JPH02272299A - Lamination type heat exchanger - Google Patents

Lamination type heat exchanger

Info

Publication number
JPH02272299A
JPH02272299A JP9284989A JP9284989A JPH02272299A JP H02272299 A JPH02272299 A JP H02272299A JP 9284989 A JP9284989 A JP 9284989A JP 9284989 A JP9284989 A JP 9284989A JP H02272299 A JPH02272299 A JP H02272299A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
air stream
channel
exchanger tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9284989A
Other languages
Japanese (ja)
Inventor
Mitsuo Kudo
工藤 光夫
Masakatsu Hayashi
政克 林
Toshihiko Fukushima
敏彦 福島
Tamio Innami
印南 民雄
Takatomo Sawahata
澤幡 敬智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9284989A priority Critical patent/JPH02272299A/en
Publication of JPH02272299A publication Critical patent/JPH02272299A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits

Abstract

PURPOSE:To enhance a heat-exchanging efficiency by providing a channel at the bottom of the folded portion of a U-shaped refrigerant passage, the depth of the channel being deeper than the recessed part of each of heat transfer tube plates in a direction normal to an air stream, and the channel being formed in substantially parallel to the air stream. CONSTITUTION:Since a channel 22 is provided at the bottom of the folded portion of a U-shaped refrigerant passage 16 so as to be deeper than the recessed part 15 of each of heat transfer tube plates 11 and in substantially parallel to an air stream, more liquid refrigerant gathers in the channel 22 due to a centrifugal effect when the refrigerant takes a U-turn. The liquid refrigerant gathered in the channel 22 is made to flow toward the upstream side of the air stream along the channel 22 and flows directly into the flowing zone on the upstream side of the air stream in the U-shaped refrigerant passage 16, so that the liquid refrigerant is more supplied to the upstream side of the air stream where a thermal load is greater. As a result, an areal rate that is occupied by gas refrigerant, which does not contribute to heat exchange, on the flowing zone side on the upstream side of the air stream in the refrigerant passage 16 is decreased, and a heat-exchanging efficiency is improved. In addition, since a temperature on the tube wall of each of heat transfer tube plates 11 of a flat heat transfer tube 10 is high, the refrigerant flows more in the flowing zone on the upstream side of the air stream, where the viscosity of a freezer oil attached to the tube wall is low, whereby a flowing effect on the oil by the refrigerant is also improved. Accordingly, cooling performance is enhanced, the freezer oil is made easier to flow, and the return of the oil is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空調機等に用いられる積層形熱交換器に係り
、特にカーエアコン用蒸発器に好適な積層形熱交換器に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laminated heat exchanger used in air conditioners and the like, and particularly to a laminated heat exchanger suitable for an evaporator for a car air conditioner.

〔従来の技術〕[Conventional technology]

蒸発器として用いられる従来の積層形熱交換器としては
、特開昭63−21494号公報に記載の技術がある。
As a conventional stacked heat exchanger used as an evaporator, there is a technique described in Japanese Patent Application Laid-Open No. 63-21494.

第5図は前記公報に記載の従来技術を示すもので、伝熱
管板を空気流と直交する方向から見た正面図である。
FIG. 5 shows the prior art described in the above-mentioned publication, and is a front view of a heat exchanger tube plate viewed from a direction perpendicular to the air flow.

この第5図に示す従来技術では、2枚の伝熱管板1,2
を組み合わせて1組の偏平伝熱管を構成している。
In the conventional technology shown in FIG. 5, two heat exchanger tube plates 1 and 2 are used.
are combined to form a set of flat heat exchanger tubes.

前記各伝熱管板1.2は、外周の接合リブ3と中央部の
仕切り壁4に形成されたU字形のくぼみ部5を有してい
る。前記くぼみ部5の一端部には冷媒入口6が連通して
おり、他端部には冷媒比ロアが連通している。前記くぼ
み部5の内部には、空気流Aの上流側の流域および下流
側の流域に、それぞれ複数列のリブ8が設けられており
、各列ともリブ8は多数配列されている。このリブ8は
、2枚の伝熱管板1,2を組み合わせた時、第5図に実
線と破線で示すように、X字状に組み合わされるように
なっている。前記各伝熱管板1,2の中央部に仕切り壁
4には、下部側に間隔をおいて切欠部9a、9bが設け
られている。
Each heat exchanger tube plate 1.2 has a U-shaped recess 5 formed in a joining rib 3 on the outer periphery and a partition wall 4 in the center. A refrigerant inlet 6 communicates with one end of the recess 5, and a refrigerant ratio lower communicates with the other end. Inside the recessed portion 5, a plurality of rows of ribs 8 are provided in the upstream and downstream regions of the air flow A, and a large number of ribs 8 are arranged in each row. The ribs 8 are arranged in an X-shape when the two heat exchanger tube plates 1 and 2 are combined, as shown by solid lines and broken lines in FIG. At the center of each heat exchanger tube plate 1, 2, the partition wall 4 is provided with notches 9a, 9b spaced apart from each other on the lower side.

