JPH02270934A - High tensile strength steel having excellent stress relief annealing embrittlement resistance in heat affected zone - Google Patents

High tensile strength steel having excellent stress relief annealing embrittlement resistance in heat affected zone

Info

Publication number
JPH02270934A
JPH02270934A JP9182389A JP9182389A JPH02270934A JP H02270934 A JPH02270934 A JP H02270934A JP 9182389 A JP9182389 A JP 9182389A JP 9182389 A JP9182389 A JP 9182389A JP H02270934 A JPH02270934 A JP H02270934A
Authority
JP
Japan
Prior art keywords
stress relief
relief annealing
less
steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9182389A
Other languages
Japanese (ja)
Inventor
Ken Kanetani
金谷 研
Hisashi Inoue
井上 尚志
Kazunari Yamato
山戸 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9182389A priority Critical patent/JPH02270934A/en
Publication of JPH02270934A publication Critical patent/JPH02270934A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the high tensile strength steel for welded structure having excellent stress relief annealing embrittlement resistance by limiting each amt. of alloy elements to be added and limiting their total amt. to be added. CONSTITUTION:The above high tensile strength steel for welded structure contains, by weight, <=0.18% C, <=0.70% Si, <=2.0% Mo, <=2.0% Mn, <=0.020% P and 0.005 to 0.10% Al, according to the require for strength and toughness, furthermore contains one or more kinds among <=0.7% Cu, <=2.0% Ni, <=1.0% Cr, <=1.0% Mo, <=0.2% V, <=0.05% Nb, <=0.03% Ti and <=0.015% B, which has the strong point of satisfying the inequality. According to the fig., in the steel satisfying the limited componental area in the above-mentioned manner and having <=2.0% Ceq (S) value, toughness of <=-35 deg.C vTr6 is secured even after subjected to heating treatment corresponding to stress relief annealing. Thus, it is clear that the steel has stress relief annealing resistance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶接後に応力除去焼鈍を要求される鋼構造物に
おいて、特に溶接部の靭性を必要とする部材に使用され
る高張力鋼に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to high tensile strength steel used in steel structures that require stress relief annealing after welding, particularly for members that require toughness in welded areas. It is.

(従来の技術) 従来より上記した用途に使用される鋼材の応力除去焼鈍
脆化を防止する目的で、いくつかの提案がなされている
。例えば、特開昭52−%19号、特開昭54−458
12号公報では、脆化の主たる要因とされている鋼中の
PまたはNを極力低減させることによる改善、特開昭5
2−9820号公報では希土類元素やCa等の特殊元素
を鋼中に含有させることによる改善等が提案されている
(Prior Art) Several proposals have been made for the purpose of preventing stress relief annealing embrittlement of steel materials used for the above-mentioned purposes. For example, JP-A-52-%19, JP-A-54-458
Publication No. 12 describes an improvement by reducing P or N in steel as much as possible, which is considered to be the main cause of embrittlement.
No. 2-9820 proposes improvements by incorporating special elements such as rare earth elements and Ca into steel.

しかし、これらの提案は脆化を防止する点で必ずしも充
分でない上に、鋼材の製造コストを上昇させるなどの欠
点があり、新たなる技術が求められている。
However, these proposals are not necessarily sufficient in terms of preventing embrittlement and have drawbacks such as increasing the manufacturing cost of steel materials, and new techniques are required.

(発明が解決しようとする課題) 本発明は上記した現状を打開する一方策として、新たな
る耐応力除去焼鈍脆化鋼を提案するものである。
(Problems to be Solved by the Invention) The present invention proposes a new stress-relieving annealed embrittlement steel as a solution to the above-mentioned current situation.

