JPH02272332A - Radiation thermometer - Google Patents

Radiation thermometer

Info

Publication number
JPH02272332A
JPH02272332A JP9444989A JP9444989A JPH02272332A JP H02272332 A JPH02272332 A JP H02272332A JP 9444989 A JP9444989 A JP 9444989A JP 9444989 A JP9444989 A JP 9444989A JP H02272332 A JPH02272332 A JP H02272332A
Authority
JP
Japan
Prior art keywords
temperature
infrared
infrared sensor
sensor
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9444989A
Other languages
Japanese (ja)
Other versions
JP2935850B2 (en
Inventor
Minoru Koide
小出 實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP1094449A priority Critical patent/JP2935850B2/en
Publication of JPH02272332A publication Critical patent/JPH02272332A/en
Application granted granted Critical
Publication of JP2935850B2 publication Critical patent/JP2935850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To measure a temperature of the inner part of a curved duct by including a low temperature area, as well with high accuracy by using a flexible pipe whose inside surface is a specular surface as a condensing means. CONSTITUTION:A condensing pipe 2 which has the inside specular surface and made of a material abounding in flexibility such as vinyl chloride, etc., is deformed to match a shape of a curved auditory meatus 1 and inserted into the auditory meatus, and led to an infrared sensor 4 for converting infrared rays radiated from the tympanum 1a to an electric signal. Outputs of the infrared sensor 4 and a temperature sensor 5 are amplified by amplifiers 6a, 6b and inputted to an A/D converter 7. The A/D converter 7 converts the outputs of the amplifiers 6a, 6b to digital values and inputs them to a microcomputer 8. The microcomputer 8 calculates a temperature of the tympanum 1a from the outputs of the infrared sensor 4 and the temperature sensor 5. Also, a specular surface layer 3 is formed on the inside surface of a body 3a, and constituted of a gold vapor-deposited layer 3b and a medium metallic vapor-deposited layer 3c.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は測定物体から放射される赤外放射から物体の温
度を測定する放射温度計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radiation thermometer that measures the temperature of an object from infrared radiation emitted from the object.

〔従来の技術〕[Conventional technology]

測定物体1から放射される赤外放射から赤外センサ4に
よって物体の温度を測定する放射温度計は非接触温度測
定の一方法として広く知られている。これらの放射温度
計の赤外線の集光は第4図に示す如く金属製の集光パイ
プ2′ や第5図に示す如く集光パイプ2′ に光学レ
ンズ60を組合わせた方式、あるいは光ファイバー等が
用いられている。
A radiation thermometer that measures the temperature of an object using an infrared sensor 4 from infrared radiation emitted from the measurement object 1 is widely known as a method of non-contact temperature measurement. The infrared rays of these radiation thermometers are collected using a metal condensing pipe 2' as shown in Fig. 4, an optical lens 60 combined with the concentrating pipe 2' as shown in Fig. 5, or an optical fiber. is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし集光に光学レンズや金属パイプを用いた場合には
集光しうる赤外線の角度は固定されてしまい、例えば曲
った管路の奥などの温度測定は不可能である。また光フ
ァイバーを用いた場合的った管路の奥からの集光が可能
であるが、光ファイバーの伝送損失によって低温領域の
測定が困難である。
However, when an optical lens or metal pipe is used to collect light, the angle of the infrared light that can be collected is fixed, making it impossible to measure the temperature at the back of a curved pipe, for example. Furthermore, when using an optical fiber, it is possible to focus light from deep within the conduit, but the transmission loss of the optical fiber makes it difficult to measure low-temperature regions.

本発明の目的は曲折した管路の奥の部分の温度を低温領
域も含め高精度に測定しうる放射温度計を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a radiation thermometer that can measure the temperature deep inside a bent pipe with high precision, including in low-temperature regions.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成させるために、本発明は次のような構
成としている。すなわち、 (l)測定物体から赤外放射を集光するための集光手段
と、赤外放射エネルギーを電気信号に変換する赤外セン
サと、赤外センサ及びその周辺温度を測定する感温セン
サと、赤外センサの電気信号を増幅する赤外増幅器と、
感温センサの電気信号を増幅する感温増幅器と、前記2
ケの増幅器からの信号より温度データを算出する演算部
を備えた放射温度計に於て、前記集光手段を内面が鏡面
である可とう性のパイプにより構成したことを特徴とす
る。
In order to achieve the above object, the present invention has the following configuration. That is, (l) a condensing means for concentrating infrared radiation from a measurement object, an infrared sensor for converting infrared radiant energy into an electrical signal, and a temperature sensor for measuring the temperature of the infrared sensor and its surroundings. and an infrared amplifier that amplifies the electrical signal of the infrared sensor.
a temperature-sensitive amplifier that amplifies the electrical signal of the temperature-sensitive sensor;
In the radiation thermometer equipped with an arithmetic unit that calculates temperature data from the signal from the amplifier, the light collecting means is constructed of a flexible pipe whose inner surface is mirror-finished.

またはパイプを複数の内面が鏡面である可とう性パイプ
により構成したことを特徴とする。
Alternatively, the pipe is constructed of a plurality of flexible pipes each having a mirror surface.

〔作用〕[Effect]

以上の構成によれば、凹部や曲った管路の奥などの測定
は以下の様にして可能である。即ち、集光手段は可とう
性パイプにより構成されているので測定部位が曲った管
路の奥にあっても、集光パイプの形状をその管路に沿っ
た形状にして管路に挿入することにより可能となる。さ
らに集光パイプの内面を鏡面にすることにより、測定部
位からの赤外線はパイプ内で高い反射率での反射をくり
返して赤外センサに能率良く集光する。
According to the above configuration, it is possible to measure the depths of recesses and curved pipes in the following manner. In other words, since the light condensing means is composed of a flexible pipe, even if the measurement site is deep inside a curved conduit, the condensing pipe can be inserted into the conduit with the shape of the condensing pipe shaped to follow the conduit. This makes it possible. Furthermore, by making the inner surface of the condensing pipe a mirror surface, the infrared rays from the measurement site are repeatedly reflected at a high reflectance within the pipe, and are efficiently focused on the infrared sensor.

〔実施例〕〔Example〕

以下本発明を用いて、生体の鼓膜源を測定する放射体温
計を構成した場合の実施例を図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a radiation thermometer for measuring the eardrum source of a living body using the present invention will be described below with reference to the drawings.

第1図は放射体温計の基本構成ブロック図である。第1
図において1は生体の頭部にある耳道、1aは測定物体
の鼓膜である。2は鏡面の内面をもつ可とう性集光パイ
プ(以下集光パイプと略記する)であり、曲折した耳道
1の形に合わせて変形し耳道1内に挿入され、鼓膜1a
かも放射される赤外線を集光して後述する赤外センサ4
に導く。
FIG. 1 is a basic configuration block diagram of a radiation thermometer. 1st
In the figure, 1 is the auditory canal in the head of a living body, and 1a is the eardrum that is the object to be measured. 2 is a flexible condensing pipe (hereinafter abbreviated as condensing pipe) having a mirror-surfaced inner surface, which deforms to match the shape of the bent auditory canal 1, is inserted into the auditory canal 1, and is inserted into the eardrum 1a.
An infrared sensor 4, which will be described later, focuses the emitted infrared rays.
lead to.

前記集光パイプ2は例えば塩化ビニール等の可とう性に
豊む材料によって作られている。
The light collecting pipe 2 is made of a highly flexible material such as vinyl chloride.

4は赤外センサであり入射した赤外エネルギーを電気信
号に変換する。5は赤外センサ及びその周辺の温度を検
出する感温センサである。6aと6bは増幅器であり赤
外センサの出力と感温センサの出力を増幅する。7はA
/Dコンバータであり増幅器6a、6bの出力はデジタ
ル値に変換されてマイクロコンピュータ8に入力され、
表示器9に表示される。
4 is an infrared sensor that converts incident infrared energy into an electrical signal. 5 is an infrared sensor and a temperature sensor that detects the temperature around the infrared sensor. Amplifiers 6a and 6b amplify the output of the infrared sensor and the output of the temperature sensor. 7 is A
/D converter, and the outputs of the amplifiers 6a and 6b are converted into digital values and input to the microcomputer 8.
It is displayed on the display 9.

マイクロコンピュータ8は赤外センサ4の出力と感温セ
ンサ5の出力から鼓膜1aの温度を算出する。第2図は
内面が鏡面である可と5性集光パイプ2の断面図を示す
The microcomputer 8 calculates the temperature of the eardrum 1a from the output of the infrared sensor 4 and the output of the temperature sensor 5. FIG. 2 shows a cross-sectional view of a five-sided light condensing pipe 2 whose inner surface is a mirror surface.

鏡面層6は可とう性パイプ本体3aの内面に形成され、
赤外線の反射効率を高めるための金蒸着層6bと金粒子
を可とう性パイプ本体3aに安定に結合させる媒介金属
蒸着層6Cによって構成されている。
The mirror layer 6 is formed on the inner surface of the flexible pipe body 3a,
It is composed of a gold vapor deposition layer 6b for increasing the reflection efficiency of infrared rays and a mediating metal vapor deposition layer 6C for stably bonding gold particles to the flexible pipe body 3a.

第3図は本発明の第2実施例における集光パイプ20の
構成図である。本例では集光パイプ20をさらにいくつ
かの可とう性に富む細パイプ20a〜20nに細分化し
、全体の可とう性をさらに向上させる一方、各々のパイ
プ20a〜20nの内面を鏡面化して赤外線の集光の効
率を高めたものである。
FIG. 3 is a configuration diagram of a condensing pipe 20 in a second embodiment of the present invention. In this example, the condensing pipe 20 is further subdivided into several highly flexible thin pipes 20a to 20n to further improve the overall flexibility. This increases the efficiency of light collection.

各々のパイプ20a〜20nの内面は第2図に示した構
成と同じ構成となっている。
The inner surface of each of the pipes 20a to 20n has the same structure as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、鼓膜が曲った耳道の奥にあっても、集
光パイプ自体が可とう性を持つため個々の形状に対応す
ることが出来る。また、パイプの内面は金メツキ等の鏡
面処理がなされているため赤外線の放射率は波長によら
ず極めて高く、低温からの測定が可能となる。
According to the present invention, even if the eardrum is located deep in the curved auditory canal, the condensing pipe itself is flexible and can be adapted to individual shapes. Furthermore, since the inner surface of the pipe is mirror-finished with gold plating, etc., the emissivity of infrared rays is extremely high regardless of the wavelength, making it possible to measure from low temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による第1実施例の放射体温計の基本構
成ブロック図、第2図は第1実施例における集光パイプ
の断面図、第3図は第2実施例における集光パイプの構
成図、第4図及び第5図は従来例の放射体温計の集光パ
イプの断面図である。 1・・・・・・耳道、 1a・・・・・・鼓膜、 2.20・・・・・・集光パイプ、 6・・・・・・鏡面層、 4・・・・・・赤外センサ、 5・・・・・・感温センサ、 7・・・・・・A/Dコンバータ、
FIG. 1 is a basic configuration block diagram of a radiation thermometer according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view of a condensing pipe in the first embodiment, and FIG. 3 is a configuration of a condensing pipe in a second embodiment. 4 and 5 are cross-sectional views of a condensing pipe of a conventional radiation thermometer. 1... Auditory canal, 1a... Eardrum, 2.20... Light collection pipe, 6... Specular layer, 4... Red External sensor, 5...Temperature sensor, 7...A/D converter,

Claims (1)

【特許請求の範囲】 (l)測定物体からの赤外放射を集光するための集光手
段と、赤外放射エネルギーを電気信号に変換する赤外セ
ンサと、赤外センサ及びその周辺温度を測定する感温セ
ンサと、赤外センサの電気信号を増幅する赤外増幅器と
、感温センサの電気信号を増幅する感温増幅器と、前記
2ケの増幅器からの信号より温度データを算出する演算
部を備えた放射温度計に於て、前記集光手段を内面が鏡
面である可とう性のパイプにより構成したことを特徴と
する放射温度計。 (2)パイプは複数の内面が鏡面である可とう性パイプ
により構成された請求項1記載の放射温度計。
[Claims] (l) A condensing means for concentrating infrared radiation from a measurement object, an infrared sensor for converting the infrared radiation energy into an electrical signal, and an infrared sensor for controlling the temperature of the infrared sensor and its surroundings. A temperature-sensitive sensor to be measured, an infrared amplifier that amplifies the electrical signal of the infrared sensor, a temperature-sensitive amplifier that amplifies the electrical signal of the temperature-sensitive sensor, and an operation that calculates temperature data from the signals from the two amplifiers. 1. A radiation thermometer comprising: a radiation thermometer, characterized in that the light condensing means is constituted by a flexible pipe whose inner surface is a mirror surface. (2) The radiation thermometer according to claim 1, wherein the pipe is a flexible pipe having a plurality of mirror surfaces.
JP1094449A 1989-04-14 1989-04-14 Radiation thermometer Expired - Fee Related JP2935850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1094449A JP2935850B2 (en) 1989-04-14 1989-04-14 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1094449A JP2935850B2 (en) 1989-04-14 1989-04-14 Radiation thermometer

Publications (2)

Publication Number Publication Date
JPH02272332A true JPH02272332A (en) 1990-11-07
JP2935850B2 JP2935850B2 (en) 1999-08-16

Family

ID=14110571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1094449A Expired - Fee Related JP2935850B2 (en) 1989-04-14 1989-04-14 Radiation thermometer

Country Status (1)

Country Link
JP (1) JP2935850B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007425A (en) * 2013-06-24 2015-01-15 ゼネラル・エレクトリック・カンパニイ Optical monitoring system for gas turbine engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007425A (en) * 2013-06-24 2015-01-15 ゼネラル・エレクトリック・カンパニイ Optical monitoring system for gas turbine engine

Also Published As

Publication number Publication date
JP2935850B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
JP3805039B2 (en) Radiation thermometer
CA2098313A1 (en) Infrared thermometer utilizing calibration mapping
WO1994020023A1 (en) Optical system for an infrared thermometer
AU6827398A (en) Measuring tip for a radiation thermometer
EP1162439A2 (en) Radiation clinical thermometer and method of measuring body temperature using this thermometer
EP0425229A1 (en) High temperature sensor
KR20010079808A (en) Method for determining temperature, radiation thermometer with several infrared sensor elements
Peura et al. Basic sensors and principles
JPH02272332A (en) Radiation thermometer
EP2040051A2 (en) Detector arrangement for electromagnetic radiation and method for measuring electromagnetic radiation
JP3558397B2 (en) Thermometer
JPH06142063A (en) Radiation clinical thermometer
Burger et al. Radiometry. thermometry, and minimum resolvable temperature with IR fiber optics
KR200243898Y1 (en) Infrared Clinical Thermometer
JPH10290790A (en) Radiation thermometer
JPH0829262A (en) Radiation detector
KR100458154B1 (en) forehead fitted type infrared thermometer and control method thereof
CN106539566A (en) Body core temperature is measured
JPH10227697A (en) Noncontact temperature measuring sensor
JP4006804B2 (en) Radiation thermometer
JPH0663850B2 (en) Method for measuring temperature in furnace of hot isostatic press
JP2001070255A (en) Optical fiber type eardrum thermometer
JPH011919A (en) Pyroelectric infrared detector
JPH10174677A (en) Radiation clinical thermometer
RU61871U1 (en) INFRARED RADIOMETER

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees