JPH0663850B2 - Method for measuring temperature in furnace of hot isostatic press - Google Patents

Method for measuring temperature in furnace of hot isostatic press

Info

Publication number
JPH0663850B2
JPH0663850B2 JP62130896A JP13089687A JPH0663850B2 JP H0663850 B2 JPH0663850 B2 JP H0663850B2 JP 62130896 A JP62130896 A JP 62130896A JP 13089687 A JP13089687 A JP 13089687A JP H0663850 B2 JPH0663850 B2 JP H0663850B2
Authority
JP
Japan
Prior art keywords
temperature
furnace
lens
optical system
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62130896A
Other languages
Japanese (ja)
Other versions
JPS63293431A (en
Inventor
知多佳 真鍋
由彦 坂下
恵生 小船
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62130896A priority Critical patent/JPH0663850B2/en
Publication of JPS63293431A publication Critical patent/JPS63293431A/en
Publication of JPH0663850B2 publication Critical patent/JPH0663850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/07Arrangements for adjusting the solid angle of collected radiation, e.g. adjusting or orienting field of view, tracking position or encoding angular position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0879Optical elements not provided otherwise, e.g. optical manifolds, holograms, cubic beamsplitters, non-dispersive prisms or particular coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Radiation Pyrometers (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱間静水圧加圧(以下HIPと略記する。)装置
の炉内温度を測定するための測定法、特に閉端管先端部
の熱放射を集束する測温光学系に改良を加えた上記HFP
装置の炉内温度測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a measuring method for measuring the temperature in a furnace of a hot isostatic press (hereinafter abbreviated as HIP) apparatus, particularly a closed end tube tip. HFP with improved temperature measuring optics for focusing the thermal radiation of
The present invention relates to a method for measuring a temperature inside a furnace of an apparatus.

(従来の技術) HIP装置は高温と高圧の相乗効果を利用して粉体の加圧
焼結,焼結品や鍛造品の欠陥除去あるいは拡散接合など
を行う装置であつて、近年、頓にその工業的利用が注目
されているが、最近ではその適用はエンジニアリングセ
ラミツクスを対象として1700℃〜2100℃の高温領域に拡
がつている。
(Prior Art) A HIP device is a device that utilizes the synergistic effect of high temperature and high pressure to perform pressure sintering of powder, defect removal of a sintered product or forged product, or diffusion bonding. Its industrial use has been attracting attention, but recently its application has spread to the high temperature range of 1700 ° C to 2100 ° C for engineering ceramics.

ところが、かかる装置においてはその高温高圧炉内の温
度制御は処理効果の上に極めて重要であり、そのため炉
内温度を検知するための温度測定手段が種々講ぜられて
おり、現在では閉端管を利用した放射測温手段等の採用
が取沙汰されている。
However, in such a device, the temperature control in the high temperature and high pressure furnace is extremely important for the treatment effect, and therefore various temperature measuring means for detecting the temperature in the furnace are provided, and at present, the closed end pipe is The adoption of the radiation temperature measuring method used is being discussed.

第10図,第13図はかかる炉内の温度測定手段を設けた既
知のHIP装置の各例を示す。
10 and 13 show examples of known HIP devices provided with such temperature measuring means in the furnace.