前記2枚の伝熱管板1,2を組み合わせて構成した偏平
伝熱管の内部には、U字形の2つのくぼみ部5が組み合
わされたU字形の冷媒通路が形成されている。このU字
形の冷媒通路の一端部には各伝熱管板1,2に設けられ
た冷媒入口6が連通し、他端部には各伝熱管板1,2に
設けられた冷媒量ロアが連通している。また、前記冷媒
通路内では各伝熱管板1.2に設けられたリブ8がX字
状に組み合わされ、これにより冷媒通路はジグザグ状に
形成されている。
Inside the flat heat exchanger tube constructed by combining the two heat exchanger tube plates 1 and 2, a U-shaped refrigerant passage is formed by combining two U-shaped recesses 5. One end of this U-shaped refrigerant passage communicates with a refrigerant inlet 6 provided on each heat exchanger tube plate 1, 2, and the other end communicates with a refrigerant volume lower provided on each heat exchanger tube plate 1, 2. are doing. Further, within the refrigerant passage, the ribs 8 provided on each heat exchanger tube plate 1.2 are combined in an X-shape, thereby forming the refrigerant passage in a zigzag shape.

前記偏平伝熱管を、伝熱フィン(図示せず)をはさんで
複数組積層し、各組の伝熱管板1,2に設けられた冷媒
入口6を冷媒入口バイブ(図示せず)にシリーズに連絡
し、各組の伝熱管板1,2に設けられた冷媒量ロアを冷
媒出口バイブ(図示せず)にシリーズに連絡し、空気と
前記U字形の冷媒通路内を流れる冷媒とを伝熱フィンを
介して熱交換させる積層形熱交換器を構成している。
A plurality of sets of the flat heat transfer tubes are stacked with heat transfer fins (not shown) in between, and the refrigerant inlets 6 provided on the heat transfer tube plates 1 and 2 of each set are connected to a refrigerant inlet vibrator (not shown) in series. The refrigerant volume lowers provided in each set of heat transfer tube plates 1 and 2 are connected in series to a refrigerant outlet vibrator (not shown) to transmit air and the refrigerant flowing in the U-shaped refrigerant passage. It constitutes a laminated heat exchanger that exchanges heat via heat fins.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来技術では、各偏平伝熱管内のU字形の冷媒通路
における屈曲部から冷媒量ロア側に向かって冷媒が流れ
る流域に、中央部の仕切り壁4に沿って形成されやすい
冷媒のよどみSに対して、仕切り壁4に設けられた切欠
部9a、9bを通じて、冷媒入口6から屈曲部側に向か
って流れる冷媒の一部を導入し、前記冷媒のよどみSを
解消しようとしている。
In the conventional technology, the refrigerant stagnation S that tends to be formed along the partition wall 4 in the center in the region where the refrigerant flows from the bending part in the U-shaped refrigerant passage in each flat heat transfer tube toward the lower refrigerant amount side. On the other hand, a portion of the refrigerant flowing from the refrigerant inlet 6 toward the bent portion is introduced through the notches 9a and 9b provided in the partition wall 4 to eliminate the stagnation S of the refrigerant.

ところで、この種積層形熱交換器では、各伝熱管板1,
2に設けられた多数のリブ8をX字状に交差させ、冷媒
通路をジグザグ状に構成しているため、管路抵抗が全体
として冷媒の流れ方向に沿ってほぼ均一になっている。
By the way, in this type of laminated heat exchanger, each heat exchanger tube plate 1,
Since the large number of ribs 8 provided on the pipes 2 intersect in an X-shape and the refrigerant passage is configured in a zigzag shape, the resistance of the pipes as a whole becomes almost uniform along the flow direction of the refrigerant.