従来より、溶接熱影響粗粒部は高温にさらされるため鋼
中の合金元素が固溶した状態にあり、これらが応力除去
焼鈍時に析出していわゆる析出脆化により靭性が劣化す
る、または鋼中に不可避的に含Hされる不純物元素が応
力除去焼鈍時に粗粒旧オーステナイト粒界に偏析し、い
わゆる焼戻し脆性を主因として靭性を著しく劣化させる
ことなどが知られている。
Conventionally, since the weld heat-affected coarse grain zone is exposed to high temperatures, the alloying elements in the steel are in a solid solution state, and these precipitate during stress relief annealing, resulting in so-called precipitation embrittlement, which deteriorates toughness, or It is known that impurity elements that are unavoidably contained in H are segregated at grain boundaries of coarse prior austenite during stress relief annealing, resulting in significant deterioration of toughness mainly due to so-called temper brittleness.

これらの脆化を防止する対策として、前述したごとく鋼
中の析出脆化元素の制限や、焼戻し脆化の誘因となる不
純物元素の低減などが提案されているところである。
As measures to prevent these embrittlements, proposals have been made to limit the amount of precipitated embrittlement elements in steel and to reduce the amount of impurity elements that cause temper embrittlement, as described above.

しかし、前者の対策は高強度鋼には適用が難しく、更に
70キロ以上の高強度鋼では不純物元素の低減による効
果が期待しにくい等の問題点があった。
However, the former measure is difficult to apply to high-strength steel, and furthermore, there are problems in that it is difficult to expect the effect of reducing impurity elements in high-strength steel of 70 kg or more.

本発明者らはこのような現状に鑑み、耐応力除去焼鈍後
の靭性の劣化しない高強度鋼を開発すべく膨大な研究を
行った結果、これまでに採られてきた経済性を無視した
対策によらず、合金元素量の制限と併せてその組合せを
限定することにより、応力除去焼鈍後の靭性の優れた高
強度鋼を提案するものである。
In view of the current situation, the present inventors conducted extensive research to develop high-strength steel that does not deteriorate in toughness after stress-relieving annealing, and as a result, we have developed measures that ignore economic efficiency that have been taken up until now. By limiting the amount of alloying elements and the combination thereof, we propose a high-strength steel with excellent toughness after stress relief annealing.

(課題を解決するための手段、作用) 本発明はこのようにしてなされたもので、その要旨とす
るところは、重量%でC:O,1,8%以下、S にO
,70%以下、Mn:2.0%以下、P :0.020
%以下、Δρ:0.005%〜0.IO%更に強度靭性
の要求に応じて、Cu:o、7%以下、N I:2.0
%以下、C「コ:0.0%以下、Mo::0.0%以下
、V :0.2%以下、Nl++0.05%以下、TI
:0.03%以下、B :0.015%以下を1種又は
2種以上含み、残部Fe及び不純物からなり、同時にC
eq(S)=C+:0.9SI+0.64Mn+42P
+0.2Cu+0.2Ni+0.4Cr+1Mo+10
Nb+17TI≦2.0%を満足することを特徴とする
溶接熱影響部の耐応力除去焼鈍脆化特性の優れた高張力
鋼である。
(Means and effects for solving the problem) The present invention has been made in this way, and its gist is that C:O, 1.8% or less in weight percent, S and O
, 70% or less, Mn: 2.0% or less, P: 0.020
% or less, Δρ: 0.005% to 0. IO% Further, according to the requirements for strength and toughness, Cu: o, 7% or less, N I: 2.0
% or less, C: 0.0% or less, Mo: 0.0% or less, V: 0.2% or less, Nl++ 0.05% or less, TI
: 0.03% or less, B : 0.015% or less, the balance consists of Fe and impurities, and at the same time C
eq(S)=C+:0.9SI+0.64Mn+42P
+0.2Cu+0.2Ni+0.4Cr+1Mo+10
It is a high tensile steel with excellent stress relief annealing embrittlement properties in the weld heat affected zone, which satisfies Nb+17TI≦2.0%.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

まず、合金元素含有量を前記範囲に限定した理由を述べ
る。
First, the reason why the alloying element content was limited to the above range will be described.

Cは強度確保のために添加するが、0,18%を超える
と鋼材の靭性と溶接性および耐応力除去焼鈍脆化特性が
劣化するので0.18%を上限とした。
C is added to ensure strength, but if it exceeds 0.18%, the toughness, weldability, and stress relief annealing embrittlement properties of the steel deteriorate, so 0.18% is set as the upper limit.