即ち、第10図は閉端管(15)と光フアイバ(16)を使用
し、該閉端管(15)を断熱層(12)を含む高圧容器(1
1)の下蓋(13)上に試料台(14)が設置されたHIP装置
の前記断熱層(12)によつて区画形成された炉室内に被
測温部位に先端が位置されるよう設置し、閉端管からの
熱放射を閉端管下部にある光フアイバ(16)により炉外
に導き、放射温度計(17)からなる測定系に接続した装
置(特開昭60−133327号公報参照)であり、閉端管から
の放射光を光フアイバ(16)へ取り入れるのに第11図の
如く直接、光フアイバ(16)へ入射させる方法あるいは
第12図の如くレンズ(19)を用いたコリメータ(20)で
光フアイバ(16)へ集光する方法などがあり、一方、第
13図はHIP装置の炉室、即ち、処理室(A)に上端が閉
鎖された長短細長円管(30),(31)を、その上端部が
処理室(A)内に、そして開放された他端が処理室外に
位置するよう設置し、その開口端部に放射温度計の測定
端子(32),(33)を細長円管(30)(31)上端部に焦
点を結ぶように調節して取り付け、測定端子(32),
(33)より検出される信号を光学信号ケーブル(34),
(35)を通してHIP装置内の温度変換装置(36)に導
き、これにより温度に対応した出力を高圧容器を貫通す
るリード線(37)により外部へ取り出し、処理室温度自
動制御装置(38)、サイリスタ制御装置(39)等により
上下両ヒータ(40),(41)の制御を行うようにした装
置(特開昭60−144627号公報参照)である。
That is, FIG. 10 shows that a closed end tube (15) and an optical fiber (16) are used, and the closed end tube (15) includes a heat insulating layer (12).
1) Installed so that the tip is located at the temperature measurement site in the furnace chamber defined by the heat insulation layer (12) of the HIP device where the sample table (14) is installed on the lower lid (13) Then, heat radiation from the closed end tube is guided to the outside of the furnace by an optical fiber (16) located at the lower part of the closed end tube, and connected to a measurement system consisting of a radiation thermometer (17) (JP-A-60-133327). In order to take in the radiated light from the closed end tube to the optical fiber (16), the method of making it enter the optical fiber (16) directly as shown in FIG. 11 or the lens (19) as shown in FIG. 12 is used. The collimator (20) was used to focus light on the optical fiber (16).
Fig. 13 shows the furnace chamber of the HIP device, that is, the long and narrow slender circular tubes (30) and (31) whose upper end is closed in the processing chamber (A), the upper end of which is opened in the processing chamber (A) and opened. The other end is located outside the processing chamber, and the measurement terminals (32) and (33) of the radiation thermometer are adjusted at the opening end to focus on the upper ends of the elongated circular tubes (30) and (31). Then attach the measuring terminal (32),
The signal detected by (33) is the optical signal cable (34),
It is led to the temperature conversion device (36) in the HIP device through (35), and the output corresponding to the temperature is taken out to the outside by the lead wire (37) penetrating the high pressure vessel, and the processing chamber temperature automatic control device (38), A thyristor control device (39) or the like controls both upper and lower heaters (40) and (41) (see Japanese Patent Laid-Open No. 60-144627).

しかしながら、HIP装置内において、前記光学系の置か
れた場所は通常、300℃,2000℃気圧程度であり、該雰囲
気を形成するAもしくはNなどのガスの密度は常
温,常圧の場合とは著しく異なり、高密度となつてい
る。特に第10図に示す装置におけるコリメータ(第12図
参照)の設置される部分は比較的温度が低いため更に密
度が高くなついる。
However, in the HIP device, the place where the optical system is placed is usually about 300 ° C. and 2000 ° C. atmospheric pressure, and the density of a gas such as Ar or N 2 forming the atmosphere is normal temperature and normal pressure. It is remarkably different from and has a high density. In particular, in the device shown in FIG. 10, the portion where the collimator (see FIG. 12) is installed has a relatively low temperature, so that the density becomes higher.

その結果、ガスの屈折率は密度の増加と共に増加し、常
温常圧の場合の値より増大し、常温常圧下の空気中用に
設計されたレンズ,光フアイバの光学特性、例えばレン
ズ焦点距離,光フアイバの開口数などが変化し温度計特
性に影響を与えることになる。
As a result, the refractive index of the gas increases with the increase of the density, and increases from the value at room temperature and pressure, and the optical characteristics of the lens designed for the air at room temperature and pressure, such as the lens focal length, The numerical aperture of the optical fiber changes, which affects the characteristics of the thermometer.

これを更に詳述すると、レンズの焦点距離は通常、次式
のように表される。
More specifically, the focal length of the lens is usually expressed by the following equation.

