JPH02270279A - Conjoining method for oxide superconductors - Google Patents

Conjoining method for oxide superconductors

Info

Publication number
JPH02270279A
JPH02270279A JP1092269A JP9226989A JPH02270279A JP H02270279 A JPH02270279 A JP H02270279A JP 1092269 A JP1092269 A JP 1092269A JP 9226989 A JP9226989 A JP 9226989A JP H02270279 A JPH02270279 A JP H02270279A
Authority
JP
Japan
Prior art keywords
fine powder
wire
filled
conjoining
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1092269A
Other languages
Japanese (ja)
Inventor
Seiichi Watanabe
征一 渡辺
Kensuke Fukushima
謙輔 福島
Toshiro Tanaka
俊郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1092269A priority Critical patent/JPH02270279A/en
Publication of JPH02270279A publication Critical patent/JPH02270279A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To expedite putting each oxide superconducting wire-rod to practical use by opposing conjoining planes orthogonal respectively to their orientation planes together at a space therebetween, then filling specified fine-powder into the space and applying a magnetic field in a direction vertical to each of the orientation planes to the conjoining portion for being heated and sintered. CONSTITUTION:Conjoining planes orthogonal respectively to their corresponding orientation planes are opposed together at a space therebetween, then fine powder 2 made of the same construction material as a superconductor and yet being justified in regarding the powder substantially as a monocrystal is filled into the space, a magnetic field H in a direction vertical to each of the orientation planes is applied to the conjoining portion centering on the fine powder-filled portion, and the fine powder-filled portion is heated and sintered while pressurizing it in its bilateral directions reducing the space filled with the fine powder 2. Each superconducting wire-rod 1 further has 'each two-dimensional reticulate plane consisting of a Cu ion and an O ion in its unit cell'. Also the fine powder 2 made of an oxide superconducting material (the same material as each superconducting wire-rod 1 forming a main body) is required to have grading of such an extent as being justified in regarding substantially as a monocrystal. The same superconductivity as the main body can thus be given to the conjoining portion for putting each wire-rod made of the oxide superconducting material to practical use.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、酸化物超伝導体(例えばテープ状の線材)
を接合する方法に関し、特に接合部が母材に等しい超伝
導特性を持ち、長尺の超伝導体としても優れた性質を保
持できるような接合方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to an oxide superconductor (for example, a tape-shaped wire)
In particular, the present invention relates to a joining method in which the joined portion has superconducting properties equal to those of the base material and can maintain excellent properties even as a long superconductor.

(従来の技術) 高い臨界温度を持つYIBalCu30g−5系の酸化
物超伝導物質が発見されて以来、その実用化技術の開発
が盛んに行われている。特に、超伝導コイルや超伝導送
電線の実用化を目指して、酸化物超伝導線材の製作が試
みられているが、そこには次のような問題がある。
(Prior Art) Since the discovery of a YIBalCu30g-5 based oxide superconducting material having a high critical temperature, development of technology for its practical use has been actively conducted. In particular, attempts have been made to produce oxide superconducting wires with the aim of practical application of superconducting coils and superconducting power transmission lines, but there are the following problems.

1)酸化物超伝導材料は臨界電流密度に大きな異方性を
もつ、Cu−0の2次元網目状の面内には大きな臨界電
流密度を持つが、この直角方向にはわずかの電流密度の
電流しか流れない。
1) Oxide superconducting materials have large anisotropy in critical current density.Although there is a large critical current density in the plane of the two-dimensional mesh of Cu-0, there is a small current density in the direction perpendicular to this. Only current flows.

2) そのため、酸化物超伝導材料を送電線や強磁場発
生コイル用に線材として使用するとき、高い臨界電流密
度を持たないと実用にならないので、結晶配向させた線
材を使う、結晶配向させた線材としては銀のシース管に
酸化物を詰め、圧延することによってCu−0結合面を
テープ面に平行にさせたテープ状(フープ材)の線材が
最も有力である。
2) Therefore, when using oxide superconducting materials as wires for power transmission lines or strong magnetic field generating coils, it is not practical unless they have a high critical current density. The most likely wire rod is a tape-shaped wire rod (hoop material) in which a silver sheath tube is filled with oxide and rolled so that the Cu-0 bonding surface is parallel to the tape surface.