Siは強度確保と脱酸のために0.03%以上を必要と
するが、0.70%を超えると靭性が劣化するのでこれ
を上限とした。
Si requires a content of 0.03% or more to ensure strength and deoxidize, but if it exceeds 0.70%, toughness deteriorates, so this was set as the upper limit.

Mnは強度確保のために添加するが、2.0%を超える
と溶接性および耐応力除去焼鈍脆化特性が劣化するので
これを上限とした。
Mn is added to ensure strength, but if it exceeds 2.0%, weldability and stress relief annealing embrittlement properties deteriorate, so this is set as the upper limit.

Pは0.02%を超えて添加すると本発明の効果である
耐応力除去焼鈍脆化特性が発揮できないのでこれを上限
とした。
If P is added in an amount exceeding 0.02%, the stress relief annealing embrittlement property, which is an effect of the present invention, cannot be exhibited, so this is set as the upper limit.

AΩは通常脱酸元素として用いられている範囲である0
、005〜0.100%に限定した。
AΩ is 0, which is the range normally used as a deoxidizing element.
, 005 to 0.100%.

Cu、Ni 、Cr、Mo、V、Nb、Ti 、Bは各
々強度・靭性向上を目的として必須添加元素であるが、
上記限定範囲を超えて添加すると溶接性および耐応力除
去焼鈍脆化特性が劣化するのでこれを上限とした。
Cu, Ni, Cr, Mo, V, Nb, Ti, and B are each essential addition elements for the purpose of improving strength and toughness.
If added in excess of the above-mentioned limited range, weldability and stress relief annealing embrittlement properties would deteriorate, so this was set as the upper limit.

本発明では上記したごとく、個々の合金元素添加量を制
限すると共に、これらを組み合わせた総合的添加量:C
eq(S)値が特定の式を満足して初めてその効果を発
揮するものであり、この点について以下に実験結果をも
って説明する。
In the present invention, as described above, the amount of each alloying element added is limited, and the total amount added by combining these elements is: C
The effect is exhibited only when the eq(S) value satisfies a specific formula, and this point will be explained below using experimental results.

Ccq(S)式は60鋼種に及ぶ供試鋼に溶接再現熱サ
イクル(最高加熱温度: 1400℃、冷却時間800
〜500℃二10sec)を与えた後、これらに応力除
去焼鈍に相当する580℃/3Hの加熱及び50℃/H
の徐冷処理を与え、同処理後の靭性をシャルピー試験に
より評価し、化学組成との相関関係を重回帰計算により
もとめたものである。
The Ccq(S) formula performs a welding reproduction thermal cycle (maximum heating temperature: 1400℃, cooling time 800℃ on 60 steel types).
~500°C for 10 seconds), then heated at 580°C/3H and 50°C/H, which corresponds to stress relief annealing.
The toughness after the same treatment was evaluated by a Charpy test, and the correlation with the chemical composition was determined by multiple regression calculation.

なお、溶接熱サイクル条件を冷却速度の速い上記条件に
決定した理由は、応力除去焼鈍による靭性の低下は、溶
接熱影響部の組織が低温変態組織であるほど大きいこと
が知られている為である。
The reason why the welding thermal cycle conditions were determined to be the above conditions with a fast cooling rate is because it is known that the decrease in toughness due to stress relief annealing is greater as the structure of the weld heat affected zone becomes a low-temperature transformed structure. be.

また、本条件で応力除去焼鈍後に優れた靭性が得られれ
ば、実際の溶接継手では多層溶接となるため切欠き先端
での脆化域が少ないこと、溶接金属が混入することなど
の要因があるため、これ以上の継手靭性が得られること
は必然である。
In addition, if excellent toughness is obtained after stress relief annealing under these conditions, actual welded joints will be multilayer welded, so there will be fewer embrittled areas at the notch tip, and there will be weld metal mixed in, among other factors. Therefore, it is inevitable that a higher joint toughness can be obtained.

実験結果の内、Ceq(S)値が1 、7〜2 、4%
の範囲内のデータを第1図に示す。
Among the experimental results, Ceq(S) value is 1, 7~2, 4%
Figure 1 shows the data within the range.

第1図によれば本発明限定成分範囲を満足しかつ、Cc
q(S)値:2,0%以下の鋼は応力除去焼鈍相当の熱
処理後もvTrs: −35℃以下の靭性が確保され、
優れた耐応力除去焼鈍特性を有することが明瞭である。
According to FIG. 1, Cc
Steel with q(S) value: 2.0% or less maintains toughness of vTrs: -35℃ or less even after heat treatment equivalent to stress relief annealing,
It is clear that it has excellent stress relief annealing properties.

(実 施 例) 第1表に供試した鋼の組成、Ceq(S) 、母材強度
、及び溶接再現熱サイクル材の応力除去焼鈍後の靭性値
:vTrsを示す。
(Example) Table 1 shows the composition, Ceq(S), base metal strength, and toughness value of the welding simulated thermal cycle material after stress relief annealing: vTrs of the steel used.

表に明らかな通り、本発明鋼は比較鋼に比べ応力除去焼
鈍後の靭性が優れていることが明瞭である。
As is clear from the table, it is clear that the steel of the present invention has superior toughness after stress relief annealing compared to the comparative steel.

(発明の効果) 以上の説明から明らかなように、個々の合金元素添加量
を制限すると共に、これらの総合的添加量を制限するこ
とにより、優れた耐応力除去焼鈍脆化特性を有する溶接
構造用高張力鋼の製造が可能であることが明らかである
。従って、本発明は産業上大きな効果を有するものであ
るといえる。
(Effects of the Invention) As is clear from the above explanation, by limiting the amount of each alloying element added as well as the total amount of these elements added, a welded structure with excellent stress relief annealing embrittlement properties can be obtained. It is clear that it is possible to produce high-strength steel for industrial use. Therefore, it can be said that the present invention has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCeq(S)値と応力除去焼鈍後の靭性の関係
を示す図表である。 代 理 人  弁理士  茶野木 立 失策1図 f、6    :0.B     2.0    2.
2    2.4(%すCe号(S)
FIG. 1 is a chart showing the relationship between Ceq(S) value and toughness after stress relief annealing. Agent Patent Attorney Tate Chanogi Mistake 1 Figure f, 6:0. B 2.0 2.
2 2.4 (% Ce No. (S)

Claims (1)

【特許請求の範囲】 重量%で C:0.18%以下 Si:0.70%以下 Mn:2.0%以下 P:0.020%以下 Al:0.005%〜0.10% 更に強度靭性の要求に応じて、 Cu:0.7%以下 Ni:2.0%以下 Cr:1.0%以下 Mo:1.0%以下 V:0.2%以下 Nb:0.05%以下 Ti:0.03%以下 B:0.015%以下 を1種又は2種以上含み、残部Fe及び不純物からなり
、同時に Ceq(S)=C+1.9Si+0.64Mn+42P
+0.2Cu+0.2Ni+0.4Cr+1Mo+10
Nb+17Ti≦2.0% を満足することを特徴とする溶接熱影響部の耐応力除去
焼鈍脆化特性の優れた高張力鋼。
[Claims] C: 0.18% or less Si: 0.70% or less Mn: 2.0% or less P: 0.020% or less Al: 0.005% to 0.10% In addition, strength Depending on toughness requirements, Cu: 0.7% or less Ni: 2.0% or less Cr: 1.0% or less Mo: 1.0% or less V: 0.2% or less Nb: 0.05% or less Ti : 0.03% or less B: Contains one or more types of 0.015% or less, the balance consists of Fe and impurities, and at the same time Ceq(S) = C + 1.9Si + 0.64Mn + 42P
+0.2Cu+0.2Ni+0.4Cr+1Mo+10
A high-strength steel with excellent stress relief annealing embrittlement properties in a weld heat affected zone, characterized by satisfying Nb+17Ti≦2.0%.
JP9182389A 1989-04-13 1989-04-13 High tensile strength steel having excellent stress relief annealing embrittlement resistance in heat affected zone Pending JPH02270934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9182389A JPH02270934A (en) 1989-04-13 1989-04-13 High tensile strength steel having excellent stress relief annealing embrittlement resistance in heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9182389A JPH02270934A (en) 1989-04-13 1989-04-13 High tensile strength steel having excellent stress relief annealing embrittlement resistance in heat affected zone

Publications (1)

Publication Number Publication Date
JPH02270934A true JPH02270934A (en) 1990-11-06

Family

ID=14037338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9182389A Pending JPH02270934A (en) 1989-04-13 1989-04-13 High tensile strength steel having excellent stress relief annealing embrittlement resistance in heat affected zone

Country Status (1)

Country Link
JP (1) JPH02270934A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119368A1 (en) * 2008-03-28 2009-10-01 株式会社神戸製鋼所 High-strength steel sheet excellent in resistance to stress-relief annealing and low-temperature joint toughness
WO2014103629A1 (en) 2012-12-28 2014-07-03 新日鐵住金株式会社 STEEL SHEET HAVING YIELD STRENGTH OF 670-870 N/mm2 AND TENSILE STRENGTH OF 780-940 N/mm2

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119368A1 (en) * 2008-03-28 2009-10-01 株式会社神戸製鋼所 High-strength steel sheet excellent in resistance to stress-relief annealing and low-temperature joint toughness
US8398787B2 (en) 2008-03-28 2013-03-19 Kobe Steel, Ltd. High-strength steel sheet excellent in resistance to stress-relief annealing and low temperature joint toughness
WO2014103629A1 (en) 2012-12-28 2014-07-03 新日鐵住金株式会社 STEEL SHEET HAVING YIELD STRENGTH OF 670-870 N/mm2 AND TENSILE STRENGTH OF 780-940 N/mm2
KR20150023077A (en) 2012-12-28 2015-03-04 신닛테츠스미킨 카부시키카이샤 STEEL SHEET HAVING YIELD STRENGTH OF 670-870N/mm^2 AND TENSILE STRENGTH OF 780-940N/mm^2
US9499873B2 (en) 2012-12-28 2016-11-22 Nippon Steel & Sumitomo Metal Corporation Steel plate having yield strength of 670 to 870 N/mm2 and tensile strength of 780 to 940 N/mm2

Similar Documents

Publication Publication Date Title
JP3996824B2 (en) Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance
JP3446294B2 (en) Duplex stainless steel
JPS629646B2 (en)
JP3699077B2 (en) Base material for clad steel plate excellent in low temperature toughness of weld heat affected zone and method for producing the clad steel plate
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JPS6119767A (en) Austenite stainless steel for low temperature
JPS6352090B2 (en)
JP2817136B2 (en) High-strength low-alloy heat-resistant steel with excellent weld strength
JPH02270934A (en) High tensile strength steel having excellent stress relief annealing embrittlement resistance in heat affected zone
JPS62174323A (en) Manufacture of nontempered thick steel plate having 50kgf/mm2 yield strength or more and superior weldability
JP3215955B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent elongation properties
JP2020204091A (en) High strength steel sheet for high heat input welding
JP2582147B2 (en) Method for producing low temperature nickel steel sheet with excellent weld toughness
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JP3004784B2 (en) High toughness ferritic stainless steel for high temperatures
JPS5953653A (en) Very thick steel for low temperature use with superior toughness at weld zone
JP3620573B2 (en) High strength steel plate with excellent weldability
JP2659814B2 (en) Manufacturing method of high strength low alloy heat resistant steel
JP2521547B2 (en) Low-temperature steel manufacturing method
JPS58157594A (en) Method for welding high strength steel materials
JP2777538B2 (en) High-strength steel sheet of 690 N / mm2 or more with excellent weldability and HAZ toughness
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JP3837083B2 (en) One-pass large heat input welding method with excellent weld heat-affected zone toughness
JP3051274B2 (en) Clad steel and method for manufacturing clad steel
JP2583114B2 (en) Low carbon Cr-Mo steel sheet with excellent weld cracking resistance