ここで、 r,r:レンズの両面曲率半径 但し、n;レンズ材質の絶対屈折率, n;レンズ周囲媒質の絶対屈折率 そして、常温常圧のガスではn9は殆ど1に等しく、その
条件でレンズが設計されている。
Where: r 1 , r 2 : radius of curvature on both sides of the lens However, n L is the absolute refractive index of the lens material, ng is the absolute refractive index of the lens surrounding medium, and n 9 is almost equal to 1 in the case of a gas at normal temperature and normal pressure, and the lens is designed under the conditions.

ところが、次表に示すようにガスの絶対屈折率は圧力に
よつて変化し、上記の式より焦点距離は変化して了う。
(高圧実験技術とその応用,441頁参照) 勿論、HIP装置内は高圧と同時に高温であるため密会は
減少傾向にあり、屈折変化率は前記表の場合より少ない
が、測温用光学系の状態が変化することには変わりはな
い。
However, as shown in the following table, the absolute refractive index of the gas changes depending on the pressure, and the focal length changes from the above equation.
(Refer to High-pressure experimental technology and its application, page 441) Of course, since the inside of the HIP device is at a high temperature and a high temperature at the same time, the number of close meetings tends to decrease, and the refractive index change rate is smaller than in the case of the above table, but there is no change in the state of the temperature measuring optical system.

このような状態下、従来の測温手段にあつては、かかる
HIP装置運転条件による媒質ガスの屈折率の変動に対し
てよく対応しておらず、充分な安定測温をなすには至つ
ていない。
Under such conditions, the conventional temperature measuring means
It does not respond well to changes in the refractive index of the medium gas due to the operating conditions of the HIP device, and has not yet achieved a sufficient stable temperature measurement.

(発明が解決しようとする問題点) 本発明は叙上の如き実状に対処し、受光部に測定対象点
からの熱放射エネルギを効果的に集束させる手段を見出
すことにより、前記欠陥を解消し、媒質屈折率の変動な
ど炉内雰囲気の変動に対応し、安定な測温の可能ならし
めることを目的とする。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned defects by coping with the actual situation as described above and finding a means for effectively focusing the thermal radiation energy from the measurement target point on the light receiving part. The purpose is to respond to changes in the atmosphere in the furnace such as changes in the refractive index of the medium to enable stable temperature measurement.

(問題点を解決するための手段) 即ち、上記目的に適合し、所期の効果を達成する本発明
の特徴とするところは、前記の如きHIP装置の高圧炉内
に閉端管を設置し、該閉端管先端部の熱放射エネルギを
測温用光学系により受光部に集束し、これを検出部に導
き、炉内の温度を測定するにあたり、前記光学系として
入射面が測温対象点を中心とした球面,出射面が平面よ
りなり、出射面側の光束が平行光線かつ面に垂直に出射
する中実のレンズにより構成された光学系を用い、放射
エネルギの集束を行う点にある。
(Means for Solving Problems) That is, the feature of the present invention that meets the above purpose and achieves a desired effect is to install a closed end tube in the high pressure furnace of the HIP device as described above. When the thermal radiation energy at the tip of the closed-end tube is focused on the light receiving section by the temperature measuring optical system and is guided to the detecting section to measure the temperature inside the furnace, the incident surface is used as the optical system to measure the temperature. A sphere centered around a point, the exit surface is a flat surface, and the optical system composed of a solid lens that emits a light beam on the exit surface side into parallel rays and perpendicular to the surface is used to focus the radiant energy. is there.

ここで、測温用光学系とは通常、コリメータ光学系と呼
ばれるものを云い、又、測温対象点とは閉端管先端部、
集光点とは受光部の例えば光フアイバの開口部あるいは
受光素子そのものが相当する。
Here, the temperature-measuring optical system usually refers to what is called a collimator optical system, and the temperature-measuring target point is a closed-end tube tip,
The condensing point corresponds to, for example, the opening of the optical fiber of the light receiving portion or the light receiving element itself.

又、検出部は既知のように光電変換器,アンプ,放射率
補正回路,リニアライザなどによつて構成され、温度表
示を行うものである。
Further, the detector is composed of a photoelectric converter, an amplifier, an emissivity correction circuit, a linearizer, etc., as is known, and displays the temperature.