このため、偏平伝熱管の正面(空気流と直交する方向)
から見た冷媒の流れは、ガス冷媒と液冷媒の割合がほぼ
均一な流れとなる。
For this reason, the front of the flat heat exchanger tube (direction perpendicular to the air flow)
The flow of refrigerant seen from above is a flow in which the proportion of gas refrigerant and liquid refrigerant is almost uniform.

ところが、U字形の冷媒通路に沿い、Uターンして空気
流Aの上流側に流入した気液二相冷媒の熱負荷が大きく
、液冷媒の蒸発作用が活発な、冷媒通路における空気流
Aの上流側の流域では冷媒が不足し、偏平伝熱管内の大
部分が熱伝達率の悪いガス冷媒域になってしまい、熱交
換効率が低下するという問題がある。
However, the heat load of the gas-liquid two-phase refrigerant that has made a U-turn and flowed into the upstream side of the air flow A along the U-shaped refrigerant passage is large, and the evaporation of the liquid refrigerant is active. There is a problem that there is a shortage of refrigerant in the upstream basin, and most of the inside of the flat heat exchanger tube becomes a gas refrigerant region with poor heat transfer coefficient, resulting in a decrease in heat exchange efficiency.

前記従来技術は、この点について配慮されていない。The prior art does not consider this point.

本発明の目的は、各偏平伝熱管内に形成されたU字形の
冷媒通路における空気流の上流側の流域に多くの液冷媒
を流し、熱交換効率を向上させ、かつ冷凍機油を流れや
すくし、油戻りを良好になし得る積層形熱交換器を提供
することにある。
The purpose of the present invention is to flow a large amount of liquid refrigerant into the upstream region of the air flow in the U-shaped refrigerant passage formed in each flat heat transfer tube, thereby improving heat exchange efficiency and making it easier for refrigerating machine oil to flow. The object of the present invention is to provide a laminated heat exchanger that can effectively return oil.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するため、本発明は2枚で1組の偏平伝
熱管を構成するU字形の冷媒通路の屈曲部の底部に、各
伝熱管板のくぼみ部よりも空気流と直交する方向に深さ
が深くかつ空気流方向とほぼ平行に液冷媒を集めて流す
溝部を設けたものである。
In order to achieve the above-mentioned object, the present invention provides a heat exchanger tube plate at the bottom of a bent part of a U-shaped refrigerant passage that constitutes a set of two flat heat exchanger tubes in a direction perpendicular to the airflow than the recessed part of each heat exchanger tube plate. A groove is provided which is deep and allows liquid refrigerant to collect and flow approximately parallel to the air flow direction.

〔作用〕[Effect]

各偏平伝熱管内に形成されたU字形の冷媒通路における
空気流の下流側の流域を屈曲部に向かって流れる冷媒は
、冷媒通路の屈曲部に達すると流れ方向を反転させ、冷
媒通路の空気の上流側の流域に至る。前記冷媒通路にお
ける空気流の上流側では、下流側に比べて冷媒の蒸発温
度の被冷却空気との温度差が大きいため、液冷媒の蒸発
が促進され、各偏平伝熱管の冷媒出口では全て蒸発気化
し、ガス冷媒となって各偏平伝熱管より流出する。
The refrigerant flowing toward the bend in the downstream region of the air flow in the U-shaped refrigerant passage formed in each flat heat transfer tube reverses its flow direction when it reaches the bend in the refrigerant passage, and the air in the refrigerant passage reaches the upstream basin. On the upstream side of the air flow in the refrigerant passage, the difference in the evaporation temperature of the refrigerant with the air to be cooled is larger than on the downstream side, so evaporation of the liquid refrigerant is promoted, and all of the refrigerant evaporates at the refrigerant outlet of each flat heat transfer tube. It vaporizes and becomes a gas refrigerant that flows out from each flat heat exchanger tube.

各偏平伝熱管における空気の流れ方向の熱負荷は、空気
と冷媒との温度差に比例して炭化し、空気と冷媒との温
度差が最も大きい空気の流入端で最大となり、以後空気
の流れ方向に沿って急激に低下する。したがって、各偏
平伝熱管内のU字形の冷媒通路のうち、空気の流入側端
部に近い流域を流れる冷媒の蒸発作用が著しい。
The heat load in the air flow direction in each flat heat exchanger tube carbonizes in proportion to the temperature difference between the air and the refrigerant, and reaches its maximum at the air inlet end where the temperature difference between the air and the refrigerant is the greatest. There is a sharp drop along the direction. Therefore, among the U-shaped refrigerant passages in each flat heat transfer tube, the evaporation effect of the refrigerant flowing in the region near the end on the air inflow side is significant.

そこで、本発明ではU字形の冷媒通路の屈曲部の底部に
、各伝熱管板のくぼみ部よりも深くかつ空気流とほぼ平
行に溝部を設けているので、冷媒のUターン時の遠心力
で溝部に液冷媒が多く集まる。
Therefore, in the present invention, a groove is provided at the bottom of the bent part of the U-shaped refrigerant passage, deeper than the recessed part of each heat exchanger tube plate and almost parallel to the air flow, so that the centrifugal force when the refrigerant makes a U-turn is A lot of liquid refrigerant collects in the groove.

そして、前記溝部に集まった液冷媒は、溝部に沿って空
気流の上流側に吹き寄せられ、そのままU字形の冷媒通
路における空気流の上流側の流域に流入するので、熱負
荷が大きい空気流の上流側に液冷媒が多く供給される。
The liquid refrigerant that has gathered in the groove is blown along the groove toward the upstream side of the air flow, and directly flows into the upstream region of the air flow in the U-shaped refrigerant passage. A large amount of liquid refrigerant is supplied to the upstream side.

その結果、前記冷媒通路における空気流の上流側の流域
側の熱交換に寄与しないガス冷媒が占める面積割合が減
少するので、熱交換効率が改善され、冷房能力を大幅に
向上させることができる。
As a result, the area ratio occupied by the gas refrigerant that does not contribute to heat exchange on the upstream side of the air flow in the refrigerant passage is reduced, so the heat exchange efficiency is improved and the cooling capacity can be significantly improved.

また、偏平伝熱管の各伝熱管板の管壁温度が高いため、
管壁に付着した冷凍機油の粘度が低くなっている空気流
の上流側の流域を、冷媒が多く流れるので、冷媒による
油の搬出作用も大幅に改善され、油戻りを向上させるこ
とができる。
In addition, since the tube wall temperature of each heat exchanger tube plate of the flat heat exchanger tube is high,
Since a large amount of refrigerant flows through the upstream region of the air flow where the viscosity of the refrigerating machine oil adhering to the pipe wall is low, the effect of the refrigerant on transporting oil is also significantly improved, and oil return can be improved.

【実施例〕【Example〕

以下、本発明の一実施例を第1図〜第4図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は本発明積層形熱交換器の偏平伝熱管を構成して
いる伝熱管板を空気流と直交する方向から見た正面図、
第2図は第1図のn−n@断面図、第3図は本発明積層
形熱交換器の一実施例を示す斜視図、第4図は前記伝熱
管板の作用説明図である。
FIG. 1 is a front view of the heat exchanger tube plate constituting the flat heat exchanger tube of the laminated heat exchanger of the present invention, viewed from a direction perpendicular to the air flow;
FIG. 2 is a sectional view taken along line nn@ in FIG. 1, FIG. 3 is a perspective view showing an embodiment of the laminated heat exchanger of the present invention, and FIG. 4 is an explanatory view of the operation of the heat exchanger tube plate.

その第1図および第2図に示す偏平伝熱管10は、2枚
の伝熱管板11.12を組み合わせて構成されている。
The flat heat exchanger tube 10 shown in FIGS. 1 and 2 is constructed by combining two heat exchanger tube plates 11 and 12.

前記各伝熱管板11.12は、第1図、第2図に示すよ
うに、外周に形成された接合リブ13と。
As shown in FIGS. 1 and 2, each heat exchanger tube plate 11, 12 has a joining rib 13 formed on its outer periphery.

内部中央に設けられた仕切り壁14と、前記接合リブ1
3および仕切り壁14により区画されたU字形のくぼみ
部15と、このU字形のくぼみ部15の一端部側に形成
された冷媒入口タンク17および冷媒入口19と、同く
ぼみ部15の他端部側に形成された冷媒出口タンク18
および冷媒出口20と、前記くぼみ部15内に設けられ
たリブ21と、U字形のくぼみ部15の屈曲部の底部に
設けられた溝部22と、最下部に形成された折り返し部
23とを有して構成されている。
A partition wall 14 provided at the center of the interior and the joining rib 1
3 and the partition wall 14, a refrigerant inlet tank 17 and a refrigerant inlet 19 formed at one end of the U-shaped recess 15, and the other end of the recess 15. Refrigerant outlet tank 18 formed on the side
and a refrigerant outlet 20, a rib 21 provided in the recess 15, a groove 22 provided at the bottom of the bent portion of the U-shaped recess 15, and a folded portion 23 formed at the lowest part. It is configured as follows.

前記2枚の伝熱管板11.12は、第2図から分かるよ
うに、外周の接合リブ13および中央部の仕切り壁14
を介して密着するようになっている。
As can be seen from FIG. 2, the two heat exchanger tube plates 11 and 12 have a joining rib 13 on the outer periphery and a partition wall 14 in the center.
It is designed to be in close contact with each other.

前記各伝熱管板11.12に形成されたU字形のくぼみ
部15が組み合わされてU字形の冷媒通路16が形成さ
れている。
U-shaped recesses 15 formed in each of the heat exchanger tube plates 11 and 12 are combined to form a U-shaped refrigerant passage 16.

前記U字形の冷媒通路16のゴ端部は各伝熱管板11.
12に形成された冷媒入口タンク17および冷媒入口1
9に連通し、他端部は各伝熱管板11.12に形成され
た冷媒出口タンク18および冷媒入口20に連通してい
る。
The outer end of the U-shaped refrigerant passage 16 is connected to each heat exchanger tube plate 11.
Refrigerant inlet tank 17 and refrigerant inlet 1 formed in 12
9, and the other end communicates with a refrigerant outlet tank 18 and a refrigerant inlet 20 formed in each heat exchanger tube plate 11.12.

前記リブ21は、各伝熱管板11.12のU字形のくぼ
み部15の内部において、幅方向にこの実施例では2列
、上下方向に多数設けられており、また第1図に実線と
破線で示すように、伝熱管板11側のリブ21と伝熱管
板12側のリブ21とは互いにX字状に組み合わされる
ように設けられている。そして、前記多数のリブ21を
X字状に組み合わせることによって、前記冷媒通路16
がジクザグ状に形成されている。
The ribs 21 are provided in two rows in the width direction in this embodiment and in large numbers in the vertical direction inside the U-shaped recess 15 of each heat exchanger tube plate 11.12. As shown, the ribs 21 on the heat exchanger tube plate 11 side and the ribs 21 on the heat exchanger tube plate 12 side are provided so as to be combined with each other in an X-shape. By combining the large number of ribs 21 in an X-shape, the refrigerant passage 16
is formed in a zigzag shape.

前記溝部22は、各伝熱管板11.12に形成されたU
字形のくぼみ部15の屈曲部の底部に、第2図から分か
るように、前記くぼみ部15よりも空気流Aと直交する
方向に深さが深く形成され、また第1図に示すように、
空気流Aとほぼ平行、に長く形成されている。
The groove portion 22 is formed in each heat exchanger tube plate 11.12.
As can be seen from FIG. 2, the bottom of the bent portion of the letter-shaped recess 15 is formed to be deeper in the direction perpendicular to the air flow A than the recess 15, and as shown in FIG.
It is formed long and almost parallel to air flow A.

前記折り返し部23は、第2図に示すように、伝熱管1
1の最下部を」型に折り曲げ、伝熱管12の最下部をL
型に折り曲げて形成され、偏平伝熱管10の間隔りを保
つようになっている。
As shown in FIG. 2, the folded portion 23
Bend the bottom part of heat exchanger tube 12 into an L shape.
It is formed by bending into a mold to maintain the spacing between the flat heat exchanger tubes 10.

前記2枚の伝熱管板11.12を、接合リブ13および
仕切りN、14を溶接等により接合し、1組の偏平伝熱
管10に組み立てている。
The two heat exchanger tube plates 11 and 12 are assembled into a set of flat heat exchanger tubes 10 by joining the joining ribs 13 and the partitions N and 14 by welding or the like.

そして、前記偏平伝熱管10を第3図に示すように、伝
熱フィン24をはさんで複数組配列し、偏平伝熱管10
および伝熱フィン24の列の両側の端部に端板25,2
6を当て、端板26に設けられた冷媒入口バイブ27に
各組の偏平伝熱管10の伝熱管板11.12に設けられ
た冷媒入口19をシリーズに連絡し、同端板26に設け
られた冷媒出口バイブ28に冷媒出口20をシリーズに
連絡することによって、積層形熱交換器が構成されてい
る。
Then, as shown in FIG.
and end plates 25, 2 at both ends of the row of heat transfer fins 24.
6, connect the refrigerant inlet 19 provided in the heat exchanger tube plate 11. A stacked heat exchanger is constructed by connecting the refrigerant outlet 20 to the refrigerant outlet vibrator 28 in series.

前記積層形熱交換器では、冷媒入口バイブ27より流入
した冷媒は、各偏平伝熱管10の伝熱管板11.12に
設けられた冷媒入口19.冷媒タンク17を通じて、U
字形の冷媒通路16を持った全部の偏平伝熱管10内に
ほぼ均一に分配される。
In the laminated heat exchanger, the refrigerant flowing from the refrigerant inlet vibrator 27 flows through the refrigerant inlet 19. provided in the heat exchanger tube plate 11.12 of each flat heat exchanger tube 10. Through the refrigerant tank 17, U
The refrigerant is distributed almost uniformly within all the flat heat exchanger tubes 10 having the shape of the refrigerant passages 16.

前記各偏平伝熱管10の冷媒通路16の流入した冷媒は
、伝熱フィン24を介して空気流Aの下流側の被冷却空
気と熱交換し、第4図に示すように、液冷媒りを蒸発し
てガス冷媒Gの割合を徐々に増しながら、液冷媒りとガ
ス冷媒Gとがほぼ均一に混合した気液二相流となって、
リブ21をX字状に組み合わせて形成されたジグザグ状
の冷媒通路16における空気流Aの下流側の流路lea
をジグザグに流下し、U字形の冷媒通路16における屈
曲部16cに至り、Uターンする。このUターン時に、
冷媒に遠心力が作用し、密度の大きい液冷媒りが外周に
吹き寄せられ、U字形の冷媒通路16の屈曲部16cの
底部に、各伝熱管板11.12のU字形のくぼみ部15
より深くかつ空気流Aとほぼ平行に形成された溝部22
に液冷媒りが多く集まり、気液が分離する。
The refrigerant flowing into the refrigerant passage 16 of each flat heat transfer tube 10 exchanges heat with the air to be cooled on the downstream side of the air flow A via the heat transfer fins 24, and as shown in FIG. While gradually increasing the proportion of the gas refrigerant G through evaporation, the liquid refrigerant and the gas refrigerant G become a two-phase gas-liquid flow in which the liquid refrigerant and the gas refrigerant G are almost uniformly mixed.
A flow path lea on the downstream side of the air flow A in the zigzag-shaped refrigerant passage 16 formed by combining the ribs 21 in an X-shape.
flows down in a zigzag pattern, reaches a bend 16c in the U-shaped refrigerant passage 16, and makes a U-turn. During this U-turn,
A centrifugal force acts on the refrigerant, and a high-density liquid refrigerant is blown to the outer periphery, and the U-shaped recess 15 of each heat exchanger tube plate 11.12 is formed at the bottom of the bent portion 16c of the U-shaped refrigerant passage 16.
Groove portion 22 formed deeper and approximately parallel to air flow A
A large amount of liquid refrigerant gathers in the area, and gas and liquid separate.

前記溝部22内では、同じ流速でもガス冷媒Gに比べて
、密度の大きい液冷媒りの慣性力が大きいため、液冷媒
りは第4回に示すように、慣性力により溝部22内にお
ける空気流への上流側に吹き寄せられる。この吹き寄せ
られた液冷媒りは、そのまま冷媒通路16における空気
流Aの上流側の流路16b内に流入するので、熱負荷が
大きい空気流Aの上流側に液冷媒りが多く供給される。
In the groove 22, the inertia of the liquid refrigerant with a higher density is greater than that of the gas refrigerant G even at the same flow rate. The wind blows upstream of the river. This blown liquid refrigerant flows directly into the flow path 16b on the upstream side of the air flow A in the refrigerant passage 16, so that a large amount of liquid refrigerant is supplied to the upstream side of the air flow A where the heat load is large.

その結果、空気の流れ方向に沿った偏平伝熱管10の熱
負荷分布と、偏平伝熱管10内の液冷媒流量分布とが適
正となる。つまり、U字形の冷媒通路16の空気流Aの
上流側の流路16bにおいて、液冷媒りの蒸発が莞了す
る位置を示す液冷媒りとガス冷媒Gとの境界が第4図に
示すように、空気流Aとほぼ平行となり、熱交換に寄与
しないガス冷媒Gが占める面積割合が減少するので、空
気と冷媒との熱交換効率が改善され、冷房能力が大幅に
向上する。
As a result, the heat load distribution of the flat heat exchanger tube 10 along the air flow direction and the liquid refrigerant flow rate distribution within the flat heat exchanger tube 10 become appropriate. In other words, in the flow path 16b on the upstream side of the air flow A in the U-shaped refrigerant path 16, the boundary between the liquid refrigerant and the gas refrigerant G, which indicates the position where the liquid refrigerant evaporates, is as shown in FIG. In addition, since the area ratio occupied by the gas refrigerant G, which is almost parallel to the air flow A and does not contribute to heat exchange, is reduced, the heat exchange efficiency between the air and the refrigerant is improved, and the cooling capacity is greatly improved.

また、空気の最上流側は、流入する空気温度が高く、熱
負荷も大きいので、冷媒蒸発温度と偏平伝熱管10の管
壁温度との温度差が大きく保たれている。一方、偏平伝
熱管10の蒸発温度は一定であるから管壁温度が高く、
管壁に付着する冷凍機油の粘度が大幅に低下して流れや
すくなっており、また冷媒流量が多く、流速が速くなる
ので、これらが相俟って冷凍機油の排出作用が大幅に改
善され、油戻りが良好となる。
Furthermore, since the inflowing air temperature is high and the heat load is large on the most upstream side of the air, the temperature difference between the refrigerant evaporation temperature and the tube wall temperature of the flat heat exchanger tube 10 is maintained large. On the other hand, since the evaporation temperature of the flat heat exchanger tube 10 is constant, the tube wall temperature is high;
The viscosity of the refrigerating machine oil that adheres to the pipe wall is significantly reduced, making it easier to flow, and the refrigerant flow rate is large and the flow speed is faster. Together, these factors greatly improve the refrigerating machine oil draining effect. Oil returns well.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によれば、U字形の冷媒通路の屈曲
部の底部に、各伝熱管板のくぼみ部より空気流と直交す
る方向に深さが深くかつ空気流とほぼ平行に溝部を設け
ているので、冷媒のUターン時の遠心力で溝部に液冷媒
が多く集まり、この前記溝部に集まった液冷媒は、溝部
に沿って空気流の上流側に吹き寄せられ、そのままU字
形の冷媒通路における空気流の上流側の流域に流入する
ので、熱負荷が大きい空気流の上流側に液冷媒が多く供
給される結果、前記冷媒通路における空気流の上流側の
流域内の熱交換に寄与しないガス冷媒が占める面積割合
が減少するので、熱交換効率が改善されるため、冷房能
力を大幅に向上させ得る効果がある。
According to the present invention described above, a groove portion is provided at the bottom of the bent portion of the U-shaped refrigerant passage, the groove portion being deeper in the direction perpendicular to the air flow than the recessed portion of each heat exchanger tube plate and substantially parallel to the air flow. Because of this, a large amount of liquid refrigerant gathers in the groove due to the centrifugal force when the refrigerant makes a U-turn, and the liquid refrigerant that gathers in the groove is blown toward the upstream side of the air flow along the groove, and continues into the U-shaped refrigerant passage. Since the liquid refrigerant flows into the upstream region of the air flow in the refrigerant passage, a large amount of liquid refrigerant is supplied to the upstream side of the air flow with a large heat load, and as a result, it does not contribute to heat exchange in the upstream region of the air flow in the refrigerant passage. Since the area ratio occupied by the gas refrigerant is reduced, heat exchange efficiency is improved, which has the effect of significantly improving cooling capacity.

また、本発明によれば、偏平伝熱管の各伝熱管板の管壁
温度が高いため、管壁に付着した冷凍機油の粘度が低く
なっている空気流の上流側の流域を冷媒が多く流れるの
で、冷媒による油の搬出作用も大幅に改善され、油戻り
を向上させ得る効果がある。
Further, according to the present invention, since the tube wall temperature of each heat exchanger tube sheet of the flat heat exchanger tube is high, a large amount of refrigerant flows in the upstream region of the air flow where the viscosity of the refrigerating machine oil adhering to the tube wall is low. Therefore, the effect of carrying out the oil by the refrigerant is greatly improved, which has the effect of improving oil return.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明積層形熱交換器の偏平伝熱管を構成して
いる伝熱管板を空気流と直交する方向から見た正面図、
第2図は第1図の■−■線断面図、第3図は本発明状層
形熱交換器の一実施例を示す斜視図、第4図は前記伝熱
管板の作用説明図、第5図は従来技術を示すもので、伝
熱管板を空気流と直交する方向から見た正面図である。
FIG. 1 is a front view of the heat exchanger tube plate constituting the flat heat exchanger tube of the laminated heat exchanger of the present invention, viewed from a direction perpendicular to the air flow;
FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, FIG. 3 is a perspective view showing an embodiment of the layered heat exchanger of the present invention, FIG. FIG. 5 shows the prior art, and is a front view of a heat exchanger tube plate viewed from a direction perpendicular to the air flow.

Claims (1)

【特許請求の範囲】[Claims] 1.少なくともU字形のくぼみ部と、このくぼみ部の一
端部に連通する冷媒入口と、くぼみ部の他端部に連通す
る冷媒出口とを有する2枚の伝熱管板を組み合わせて1
組の偏平伝熱管を構成し、この偏平伝熱管を伝熱フイン
をはさんで複数組積層し、前記2枚の伝熱管板のくぼみ
部が合わさつて形成された各組の偏平伝熱管内のU字形
の冷媒通路を各伝熱管板に設けられた冷媒入口および冷
媒出口を通じてシリーズに連通させた積層形熱交換器に
おいて、前記U字形の冷媒通路の屈曲部の底部に、各伝
熱管板のくぼみ部よりも空気流と直交する方向に深さが
深くかつ空気流方向とほぼ平行に液冷媒を集めて流す溝
部を設けたことを特徴とする積層形熱交換器。
1. A combination of two heat transfer tube plates each having at least a U-shaped recess, a refrigerant inlet communicating with one end of the recess, and a refrigerant outlet communicating with the other end of the recess.
A plurality of sets of flat heat exchanger tubes are constructed, and a plurality of sets of the flat heat exchanger tubes are stacked with heat transfer fins in between, and each set of flat heat exchanger tubes is formed by combining the recessed portions of the two heat exchanger tube plates. In a laminated heat exchanger in which U-shaped refrigerant passages are connected in series through a refrigerant inlet and a refrigerant outlet provided in each heat exchanger tube plate, a base plate of each heat exchanger tube plate is placed at the bottom of the bent portion of the U-shaped refrigerant passage. A laminated heat exchanger characterized in that a groove portion is provided which is deeper in a direction perpendicular to the airflow than the recessed portion and collects and flows a liquid refrigerant substantially parallel to the airflow direction.
JP9284989A 1989-04-14 1989-04-14 Lamination type heat exchanger Pending JPH02272299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9284989A JPH02272299A (en) 1989-04-14 1989-04-14 Lamination type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9284989A JPH02272299A (en) 1989-04-14 1989-04-14 Lamination type heat exchanger

Publications (1)

Publication Number Publication Date
JPH02272299A true JPH02272299A (en) 1990-11-07

Family

ID=14065877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9284989A Pending JPH02272299A (en) 1989-04-14 1989-04-14 Lamination type heat exchanger

Country Status (1)

Country Link
JP (1) JPH02272299A (en)

Similar Documents

Publication Publication Date Title
CN101644512B (en) Heat exchanger
US4274482A (en) Laminated evaporator
US7367388B2 (en) Evaporator for carbon dioxide air-conditioner
KR20060025082A (en) An evaporator using micro- channel tubes
JP2009156532A (en) Heat exchanger
KR100497847B1 (en) Evaporator
JP2001324244A (en) Heat exchanger
JPS58217195A (en) Heat exchanger
JP6842915B2 (en) Evaporator
JP2002081795A (en) Evaporator
JPH09189490A (en) Heat exchanger and its manufacture
JPH0355490A (en) Heat exchanger
JPH11201685A (en) Heat-exchanger device
JPS633153A (en) Refrigerant evaporator
JPH03140795A (en) Lamination type heat exchanger
JP6785137B2 (en) Evaporator
JP2004144395A (en) Refrigerant evaporator
JPH02106697A (en) Lamination type heat exchanger
JPH02171591A (en) Laminated type heat exchanger
JPH02272299A (en) Lamination type heat exchanger
JP4547205B2 (en) Evaporator
JPH03117887A (en) Heat exchanger
JPH0460387A (en) Laminated heat exchanger
JPH0345301B2 (en)
JPH05340686A (en) Heat-exchanger