3)シかし折角、結晶配向を高めて臨界電流密度を改善
した超伝導体(線材)が得られても、これを接合したと
きの接合部が同じような配向性をもうていなければ、シ
ステム全体として高い電流を流せないことになる。即ち
、接合部に本体と同じ超伝導特性を持たせることが酸化
物超伝導物質の線材の実用化のためには必須である。
3) Even if a superconductor (wire) with enhanced crystal orientation and improved critical current density is obtained, if the joints when joined do not have the same orientation, This means that a high current cannot flow through the system as a whole. That is, it is essential for the joint part to have the same superconducting properties as the main body for the practical use of wires made of oxide superconducting materials.

(発明が解決しようとする課題) 本発明の目的は、接合部分においても線材本体と同等か
それに近い結晶配向性をもち、一定方向(線材の長手方
向)の臨界電流密度の高い酸化物超伝導体を製造する方
法を提供することにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to create an oxide superconductor that has a crystal orientation equal to or close to that of the wire main body in the joint part and has a high critical current density in a certain direction (the longitudinal direction of the wire). The purpose is to provide a method for manufacturing the body.

なお、本明細書で線材というのは、主としてテープ状の
長尺材のことであるが、必ずしも一般に「線」と呼ばれ
るものだけに限らず、ブロック状或いはシート状のもの
も含む。
Note that in this specification, a wire mainly refers to a long tape-like material, but it is not necessarily limited to what is generally called a "wire", but also includes a block-like or sheet-like material.

(!1題を解決するための手段) 線材の接合方法としては、第1図に示すように、端部を
重ね合わせて圧延または固体拡散などの方法でつなぐこ
とが考えられる。しかしこの方法では、重ね合わせた面
の結晶配向性が大きく乱れるだけでなく、電流の流れ難
いC軸方向に電流ベクトルの成分を持たざるを得ない、
すなわち、重ね合わせた界面を横切ってC軸方向に電流
を流さざるを得ないことになるので、接合部の臨界電流
密度は大きく低下する。
(Means for Solving Problem 1) As a method for joining wire rods, as shown in FIG. 1, it is conceivable to overlap the ends and connect them by a method such as rolling or solid diffusion. However, with this method, not only the crystal orientation of the superimposed planes is greatly disturbed, but also the current vector must have a component in the C-axis direction, where it is difficult for current to flow.
In other words, since the current has to flow in the C-axis direction across the superimposed interface, the critical current density at the joint is greatly reduced.

第2図は、線材の端面を付き合わせて接合する方法であ
る。しかしこの方法でも、線材の端面同志を直接に固体
間拡散結合するのでは、接合部に空孔が生成し易く、結
晶配向性の乱れも大きい。
FIG. 2 shows a method of joining the wire rods by bringing their end faces together. However, even in this method, if the end surfaces of the wire rods are directly subjected to solid-solid diffusion bonding, pores are likely to be generated at the bonded portion, and the crystal orientation will be greatly disturbed.

本発明者は、付き合わせた線材の端面の間に微粉末状の
超伝導物質を介在させ、特殊な条件の下で固体拡散によ
って接合する方法によって、接合部の配向性に優れた線
材が得られることを確認した0本発明の要旨は、下記の
とおりである。
The present inventor has discovered that a wire with excellent orientation at the bonded portion can be obtained by interposing a finely powdered superconducting material between the end faces of wires that are brought together and bonding by solid state diffusion under special conditions. The gist of the present invention is as follows.