なお、光学系における前記入射面が測温対象点を中心と
した球面,出射面が平面よりなり、出射面側の光束が平
行光線かつ面に垂直に出射する中実レンズとしては入射
光を集束するという機能と、平行光束として出射すると
いう条件を満たすことが必要であり、そのため光学系の
要素は入射光を集束させる要素と、集束された光線を平
行光線とする要素の両要素が必要とされる。
In addition, the incident surface in the optical system is a spherical surface centering on the temperature measurement target point, the exit surface is a flat surface, and the light flux on the exit surface side is a parallel light beam and a solid lens that emits perpendicularly to the surface focuses the incident light. It is necessary to satisfy the conditions of the function to output light as a parallel light beam and the condition that the light beam is emitted as a parallel light beam. Therefore, the element of the optical system needs both an element that focuses the incident light and an element that makes the focused light beam a parallel light beam. To be done.

即ち、具体的には第1図及び第2図はその基本的態様を
示しているが集束に作用する凸レンズ(1)と、平行光
線化に作用する凹レンズ(2)または凸レンズ(1)′
とよりなる。
That is, specifically, FIGS. 1 and 2 show the basic mode, but a convex lens (1) that acts on focusing and a concave lens (2) or a convex lens (1) ′ that acts on parallel rays.
And consists of.

従て上記中実のレンズはこの構成を含み、前記両要請条
件を満たす形状ならびに構成が必要となるが、前記両要
請条件より光学系中実レンズの形状は入射面−凹面,出
射面−平面であるから凹レンズ状になり、内部が均一屈
折率である限り、前記第1図、第2図の如き集束、平行
光線化の機能を有することはできない。そのため光学系
中実レンズ中に屈折率の異なる部分を設け上記機能を具
有せしめる必要がある。
Therefore, the solid lens includes this configuration, and a shape and a configuration satisfying both of the above requirements are required. From the above both requirements, the shape of the solid lens of the optical system is the entrance surface-concave surface, the exit surface-plane. Therefore, as long as it has a concave lens shape and the inside has a uniform refractive index, it cannot have the functions of focusing and collimating rays as shown in FIGS. 1 and 2. Therefore, it is necessary to provide the above function by providing a portion having a different refractive index in the solid lens of the optical system.

これは具体的には屈折率の異なる界面の形状、前後の屈
折率比の選定によりその界面に集束あるいは発散の作用
をもたせることによつて可能であり、これによつて前記
本発明の目的を達成する種々の組合わせが実現される。
This is specifically possible by making the interface have a focusing or diverging action by selecting the shape of the interface having a different refractive index and the refractive index ratio before and after. Various combinations to achieve are realized.

(作用) 上記の如き中実レンズを光学系に用いHIP装置の炉内温
度を測定するときは、該光学系の入射面が測温対象点を
中心とする球面であることから測温対象面から光学系へ
入る光線は入射面に垂直に入射し、入射面で屈折が起こ
らない。また出射面は平面であり、出射する光束が平行
光線かつ面に垂直であることから出射面でも屈折は起こ
らない。従つて、レンズ外側の媒質の屈折率が温度,圧
力の変動によつて変化しても何らこれに影響されること
なく光線の状態は変わらない。しかも前述の如く出射光
束は平行光線であることから光束の大きさは光軸方向で
変わらず、受光部が光軸方向へ移動してもその受光量の
変動はなく、極めて適切な測温が可能となる。
(Operation) When the solid lens as described above is used for the optical system to measure the temperature inside the furnace of the HIP device, since the incident surface of the optical system is a spherical surface centering on the temperature measurement target surface, the temperature measurement target surface Rays entering the optical system from are incident perpendicularly to the incident surface, and refraction does not occur at the incident surface. Further, since the exit surface is a plane and the outgoing light flux is a parallel light beam and is perpendicular to the surface, refraction does not occur even on the exit surface. Therefore, even if the refractive index of the medium outside the lens changes due to changes in temperature and pressure, the state of the light beam does not change without being affected thereby. Moreover, since the emitted light beam is a parallel light beam as described above, the size of the light beam does not change in the optical axis direction, and even if the light receiving unit moves in the optical axis direction, the received light amount does not change, and an extremely appropriate temperature measurement can be performed. It will be possible.

