゴン等
を用いることができる。中空糸状支持膜とは、ポリマ溶
液の溶媒あるいは置換する溶媒に溶解j7ない多孔性膜
であり、無機の多孔性膜とl−で、多孔性ガラス、多孔
性セラミックス等、7有機の多孔性膜7!二1゜US種
々のポリマの多孔性膜を用いることができる。ここで、
多孔性支持膜のポリマとしては、ポリエチレン、ポリプ
ロピレン、ポリテトラフルオロ丁、チレンおよび以上の
ポリマの共重合体、ポリ゛フッ化じニリデン、ポリアク
リル酸、ポリアクリル酸エステル、ポリメタクリル酸、
ポリメタクリル酸エステル、ポリアクリルアミド、ポリ
ビニルアルコ−・ルなどのビニルポリマ類とその共重合
体およびそれらのブレンドポリマ、ポリエステル類、ポ
リアミド類、ポリシロキサン類、ポリホスファゼン類、
セルロース類ポリマ等が挙げられる。
On the other hand, in the case of a hollow fiber membrane, a mixed solution of the above-mentioned acrylonitrile-based polymer solution and a solution of a polymer having a fluorine-containing alkyl group is poured into the hollow fiber while flowing a fluid through the annular 11K gold to the center. Discharging method: After coating the surface of a hollow fiber support membrane and evaporating the solvent for a certain period of time9,
There are methods such as replacing the solvent with a coagulation solvent 3, cyclic 11
When using gold, the fluid flowing into the center may be water, liquid,
Air, nitrogen, argon, etc. can be used as a gas such as a coagulable liquid such as alcohol, an incompatible liquid, and a mixed liquid thereof. A hollow fiber support membrane is a porous membrane that does not dissolve in the solvent of the polymer solution or the solvent to be substituted, and is a porous membrane that does not dissolve in the solvent of the polymer solution or the solvent to be substituted. 7! Porous membranes of various polymers can be used. here,
Polymers for the porous support membrane include polyethylene, polypropylene, polytetrafluoroethylene, tyrene and copolymers of the above polymers, polydinylidene fluoride, polyacrylic acid, polyacrylic ester, polymethacrylic acid,
Vinyl polymers such as polymethacrylic acid ester, polyacrylamide, polyvinyl alcohol, copolymers thereof, and blend polymers thereof, polyesters, polyamides, polysiloxanes, polyphosphazenes,
Examples include cellulose polymers.

凝固溶媒とは、−に述の製膜の時の混合溶液の溶媒と混
和可能でかつ7゛クリロニトリル系ポリマおよび含フッ
素アルキル基を有するポリマを溶解せづ”、上述の混合
溶液の固体分を析出させる溶媒をいう。このような溶媒
としてはメタノール、エタノール、プロパツール等のア
ルコール類、アセトン、水等、およびこれら同志あるい
はこれらた他の溶媒との混合溶媒が挙げられる。
The coagulating solvent is a solid content of the mixed solution that is miscible with the solvent of the mixed solution at the time of film formation described in 7. It refers to a solvent that precipitates. Examples of such solvents include alcohols such as methanol, ethanol, and propatool, acetone, water, and mixed solvents of these or other solvents.

多孔構造を好適な状態に保持した乾燥状態の多孔性膜を
調製するには、水と混和するぞj′機溶媒でアクリロニ
トリル系ポリマの非溶媒に置換(7てから乾燥する溶媒
置換乾燥が好ま1.いが、温和な条件で含水膜を乾燥す
る方法で調製j7ても良い、3本発明を適用しうる揮発
性有機液体水溶液は、当該水溶液の気液平衡における気
相中の有機液体物質の組成が液相中の組成より大きい物
質に対!て、基本的に適用することができる9、この様
な物質の例としては、メタノール、エタノール5、!〕
プロパツール、is1〕−プロパツール、n−ブタノー
ル、t−ブタノール、アセトン、テトラハイドロフラン
、 114−ジオキナン、メチルアミン、エチルアミン
、アセトニトリル、メチルエチルケトン、酢酸メチル、
酢酸工、チル等がある3、本発明を適用j1、得るこれ
らの物質の水溶液の濃度は、本発明の方法の特徴を生か
す観点からは圧絞的低濃度の領域が好ま1. <、0,
5〜20重限%が適当である。水溶液濃度の上限は、主
と1.て分離対象の水溶液が膜を濡らさない濃度で決ま
る1、これは膜素材ボリアの物理化学的性質、膜の微細
孔径、分離対象の表面張力等が関係し、多孔質材料の場
合には因子が複雑に関係するので、−殻内に特定するこ
とは難しい。
In order to prepare a dry porous membrane with a suitable porous structure, it is preferable to replace the non-solvent of the acrylonitrile polymer with a solvent that is miscible with water. 1. However, the aqueous volatile organic liquid solution to which the present invention can be applied may be prepared by drying a water-containing film under mild conditions. Basically, it can be applied to substances whose composition is larger than that in the liquid phase9. Examples of such substances are methanol and ethanol5!]
propatool, is1] - propatool, n-butanol, t-butanol, acetone, tetrahydrofuran, 114-dioquinane, methylamine, ethylamine, acetonitrile, methyl ethyl ketone, methyl acetate,
When applying the present invention, the concentration of the aqueous solution of these substances obtained is preferably in an extremely low concentration range from the viewpoint of taking advantage of the characteristics of the method of the present invention.1. <,0,
A weight percentage of 5 to 20% is suitable. The upper limit of the aqueous solution concentration is mainly 1. The aqueous solution to be separated is determined at a concentration that does not wet the membrane1. This is related to the physicochemical properties of the membrane material boria, the micropore diameter of the membrane, the surface tension of the separation target, etc., and in the case of porous materials, factors such as Difficult to specify within shells as they are intricately related.

[実施例] 次に実施例で本発明を説明する。[Example] Next, the present invention will be explained with examples.

なお本発明の揮発性有機液体水溶液の濃縮法の実験は、
第1図に模式的に示した方法で行った。
The experiment of the method of concentrating a volatile organic liquid aqueous solution of the present invention was conducted as follows:
This was carried out by the method schematically shown in FIG.

即ち、供給液槽1から5%のエタノール水溶液を30℃
に調節して膜モジュール4に供給し循環する。
That is, a 5% ethanol aqueous solution is heated to 30°C from supply tank 1.
It is adjusted and supplied to the membrane module 4 and circulated.

一方、膜の2次側には膜モジュールの2次側の入口12
からニードル弁5を介して不活性ガスとして窒素ガスを
通じ、同出口11から透過蒸気と共にコールドトラップ
6に透過成分をを捕集した。コールドトラップ6は装置
の保守用のコールドトラップ7を介して、さらに所定の
減圧度を保つため圧力調節装置8を介して真空ポンプ1
9に連結した。
On the other hand, on the secondary side of the membrane, there is an inlet 12 on the secondary side of the membrane module.
Nitrogen gas was passed through the needle valve 5 as an inert gas, and the permeated components were collected in the cold trap 6 along with the permeated vapor from the same outlet 11. The cold trap 6 is connected to the vacuum pump 1 via a cold trap 7 for equipment maintenance, and via a pressure regulator 8 to maintain a predetermined degree of reduced pressure.
Connected to 9.

実験は第1図の様に装置を組立て、水溶液を循環し、所
定条件で運転を開始し、コック16、トラップ13、コ
ック18を使って圧力と窒素の流量および透過状態を定
常状態にした後、コック16とコック18とを閉じ、コ
ック15および17を開け、透過量の測定と透過成分の
分析に必要な透過液を液体窒素で冷却したトラップ6に
集め、サンプリングした。
The experiment was carried out by assembling the apparatus as shown in Figure 1, circulating the aqueous solution, starting operation under the specified conditions, and using the cock 16, trap 13, and cock 18 to bring the pressure, nitrogen flow rate, and permeation state to a steady state. , the cocks 16 and 18 were closed, the cocks 15 and 17 were opened, and the permeated liquid necessary for measuring the amount of permeation and analyzing the permeated components was collected in the trap 6 cooled with liquid nitrogen and sampled.

透過量は重量を計って決定し、透過量の組成はガスクロ
マトグラフィーまたは示差屈折計で溶質濃度を決定した
。分離係数は次式で算出した。clは供給液の、Qは透
過液の溶質の濃度(重量分率)である。
The amount of permeation was determined by weighing, and the composition of the amount of permeation was determined by gas chromatography or differential refractometer to determine the solute concentration. The separation coefficient was calculated using the following formula. cl is the solute concentration (weight fraction) of the feed solution and Q is the solute concentration (weight fraction) of the permeate solution.

α6°”’= (C!/ (l  C?) ) / (
CI/ (1−Q) )また、膜の平均微細孔半径は以
下に述べる方法で測定した。即ち、膜の透水性(Lp)
と、溶質の拡散分離性(Pn+)を分離対象物質である
メタノール、エタノール、プロパツール、ブタノール、
アセトン等によって測定し、次式の関係を使って計算し
た。
α6°”'= (C!/ (l C?) ) / (
CI/(1-Q)) Also, the average micropore radius of the membrane was measured by the method described below. That is, the water permeability of the membrane (Lp)
and the diffusive separability (Pn+) of the solute, which is the substance to be separated: methanol, ethanol, propatool, butanol,
It was measured using acetone etc. and calculated using the relationship of the following formula.

Pm・(D/l) (H/ ts2)        
  (2)t、p・(H/L) tRp 2/(llη
月     (3)ここで、Dは溶質の拡散係数、Lは
膜厚、Hは含水率、1$は溶質の油路率、Rpは平均微
細孔半径、ηは水の粘性である。ISは次式から求めた
Pm・(D/l) (H/ts2)
(2) t, p・(H/L) tRp 2/(llη
(3) Here, D is the diffusion coefficient of the solute, L is the film thickness, H is the water content, $1 is the oil passage ratio of the solute, Rp is the average micropore radius, and η is the viscosity of water. IS was calculated from the following formula.

Isv’ =RT/D            (4)
ISW  = (RT/Pi−Vs/Lll) (H/
L)     (5)D  =Isw/l5v0(5) ここで、Rは気体定数、Tは測定時の絶対温度、vSは
溶質の部分モル容積である。
Isv' = RT/D (4)
ISW = (RT/Pi-Vs/Lll) (H/
L) (5) D = Isw/l5v0 (5) where R is the gas constant, T is the absolute temperature at the time of measurement, and vS is the partial molar volume of the solute.

実施例1 アクリルニトリル94%、アクリル酸メチル6%からな
る極限粘度[η]・1.2の共重合体を、ポリマ濃度2
0%、50℃での溶液粘度が97ポイズになるように調
製した。DMSOを溶媒とするポリマ溶液]00Ggに
、一般式[I]中のR1,R2が水素原子、田がメチル
基、山が炭素数7のパーフルオロアルキル基、Xがエス
テル結合である含フッ素アルキル基を有するポリマの2
%1.2.2− トリクロロ−1゜2、2−トリフルオ
ロエタン溶液10ccを加え紡糸原液とした。この紡糸
原液を、環状中空糸紡糸用口金を用いて中空部より、2
Q+n+nHgの圧力で窒素を導入し、環状部より紡糸
原液を紡出した。この状態で紡糸口金より、35℃の水
中に紡糸して、凝固させ、しかるのち水で洗浄し、60
℃の熱水で処理した後、含水状態のポリアクリロニトリ
ル中空糸を得た。
Example 1 A copolymer with an intrinsic viscosity [η] of 1.2 consisting of 94% acrylonitrile and 6% methyl acrylate was prepared at a polymer concentration of 2.
0%, and the solution viscosity at 50°C was adjusted to 97 poise. Polymer solution using DMSO as a solvent] 00Gg, in the general formula [I], R1 and R2 are hydrogen atoms, T is a methyl group, the peak is a perfluoroalkyl group having 7 carbon atoms, and X is a fluorine-containing alkyl group having an ester bond. 2 of polymers with groups
%1.2.2-trichloro-1°2,2-trifluoroethane solution (10 cc) was added to prepare a spinning stock solution. This spinning stock solution is passed through the hollow part using a circular hollow fiber spinning nozzle into two
Nitrogen was introduced at a pressure of Q+n+nHg, and a spinning dope was spun from the annular part. In this state, it is spun into water at 35°C from a spinneret, coagulated, and then washed with water.
After treatment with hot water at ℃, polyacrylonitrile hollow fibers in a water-containing state were obtained.

この膜をメタノール、n−ヘキサンに順次浸漬、置換後
、風乾した。得られた中空糸膜の外径は1614μm、
内径は1025μm1体積空孔率は78%であった。
This membrane was immersed and replaced in methanol and n-hexane in sequence, and then air-dried. The outer diameter of the obtained hollow fiber membrane was 1614 μm,
The inner diameter was 1025 μm, and the 1-volume porosity was 78%.

この乾燥した中空糸膜を約30cmの長さに切り、7本
束ねてアクリル製ケースに挿入した。このケスは約20
cmのアクリル製パイプの側面に2箇所流体の出入口を
設けた構造で、パイプの両端部がエタノール水溶液、側
面部が不活性ガスの出入口となる。中空糸挿入後、ケー
ス両端をエポキシ接着剤でポティングし、硬化後、両端
部を切断して中空糸膜の開口部を作った。
This dried hollow fiber membrane was cut into lengths of about 30 cm, and seven pieces were bundled and inserted into an acrylic case. This case is about 20
It has a structure in which two fluid inlets and outlets are provided on the sides of a cm-sized acrylic pipe, with both ends of the pipe serving as the inlet and outlet for the ethanol aqueous solution, and the sidewall serving as the inlet and outlet for the inert gas. After inserting the hollow fibers, both ends of the case were potted with epoxy adhesive, and after curing, both ends were cut to create an opening for the hollow fiber membrane.

揮発性有機液体水溶液の濃縮法の実験は、エタノール5
!1%水溶液を用いて前述の方法で行った。
Experiments on concentrating volatile organic liquid aqueous solutions were carried out using ethanol 5
! The test was carried out as described above using a 1% aqueous solution.

本実施例では、モジュール入口の温度29.5℃、減圧
度640mmHg、キャリアガス量25hlの条件で測
定した結果、エタノールおよび水の透過水量は、それぞ
れり、051、D、 27kg rn2b−’またエタ
ノールに対する分離係数αl:: + fl 1“(1
桧3.05であ一17j:、、、4′″のことからポリ
アクリロニトリル膜が、エタノ・−ルを選択的に透過ま
た事になろ9゜ 実施例2 実施例1の含フッ素アルキル基をfイする置換基を持″
)ポリマの混1名量を50ccとj32、他は同じ条件
でボリア゛クリロー0ニトリル系中空糸膜をイ′[製(
5、同様の濃縮法の実験づ・fi’−vだとに7)8ノ
邪・y 、/−ルに対“1する分離係数がα1“(i 
I+・3.64hな、−)た1゜実施例:( 実施例1の含−ノッ素アル午ル基を?”J する置換基
を持つポリマの混合呈を1oOcc とし、7池は同じ
条件でボリア°クリ1コニI・リル系中空糸11Qを作
製1.=、同様の濃縮法σ)実験、;E行ったところ1
.1′クツ −ルに欠・Iする分離係数がα1””=4
.47とに幅に向(・(、た1、実施例4 実!i1+i例ICハ含7・・を素アルキル基をrJ′
4る置換基を持・パ)ポリマの代わりに、一般式[1]
のB1、R2、R3が水累原了、山がIHlIH,2H
,211〜へブタ1カフルオl−1デシル基、Xが、」
−チル結合であるポリマを用いて、同に条件でポリアク
リロニトリル系中空糸膜を作製(1、同様の濃縮法の実
験を行った、ムころ、■夕、)−ルに対する分離係数が
大幅に向1−シ八〇。
In this example, as a result of measurement under the conditions of a module inlet temperature of 29.5°C, a degree of vacuum of 640 mmHg, and a carrier gas amount of 25 hl, the permeated water amounts of ethanol and water were 051, D, and 27 kg, respectively. Separation coefficient αl:: + fl 1″(1
Since the polyacrylonitrile membrane selectively permeates ethanol, the polyacrylonitrile membrane selectively permeates ethanol.Example 2 The fluorine-containing alkyl group of Example 1 has a substituent that
) A polyacrylo 0 nitrile hollow fiber membrane was manufactured by I'
5. In the experiment of the similar concentration method, the separation coefficient α1 (i
I+・3.64h,-) 1゜Example: (The mixture of polymers having a substituent that makes the -nitrogen-containing alkyl group of Example 1 ?"J is 1oOcc, and 7 ponds are under the same conditions. Boria ° Kuri 1 Coni I / Lil system hollow fiber 11Q was prepared by 1. =, similar concentration method σ) experiment, ; E was carried out 1
.. The separation coefficient that is missing in the 1′ shoe is α1””=4
.. 47 and the width direction (・(, ta 1, Example 4 Real!i1+i Example IC ha)
4) Instead of a polymer having a substituent, general formula [1]
B1, R2, R3 are Ryo Mizuhara, Yama is IHlIH, 2H
,211~hebuta1cafluoro1-1decyl group, X is
- A polyacrylonitrile hollow fiber membrane was prepared under the same conditions using a polymer with chill bonds (1. A similar concentration method experiment was carried out by Mukoro, ■Yu). Mukai 1-shi 80.

比較例1 実施例1において含フッ素−1°ルキル基を有する置換
基を持つポリ“7を添加j、ない、ポリアクリロニトリ
ル系中空糸膜を作製17、同様に濃縮法の実験を行った
。その結果、、乾燥中空糸膜は実験開始後、漸次濡れて
(ま−っで、膜面から原液が人はに流出(3、測定する
ことは困難であ−)だ。、[発明の効果1 本発明によれば、揮発性有機液体水溶液から該41機液
体を選択的に濃縮分離する液−気系の新規な膜分離法に
おいて使用1.得る、分離選択性の改善された揮発性有
機液体水溶液濃縮膜りその装造方法を提供することがで
きる1、
Comparative Example 1 Polyacrylonitrile hollow fiber membranes were prepared with and without the addition of poly(7) having a substituent having a fluorine-containing -1° alkyl group in Example 1, and experiments using the concentration method were conducted in the same manner. As a result, the dry hollow fiber membrane gradually got wet after the experiment started (the undiluted solution leaked out from the membrane surface (3), which was difficult to measure). [Effect of the invention 1] According to the present invention, a volatile organic liquid with improved separation selectivity is obtained for use in a novel membrane separation method for a liquid-gas system that selectively concentrates and separates the liquid from an aqueous volatile organic liquid solution. 1. A method for preparing an aqueous solution concentrating membrane Ris.

【図面の簡単な説明】[Brief explanation of drawings]

第1−図は、本発明(ごかかる分FJ膜の製造lf法を
示す模式図である0、 1、 供給液槽 4、膜範シフ、−、−、+l・ 5 
: 、、H−ドルjfに:l・ラップ 7:コールドト
ラツプ 8圧力調節装置 1−1 ・出[I]  12
:、、、&D  19真空ポンプ゛ 特1杵出願人 第1図
Figure 1 is a schematic diagram showing the lf method for manufacturing FJ membranes according to the present invention.
: ,, H-dol jf: l・wrap 7: cold trap 8 pressure regulator 1-1 ・Output [I] 12
:,,, &D 19 Vacuum pump ゛Special 1 pestle Applicant Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)アクリロニトリル系ポリマからなる多孔性膜にお
いて、含フッ素アルキル基を有するポリマを含む組成物
からなることを特徴とする揮発性有機液体水溶液濃縮膜
(1) A porous membrane made of an acrylonitrile polymer, characterized in that it is made of a composition containing a polymer having a fluorine-containing alkyl group.
(2)アクリロニトリル系ポリマからなる多孔性膜の組
成として、ポリアクリロニトリルを少なくとも50重量
%含有することを特徴とする請求項1記載の揮発性有機
液体水溶液濃縮膜。
(2) The volatile organic liquid aqueous solution concentration membrane according to claim 1, wherein the porous membrane made of an acrylonitrile polymer contains at least 50% by weight of polyacrylonitrile.
(3)含フッ素アルキル基を有するポリマが一般式[
I ]、 ▲数式、化学式、表等があります▼[ I ] [式中、R_1、R_2、R_3は、水素原子、炭素原
子数1〜20の炭化水素基あるいはフルオロアルキル基
から選ばれる一種以上の置換基、R_4は炭素原子数1
〜20のフルオロアルキル基、Xはエステル結合、アミ
ド結合、エーテル結合、スルホアミド結合のいずれかを
示す。]で、表される構造単位を有するフッ素系ポリマ
を含むことを特徴とする請求項1記載の揮発性有機液体
水溶液濃縮膜。
(3) The polymer having a fluorine-containing alkyl group has the general formula [
I], ▲There are mathematical formulas, chemical formulas, tables, etc.▼[I] [In the formula, R_1, R_2, R_3 are one or more types selected from a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a fluoroalkyl group. Substituent, R_4 has 1 carbon atom
~20 fluoroalkyl groups, X represents any one of an ester bond, an amide bond, an ether bond, and a sulfoamide bond. ] The volatile organic liquid aqueous solution concentration membrane according to claim 1, characterized in that it contains a fluorine-based polymer having a structural unit represented by the following formula.
(4)一般式[ I ]中のR_1、R_2が水素原子、
R_3がメチル基、R_4が炭素数7のパーフルオロア
ルキル基、Xがエステル結合であることを特徴とする請
求項3記載の揮発性有機液体水溶液濃縮膜。
(4) R_1 and R_2 in the general formula [I] are hydrogen atoms,
4. The volatile organic liquid aqueous solution concentration membrane according to claim 3, wherein R_3 is a methyl group, R_4 is a perfluoroalkyl group having 7 carbon atoms, and X is an ester bond.
(5)アクリロニトリル系ポリマの溶液に、含フッ素ア
ルキル基を有するポリマの溶液を加えた混合溶液を用い
て製膜することを特徴とする揮発性有機液体水溶液濃縮
膜の製造方法。
(5) A method for producing a volatile organic liquid aqueous solution concentrated film, which comprises forming a film using a mixed solution obtained by adding a solution of a polymer having a fluorine-containing alkyl group to a solution of an acrylonitrile polymer.
JP1092975A 1989-04-14 1989-04-14 Volatile organic liquid aqueous solution concentrated membrane and method for producing the same Expired - Lifetime JP2814536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1092975A JP2814536B2 (en) 1989-04-14 1989-04-14 Volatile organic liquid aqueous solution concentrated membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1092975A JP2814536B2 (en) 1989-04-14 1989-04-14 Volatile organic liquid aqueous solution concentrated membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02273521A true JPH02273521A (en) 1990-11-08
JP2814536B2 JP2814536B2 (en) 1998-10-22

Family

ID=14069403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1092975A Expired - Lifetime JP2814536B2 (en) 1989-04-14 1989-04-14 Volatile organic liquid aqueous solution concentrated membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP2814536B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237347A (en) * 1992-02-26 1993-09-17 Daicel Chem Ind Ltd Method for concentrating food

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277430A (en) * 1985-06-04 1986-12-08 財団法人相模中央化学研究所 Composite membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277430A (en) * 1985-06-04 1986-12-08 財団法人相模中央化学研究所 Composite membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237347A (en) * 1992-02-26 1993-09-17 Daicel Chem Ind Ltd Method for concentrating food

Also Published As

Publication number Publication date
JP2814536B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
US5013339A (en) Compositions useful for making microporous polyvinylidene fluoride membranes, and process
US4919810A (en) Porous membrane
US3975478A (en) Method for producing highly permeable acrylic hollow fibers
US4744906A (en) Porous fibers and membranes and methods for their preparation and use
US4780205A (en) Permselective hollow fiber membrane, process for the preparation thereof, method and apparatus for plasma components separation
Fujii et al. Selectivity and characteristics of direct contact membrane distillation type experiment. I. Permeability and selectivity through dried hydrophobic fine porous membranes
KR900002095B1 (en) Production of porous membrane
US4728431A (en) Pervaporation method for separating liquids in mixture
US4209307A (en) Method for filtering through highly permeable acrylic hollow fibers
Miao et al. Production of polyethersulfone hollow fiber ultrafiltration membranes. I. Effects of water (internal coagulant) flow rate (WFR) and length of air gap (LAG)
US4869857A (en) Process for producing porous membranes
JPH0613085B2 (en) Method for producing volatile organic liquid concentrate
JPH02273521A (en) Volatile organic liquid aqueous solution-concentrated film and its manufacture
JP2890469B2 (en) Method for producing porous separation membrane
JP2774103B2 (en) Manufacturing method of double layer film
JPH035847B2 (en)
JP2814516B2 (en) Volatile organic liquid aqueous solution concentrated membrane and method for producing the same
JPS61167405A (en) Separation of liquid mixture
JPH0211263B2 (en)
JPH0413006B2 (en)
JPS63315104A (en) Concentration membrane of volatile organic liquid aqueous solution and usage thereof
JPS5892402A (en) Preparation of composite membrane having selective permeability of organic substance
JPS61408A (en) Hollow yarn composite membrane
JP2646562B2 (en) Method for producing permselective composite hollow fiber membrane
JPH0512971B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11