CuイオンとO(酸素)イオンとが2次元的に網目状に
結合した面が一つの面に平行に配向している配向面を有
する酸化物系超伝導体の接合方法であって、上記の配向
面に直角の接合面を相互に隙間をおいて対向させ、その
隙間に上記の超伝導体と同じ材質で実質的に単結晶とみ
なせる微粉末を充填し、その微粉末充填部を中心とした
接合部に上記配向面に垂直方向の磁場を付加し、かつ微
粉末を充填した隙間を狭める方向に加圧しつつ加熱焼結
する酸化物超伝導体の接合方法。
A method for joining an oxide superconductor having an oriented plane in which a plane in which Cu ions and O (oxygen) ions are bonded in a two-dimensional network is oriented parallel to one plane, the method comprising: The bonding surfaces perpendicular to the orientation planes are placed opposite to each other with a gap between them, and the gap is filled with fine powder, which is made of the same material as the superconductor described above and can be considered to be essentially a single crystal. A method for joining oxide superconductors, in which a magnetic field perpendicular to the orientation plane is applied to the joined part, and heating and sintering is performed while applying pressure in a direction to narrow the gap filled with fine powder.

第3図は、本発明方法の原理を説明する図である。同図
において、1は接合すべき超伝導線材(前記のとおり、
ブロックまたはシートのような形状であってもよい)で
ある0、この線材は、「単位胞の中にCuイオンとOイ
オンとが2次元網目状Φ面ノを有するもので、例えば、
YIBaxCusO,−J、B115rlCaxCus
Oy、 TltBalCamCuiOx等の酸化物超伝
導物質からなる。そして、上記の2次元網目状の面が線
材の面3に平行に配向している。従って、線材の長手方
向に高い臨界電流密度をもっている。
FIG. 3 is a diagram explaining the principle of the method of the present invention. In the figure, 1 is the superconducting wire to be joined (as mentioned above,
(It may be in the shape of a block or a sheet), and this wire has a two-dimensional network of Cu ions and O ions in a unit cell, for example,
YIBaxCusO, -J, B115rlCaxCus
It is made of an oxide superconducting material such as Oy, TltBalCamCuiOx. The two-dimensional mesh plane is oriented parallel to the plane 3 of the wire. Therefore, the wire has a high critical current density in the longitudinal direction.

このような線材そのものは、前述の銀シース管を用いる
方法などで製造できる。特に、本発明者らが先に提案し
た(平成1年特許願第12125号)方法によれば、配
向性の極めて高い線材が製造できる。
Such a wire rod itself can be manufactured by the method using the silver sheath tube described above. In particular, according to the method previously proposed by the present inventors (Patent Application No. 12125 of 1999), a wire with extremely high orientation can be produced.

第3図中の2は、酸化物超伝導物質(本体の線材と同じ
材質)の微粉末である。この微粉末2は、実質的に単結
晶と見なせる程度の粒度、望ましくは30μ−以下、の
ちのとする、このような微粉末を接合面の間に介在させ
るのは、線材端面の加工精度上、不可避的な凹凸による
隙間を埋めて、空孔のない接合部を得るため、および後
述する蛋R場の付加によって接合部の配向性を高めるた
めである。この粉末の存在下で焼結して固体拡散を起こ
させて接合するのであるが、単に焼結するだけでは、粉
末の焼結部分で結晶配向がランダムになり、臨界電流密
度が低下し、折角母材であるテープを結晶配向を制御し
ながら作成しても、この接合部で結晶配向がランダムに
なると臨界電流密度はテープ母材よりも大幅に低下して
しまう。
2 in FIG. 3 is a fine powder of an oxide superconducting material (the same material as the wire of the main body). This fine powder 2 has a particle size that can be considered as a substantially single crystal, preferably 30μ or less, as will be described later.The reason why such fine powder is interposed between the joint surfaces is due to the processing accuracy of the wire end face. This is to fill gaps caused by unavoidable unevenness to obtain a bonded portion without voids, and to improve the orientation of the bonded portion by adding an R field to be described later. Bonding is achieved by sintering in the presence of this powder to cause solid diffusion, but simply sintering results in random crystal orientation in the sintered part of the powder, lowering the critical current density, and Even if the tape base material is made with controlled crystal orientation, if the crystal orientation becomes random at this joint, the critical current density will be significantly lower than that of the tape base material.

そこで、本発明方法では、第3図に示すように、配向面
3に直角の方向の磁場(H)を作用させるのである。C
u−0結合の2次元網目状面(これをa−b面とする)
を含む酸化物超伝導材料は、a−す面に垂直な方向(C
軸方向)に高い帯磁率を持つ、従って、単結晶を強い磁
場中に置くと磁場の方向にC軸が配向し易い、粉末2が
、実質的に単結晶と見なし得るものであれば、粉末を充
填した接合部に、線材の面に垂直に磁場を付加すること
によって、この粉末の結晶配向を制御でき、C軸を線材
1の面3に垂直方向に揃えることができる。
Therefore, in the method of the present invention, as shown in FIG. 3, a magnetic field (H) in a direction perpendicular to the alignment surface 3 is applied. C
Two-dimensional mesh plane of u-0 bond (this is called a-b plane)
The oxide superconducting material containing
Powder 2 has a high magnetic susceptibility in the axial direction), and therefore, when a single crystal is placed in a strong magnetic field, the C axis tends to be oriented in the direction of the magnetic field. By applying a magnetic field perpendicular to the plane of the wire to the joint filled with the powder, the crystal orientation of this powder can be controlled, and the C-axis can be aligned perpendicular to the plane 3 of the wire 1.

磁場の強さは、十分な粉末の配向性が得られる値(およ
そ0.5テスラ)以上とする。磁場は強いほど望ましい
が、装置のコストなどから実用上は50テスラ程度まで
となろう。
The strength of the magnetic field is set to a value (approximately 0.5 Tesla) or higher that provides sufficient orientation of the powder. The stronger the magnetic field, the more desirable it is, but in practice it will probably be around 50 Tesla due to equipment costs and other factors.

磁場を付加するときは、線材の端面の間隔は、そこに充
填された粉末が自由に動ける程度に保つ。
When applying a magnetic field, the distance between the end faces of the wire is maintained to such an extent that the powder filled there can move freely.

即ち、磁場によって粉末がその結晶のC軸が線材1の面
3に垂直方向になるようにほぼ揃ってから、線材1の長
手方向から軽い負荷をかけて接合部に圧力を加える。加
圧力はおよそ0.1〜10 kg f / c−程度で
よい。
That is, after the powder is almost aligned by the magnetic field so that the C-axis of its crystal is perpendicular to the plane 3 of the wire 1, a light load is applied from the longitudinal direction of the wire 1 to apply pressure to the joint. The pressing force may be approximately 0.1 to 10 kg f/c.

上記のように加圧したままの状態で接合部を加熱して焼
結させる。この時の焼結条件(温度、雰囲気、加熱時間
)は、本体の線材の製造の際の焼結条件と同じでよい0
例えば、Y+BamCu5Otイ系の線材であれば、9
00〜970”CX 5〜50時間の大気中加熱を行え
ばよい。
As described above, the bonded portion is heated and sintered while the pressure remains applied. The sintering conditions (temperature, atmosphere, heating time) at this time may be the same as those used for manufacturing the main body wire.
For example, if it is a Y+BamCu5Ot A wire material, 9
00-970''CX Heating may be performed in the atmosphere for 5-50 hours.

以下、実施例によって本発明を更に詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例) 第1表に示す各種の酸化物超伝導体を用いて、接合を行
った。線材の本体は通常の方法で、Cu −0結合の2
次元網目状面が線材表面に平行に配向するように製造さ
れたもので、厚み1.5++a+、幅1OIIIIのテ
ープ状のものである。接合部の形状を第4図の(a)〜
fe)に示す。
(Example) Bonding was performed using various oxide superconductors shown in Table 1. The main body of the wire is prepared using the usual method.
It is manufactured so that the dimensional mesh plane is oriented parallel to the surface of the wire, and is in the form of a tape with a thickness of 1.5++a+ and a width of 1OIII. The shape of the joint is shown in Figure 4 (a) ~
fe).

本発明の例(Nα1〜4)では、接合部に本体と同一組
成の微粉末を充填し、磁場をかけた後大気中で焼結した
。比較例のNα5および6は、重ね合わせ接合の例、隘
7は付き合わせ接合であるが、粉末の介在および磁場付
加のない例である。
In the examples of the present invention (Nα1 to 4), the joint portion was filled with fine powder having the same composition as the main body, and after applying a magnetic field, sintering was performed in the air. Comparative examples Nα5 and 6 are examples of overlapping joining, and No. 7 is an example of butt joining, but without intervening powder and without application of a magnetic field.

接合完了の後、各試験片について液体窒素中で臨界電流
密度(Jc)を測定した。第5図はその測定方法を説明
する図(テープ状線材の厚み方向を拡大)である、即ち
、接合部を挟んで電流を流し、電圧を測定して臨界電流
密度を求めた。測定結果を第1表中に併記する。
After completion of bonding, the critical current density (Jc) of each test piece was measured in liquid nitrogen. FIG. 5 is a diagram (enlarged in the thickness direction of the tape-shaped wire) for explaining the measurement method. That is, a current was passed across the joint, the voltage was measured, and the critical current density was determined. The measurement results are also listed in Table 1.

第1表に見られるとおり、本発明方法によれば、酸化物
の種類によらず極めて高い臨界電流密度をもつ接合部が
得られている。
As seen in Table 1, according to the method of the present invention, junctions with extremely high critical current densities can be obtained regardless of the type of oxide.

(以下、余白) (発明の効果) 本発明の方法によれば、酸化物超伝導体の線材(テープ
状線材、ブロック、シート等を含む)を接合し、しかも
その接合部が本体と同等の超伝導特性をもつようにする
ことができる0本発明の接合方法は、酸化物超伝導線材
の実用化促進に寄与するところが大きい。
(Hereinafter, blank space) (Effects of the invention) According to the method of the present invention, oxide superconductor wires (including tape-shaped wires, blocks, sheets, etc.) can be joined, and the joined portion is equivalent to the main body. The bonding method of the present invention, which can provide superconducting properties, greatly contributes to promoting the practical use of oxide superconducting wires.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、重ね合わせによるテープ状線材の接合方法を
示す図、 第2図は、付き合わせによるテープ状線材の接合方法を
示す図、 第3図は、本発明の接合方法を原理的に説明する図、 第4図の(a)から(e)までは、実施例で用いた接合
方法の例を示す図、 第5図は、接合部の臨界電流密度の測定方法を説明する
図、である。
FIG. 1 is a diagram showing a method for joining tape-shaped wires by overlapping, FIG. 2 is a diagram showing a method for joining tape-shaped wires by butting, and FIG. 3 is a diagram showing the principle of the joining method of the present invention. Figures 4(a) to 4(e) are diagrams illustrating an example of the bonding method used in the examples; Figure 5 is a diagram illustrating a method for measuring the critical current density of the junction; It is.

Claims (1)

【特許請求の範囲】[Claims] CuイオンとOイオンとが2次元的に網目状に結合した
面が一つの面に平行に配向している配向面を有する酸化
物系超伝導体の接合方法であって、上記の配向面に直角
の接合面を相互に隙間をおいて対向させ、その隙間に上
記の超伝導体と同じ材質で実質的に単結晶とみなせる微
粉末を充填し、その微粉末充填部を中心とした接合部に
上記配向面に垂直方向の磁場を付加し、かつ微粉末を充
填した隙間を狭める方向に加圧しつつ加熱焼結する酸化
物超伝導体の接合方法。
A method for bonding an oxide-based superconductor having an oriented plane in which a plane in which Cu ions and O ions are bonded in a two-dimensional network is oriented parallel to one plane, the method comprising: The right-angled joint surfaces face each other with a gap, and the gap is filled with fine powder that is made of the same material as the superconductor described above and can be considered as a single crystal, and the joint is centered around the part filled with the fine powder. A method for joining oxide superconductors, in which a magnetic field perpendicular to the orientation plane is applied to the oxide superconductor, and the oxide superconductor is heated and sintered while applying pressure in a direction to narrow the gap filled with fine powder.
JP1092269A 1989-04-12 1989-04-12 Conjoining method for oxide superconductors Pending JPH02270279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1092269A JPH02270279A (en) 1989-04-12 1989-04-12 Conjoining method for oxide superconductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1092269A JPH02270279A (en) 1989-04-12 1989-04-12 Conjoining method for oxide superconductors

Publications (1)

Publication Number Publication Date
JPH02270279A true JPH02270279A (en) 1990-11-05

Family

ID=14049674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1092269A Pending JPH02270279A (en) 1989-04-12 1989-04-12 Conjoining method for oxide superconductors

Country Status (1)

Country Link
JP (1) JPH02270279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634379A1 (en) * 1992-04-03 1995-01-18 Nippon Steel Corporation Bonded element of superconductive oxide materials and its manufacture
US6429174B2 (en) * 1998-07-16 2002-08-06 Superconductive Components, Inc. Large strongly linked superconducting monoliths and process for making the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634379A1 (en) * 1992-04-03 1995-01-18 Nippon Steel Corporation Bonded element of superconductive oxide materials and its manufacture
EP0634379A4 (en) * 1992-04-03 1995-04-19 Nippon Steel Corp Bonded element of superconductive oxide materials and its manufacture.
US5786304A (en) * 1992-04-03 1998-07-28 Nippon Steel Corporation Joining product of oxide superconducting material and process for producing the same
US6429174B2 (en) * 1998-07-16 2002-08-06 Superconductive Components, Inc. Large strongly linked superconducting monoliths and process for making the same

Similar Documents

Publication Publication Date Title
Liu et al. Delamination strength of the soldered joint in YBCO coated conductors and its enhancement
US3523361A (en) Method of splicing superconductive wires
WO2017043555A1 (en) Superconducting wire rod bonding method
Tutt et al. Fabrication of high-quality joints between Gd–Ba–Cu–O bulk superconductors
JPH02270279A (en) Conjoining method for oxide superconductors
JPH0330265A (en) Method of anisotropic junction of superconducting ceramic
Zhu et al. Enhanced transport critical current of iron-based superconducting joints
JPH06224591A (en) Superconducting magnetic shielding material
JP3522306B2 (en) Bi-based oxide superconducting wire and method for producing the same
JPH02186575A (en) Junction of oxide superconductor
Kim et al. Fabrication and characterization of the joining of Bi-Pb-Sr-Ca-Cu-O superconductor tape
Hiraoka et al. Magnetoresistance effect in single crystals of Gd
JPH0797277A (en) Method for joining oxide superconductor
Wan et al. Transport properties of high-T c Bi 2 Sr 2 CaCu 2 O 8+ δ crystals near the superconducting transition
ten Haken et al. The degradation of the critical current density in a Nb3Sn tape conductor due to parallel and transversal strain
JPS63268206A (en) Superconducting magnet
Dadhich et al. Reducing cross-field demagnetization of superconducting stacks by soldering in pairs
Däumling et al. Critical currents in (Bi, Pb) 2Sr2Ca2Cu3Ox powder
JP2933681B2 (en) Magnetic field measurement method
JP3527845B2 (en) Oxide superconductor joint, method of manufacturing the same, and superconducting magnetic shield material
JPH06132062A (en) Connecting method for superconductive thick film molded body
Koblischka et al. Flux distributions in jointed tapes
JPH0355011B2 (en)
JPH02199721A (en) Manufacture of tape-like superconductive wire rod
JPH09223623A (en) Bi-2223-made high tc superconducting loop and die and method of producing the loop