(実施例) 以下、更に添付図面にもとづき本発明に係る測温方法の
具体的な実施態様を説明する。
(Examples) Specific embodiments of the temperature measuring method according to the present invention will be described below with reference to the accompanying drawings.

第3図乃至第9図は本発明測温方法の要部をなす光学系
の各例であり、図においてはHIP装置は省略している
が、通常第10図等で示されるHIP装置のコリメータ光学
系に適用される。
FIGS. 3 to 9 are each an example of an optical system forming an essential part of the temperature measuring method of the present invention. Although the HIP device is omitted in the drawings, the collimator of the HIP device shown in FIG. Applied to optical system.

しかして、上記各図において、(3)は光学系中実レン
ズ、(4)は測温対象点、(5)は受光部を示し、第3
図,第4図にあつてはそのレンズ(3)の入射面は測温
対象点(4)を中心とする半径の球面となり、一方、
出射面は平面となつている。
Thus, in each of the above figures, (3) shows the solid lens of the optical system, (4) shows the temperature measurement target point, (5) shows the light receiving part, and
In FIGS. 4 and 5, the entrance surface of the lens (3) is a spherical surface with a radius r centered on the temperature measurement target point (4), while
The emission surface is flat.

そして、第3図の場合には同レンズ(3)はレンズ内に
屈折率の高い部分(6)を凸レンズ状に設け、入射部分
の屈折率n,出射部分の屈折率nに対し高い屈折率
とし、入射光を集束するという機能と平行光束とし
て出射するという条件を満足させている。即ちn<n
,n>nの屈折率として本発明の光学系に構成して
いる。
In the case of FIG. 3, the lens (3) is provided with a high refractive index portion (6) in the shape of a convex lens, which is higher than the refractive index n 1 of the incident portion and the refractive index n 3 of the outgoing portion. The refractive index is n 2, and the condition of converging the incident light and the condition of emitting it as a parallel light beam are satisfied. That is, n 1 <n
The optical system of the present invention has a refractive index of 2 , n 2 > n 3 .

一方、第4図の例においては屈折率の高い凸レンズ状部
分、即ち屈折率nの部分(7)及び屈折率nの部分
(8)を光学系レンズ(3)内に設け本発明の条件を充
足させている。
On the other hand, in the example of FIG. 4, a convex lens-shaped portion having a high refractive index, that is, a portion (7) having a refractive index n 5 and a portion (8) having a refractive index n 7 are provided in the optical system lens (3). The condition is satisfied.

即ち、n,nは凹レンズ部分の屈折率であり、n
,n>n,n<nの関係にあつて、本発明にお
ける光学系を構成している。
That is, n 4 and n 6 are the refractive indices of the concave lens portion, and n 4 <
The optical system according to the present invention is constituted by the relationship of n 5 , n 5 > n 6 , n 6 <n 7 .

なお、上記の各例においてレンズ状の屈折率の高い部分
(6),(7),(8)をレンズ(3)内に設ける手段
としては具体的には屈折率の異なる複数枚のレンズを組
み合わせることによつて可能である。
In each of the above examples, as means for providing the lens-shaped portions (6), (7), (8) having a high refractive index in the lens (3), specifically, a plurality of lenses having different refractive indexes are used. It is possible by combining them.

この場合、組み合わせされる各レンズの面は充分に接近
させ、レンズ隙間が形成する空間内の媒質屈折率の影響
を無視できるようにする必要がある。
In this case, the surfaces of the lenses to be combined must be sufficiently close to each other so that the influence of the medium refractive index in the space formed by the lens gap can be ignored.

次に測温対象点(4)が充分遠距離である場合、あるい
は逆に測温対象点(4)が至近で入射面に接している場
合を考えると、これらの場合、入射面は第5図、第6図
の如く実質上平面となる。
Next, considering the case where the temperature measurement target point (4) is a sufficiently long distance, or conversely, the temperature measurement target point (4) is in close proximity and is in contact with the incident surface, in these cases, the incident surface is the fifth surface. As shown in FIG. 6 and FIG. 6, it becomes a substantially flat surface.

しかし、このような場合もやはり、前記の趣旨、即ち、
入射面,出射面で屈折が起こらず光線の状態が変らない
ことは同様であり、本発明の主旨に含まれる。
However, even in such a case, the above-mentioned purpose, that is,
The fact that refraction does not occur on the entrance surface and the exit surface and the state of the light beam does not change is the same, and is included in the gist of the present invention.

又、上記の実施例は組み合わせレンズによるものとして
説明して来たが、屈折率分布形レンズのように単一レン
ズ内に光軸部から周辺部へ次第に屈折率が低くなるよう
に屈折率の分布を有し、凸レンズ作用のあるものも使用
可能である。
Further, although the above embodiments have been described as being based on a combination lens, the refractive index is gradually changed from the optical axis portion to the peripheral portion within a single lens like a gradient index lens. Those having a distribution and a convex lens action can also be used.

勿論、この場合も、前述したように入射面,出射面の形
状については夫々要求される条件を満たすことは云うま
でもない。
Of course, in this case as well, it is needless to say that the shapes of the entrance surface and the exit surface satisfy the required conditions, respectively, as described above.

第7図の光学系(3)は屈折率分布をもつレンズ
(3)′,(3)″からなるこのような実施例を示す。
The optical system (3) of FIG. 7 shows such an embodiment comprising lenses (3) ′ and (3) ″ having a refractive index distribution.

更に以上の外、上記の光学系中の反射面を含む系も可能
であり、また反射面に第1図,第2図に示したレンズ要
素の基本的態様における機能をもたせてもよい。第8図
は前者の反射面(9)を含む1例を示す。また第9図は
凸レンズ作用を凹反射面(10)にもたせたものであり、
これも亦、入射面,出射面の形状について夫々要求され
る条件を満たすことによつて本発明の光学系に使用可能
である。
In addition to the above, a system including a reflecting surface in the above optical system is also possible, and the reflecting surface may have a function in the basic mode of the lens element shown in FIGS. 1 and 2. FIG. 8 shows an example including the former reflecting surface (9). Further, FIG. 9 shows a concave lens surface (10) having a convex lens function,
This can also be used in the optical system of the present invention by satisfying the conditions required for the shapes of the entrance surface and the exit surface.

なお、以上の各例は本発明における光学系のすべてでは
なく、従つて上記主旨に反しない限り、種々の改変が可
能であることは勿論である。
It is needless to say that the above examples are not all of the optical system according to the present invention, and accordingly various modifications can be made without departing from the spirit of the invention.

かくして、叙上の如きレンズによつて構成された光学系
により集束された放射エネルギは光フアイバ等により検
出部に伝送され、温度表示、又、必要に応じヒータ制御
に供される。
Thus, the radiant energy focused by the optical system constituted by the lens as described above is transmitted to the detection portion by the optical fiber or the like, and is used for temperature display and, if necessary, heater control.

(発明の効果) 本発明は以上の如くHIP装置の炉内の温度の測定におい
て、光学系の構成に改良を加え、入射面が測温対象面を
中心とした球面,出射面が平面からなり、出射面側の光
束が平行光線、かつ面に垂直に出射する中実のレンズに
より構成した光学系を用い、放射エネルギの集束を行う
ようにした方法であり、従来技術ではHIP装置の運転条
件による媒質ガス屈折率の変化に充分対応しておらず、
屈折率変動により温度計光学系の特性が変化し、安定な
測定ができなかつたが、本発明方法では光学系の入射面
が前述の如く測温対象点を中心とする球面であるから測
温対象点から光学系へ入る光線は入射面に垂直に入射
し、入射面で屈折が起こらず、又、出射面が平面で出射
する光束が平行光線かつ面に垂直であるから出射面でも
屈折は起こらず、従つて媒質の屈折率が変化しても光線
の状態は何ら変わることはなく、HIP処理において雰囲
気温度,圧力に依存しない測温が可能である。しかも本
発明の測温方法では更に出射側の光束が平行光線となつ
ているため、光束の大きさは光軸方向で変わらず、従つ
て、受光部が光軸方向へ移動しても受光量の変動はな
く、位置決め誤差許容量が大きく実用性を向上し、HIP
装置の測温精度を著しく高め、同装置の工業化を促進す
る顕著な効果を奏する。
(Effect of the invention) As described above, in the measurement of the temperature in the furnace of the HIP device, the present invention improves the configuration of the optical system so that the entrance surface is a spherical surface centered on the temperature measurement target surface and the exit surface is a flat surface. , A method in which the radiant energy is focused by using an optical system composed of a solid lens in which the light beam on the exit surface side is a parallel light beam and exits perpendicularly to the surface. Does not sufficiently respond to changes in the refractive index of the medium gas due to
The characteristics of the thermometer optical system change due to the fluctuation of the refractive index, and stable measurement cannot be performed.However, in the method of the present invention, the temperature is measured because the incident surface of the optical system is a spherical surface centered on the temperature measurement target point as described above. Light rays entering the optical system from the target point are incident perpendicularly to the incident surface, refraction does not occur on the incident surface, and since the light flux emitted at the exit surface is a flat light ray and perpendicular to the surface, refraction at the exit surface is also Even if the refractive index of the medium does not change, the state of the light beam does not change at all, and it is possible to measure the temperature in the HIP process without depending on the ambient temperature and pressure. Moreover, in the temperature measuring method of the present invention, since the light beam on the emission side is a parallel light beam, the size of the light beam does not change in the optical axis direction. Of the HIP
The temperature measurement accuracy of the device is remarkably enhanced, and a remarkable effect of promoting industrialization of the device is achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明測温方法の基本的態様を示す
説明図、第3図乃至第9図は本発明測温方法の要部をな
す光学系の各実施例を示す概要図、第10図は本発明方法
が適用されるHIP装置例を示す断面概要図、第11図及び
第12図は第10図に示す装置に使用される各光学系の概要
図、第13図は本発明方法が適用される他のHIP装置例の
既設測温系統例を示す概略図である。 (1),(1)′……凸レンズ、(2)……凹レンズ、 (3)……光学系、(4)……測温対象点、 (5)……受光部、 (6),(7),(8)……屈折率の高い部分 (9)……反射面、(10)……凹反射面。
FIGS. 1 and 2 are explanatory views showing a basic mode of the temperature measuring method of the present invention, and FIGS. 3 to 9 are schematic views showing respective embodiments of an optical system forming a main part of the temperature measuring method of the present invention. FIG. 10 is a schematic sectional view showing an example of a HIP device to which the method of the present invention is applied, FIGS. 11 and 12 are schematic diagrams of respective optical systems used in the device shown in FIG. 10, and FIG. It is a schematic diagram showing an example of an existing temperature measurement system of another HIP device example to which the method of the present invention is applied. (1), (1) '... Convex lens, (2) ... Concave lens, (3) ... Optical system, (4) ... Temperature measurement target point, (5) ... Light receiving part, (6), ( 7), (8) ... High refractive index part (9) ... Reflecting surface, (10) ... Concave reflecting surface.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】熱間静水圧加圧装置の高圧炉内に閉端管を
設置し、該閉端管先端部の熱放射を光学系によって集束
し、これを検出部に導き炉内の温度を測定するに際し、
前記光学系に入射面が測温対象点を中心とした球面,出
射面が平面よりなり、出射面側の光束が平行光線かつ、
面に垂直に出射する中実のレンズにより構成された光学
系を用い、測温対象点からの放射エネルギの集束を行う
ことを特徴とする熱間静水圧加圧装置の炉内温度測定方
法。
1. A closed-end tube is installed in a high-pressure furnace of a hot isostatic pressurizer, and heat radiation at the tip of the closed-end tube is focused by an optical system, which is guided to a detection part and the temperature in the furnace is increased. When measuring
In the optical system, the incident surface is a spherical surface centering on the temperature measurement target point, the exit surface is a flat surface, and the light flux on the exit surface side is a parallel light beam,
A method for measuring an in-furnace temperature of a hot isostatic pressurizing device, characterized in that radiant energy from a temperature measurement target point is focused by using an optical system configured by a solid lens that emits perpendicularly to a surface.
【請求項2】中実のレンズが内部に屈折率の高い凸レン
ズ状部分を有している特許請求の範囲第1項記載の熱間
静水圧加圧装置の炉内温度測定方法。
2. The method for measuring the temperature inside a furnace of a hot isostatic pressurizer according to claim 1, wherein the solid lens has a convex lens-shaped portion having a high refractive index therein.
【請求項3】屈折率の高い凸レンズ状部分を内部に有す
る中実のレンズが屈折率の異なる複数枚のレンズの組み
合わせである特許請求の範囲第2項記載の熱間静水圧加
圧装置の炉内温度測定方法。
3. The hot isostatic pressing device according to claim 2, wherein the solid lens having a convex lens-shaped portion having a high refractive index therein is a combination of a plurality of lenses having different refractive indexes. Method for measuring furnace temperature.
【請求項4】中実のレンズが反射面を有している特許請
求の範囲第1項,第2項又は第3項記載の熱間静水圧加
圧装置の炉内温度測定方法。
4. The method for measuring the temperature inside a furnace of a hot isostatic pressurizer according to claim 1, 2, or 3, wherein the solid lens has a reflecting surface.
JP62130896A 1987-05-26 1987-05-26 Method for measuring temperature in furnace of hot isostatic press Expired - Fee Related JPH0663850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62130896A JPH0663850B2 (en) 1987-05-26 1987-05-26 Method for measuring temperature in furnace of hot isostatic press

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62130896A JPH0663850B2 (en) 1987-05-26 1987-05-26 Method for measuring temperature in furnace of hot isostatic press

Publications (2)

Publication Number Publication Date
JPS63293431A JPS63293431A (en) 1988-11-30
JPH0663850B2 true JPH0663850B2 (en) 1994-08-22

Family

ID=15045248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62130896A Expired - Fee Related JPH0663850B2 (en) 1987-05-26 1987-05-26 Method for measuring temperature in furnace of hot isostatic press

Country Status (1)

Country Link
JP (1) JPH0663850B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2750186B2 (en) * 1989-12-28 1998-05-13 株式会社神戸製鋼所 Hot isostatic press

Also Published As

Publication number Publication date
JPS63293431A (en) 1988-11-30

Similar Documents

Publication Publication Date Title
US4576486A (en) Optical fiber thermometer
JP3631749B2 (en) Non-contact optical technology for surface condition measurement
US4607963A (en) Multi-channel infrared thermometer
JPS63241436A (en) Throw-in type infrared thermometer for melting material
JPH05196507A (en) Optical fiber temperature sensor
JPH03206927A (en) High temperature sensor
JPH0640078B2 (en) Displacement measuring device for hot ceramics
US4884896A (en) Production line emissivity measurement system
JPH0663850B2 (en) Method for measuring temperature in furnace of hot isostatic press
US4955979A (en) Optical pyrometer with at least one fibre
JPS62163935A (en) Measuring method for temperature inside furnace of hot isostatic pressing unit
JPH0572531B2 (en)
EP0229653A2 (en) Method of measuring furnace temperature in hot isostatic pressing unit and device for measuring same
JPS62163938A (en) Measuring method for temperature inside furnace of hot isostatic pressing unit
RU152830U1 (en) DEVICE FOR OPTICAL MEASUREMENT OF TEMPERATURE OF COMBUSTION PRODUCTS
CN217424563U (en) Coaxial temperature measurement laser low-temperature soldering tin head
RU61284U1 (en) DEVICE FOR LASER THERMAL PROCESSING OF MATERIALS
JPS62105419A (en) Temperature controlling method for diffusing device
KR100681693B1 (en) Error source radiance optical filtering method and system in infrared radiation thermometer
JPS61182539A (en) Detecting part of radiation temperature
JP2006046926A (en) Radiation temperature measuring apparatus
RU2441205C1 (en) Fibre-optic thermal detector
JPH055289B2 (en)
JPH055294B2 (en)
JPH0524029Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees