JPH0227002B2 - - Google Patents

Info

Publication number
JPH0227002B2
JPH0227002B2 JP58103639A JP10363983A JPH0227002B2 JP H0227002 B2 JPH0227002 B2 JP H0227002B2 JP 58103639 A JP58103639 A JP 58103639A JP 10363983 A JP10363983 A JP 10363983A JP H0227002 B2 JPH0227002 B2 JP H0227002B2
Authority
JP
Japan
Prior art keywords
suspension
flocculant
zone
separated
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58103639A
Other languages
Japanese (ja)
Other versions
JPS59228905A (en
Inventor
Akira Suzuki
Masaji Kage
Masato Kadoya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Air Conditioning Co Ltd
Original Assignee
Shinryo Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Air Conditioning Co Ltd filed Critical Shinryo Air Conditioning Co Ltd
Priority to JP58103639A priority Critical patent/JPS59228905A/en
Publication of JPS59228905A publication Critical patent/JPS59228905A/en
Publication of JPH0227002B2 publication Critical patent/JPH0227002B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は、懸濁液に高分子凝集剤を添加して濃
縮することからなる、懸濁液の固液分離方法に関
する。 従来技術とその問題点 従来、活性汚泥処理工程から排出される余剰汚
泥、嫌気性消化槽から排出される消化汚泥、ある
いは鉱山廃水などの懸濁液は、沈殿濃縮あるいは
機械脱水などにより減容して固形分の濃縮を行つ
ている。この種の方法においては高分子凝集剤を
併用して濃縮率を向上させあるいは懸濁液の過
性を改善している。従来方法においては、懸濁液
の性状、水温の変動、懸濁液中の固形分濃度の変
動等種々の条件を考慮して、安定した濃縮を行う
ために高分子凝集剤添加量を最適添加量よりも高
めに設定している。また、従来法において決定し
た凝集剤の最適添加量でこの濃縮を行つても、分
離水中に未反応の高分子凝集剤が多量に残余して
いる。このように従来法では添加された凝集剤が
有効利用されていない。 発明の目的 本発明は、従来法よりもはるかに少量の高分子
凝集剤使用量で安定して高濃縮率を与える懸濁液
の濃縮法を提供することを目的とする。 発明の要点 すなわち、本発明は;懸濁液の一部を分取し;
この分取した懸濁液を凝集剤添加帯域に供給し、
ここで高分子凝集剤を添加しかつ混合し;凝集剤
添加帯域から流出液を混合帯域に供給し、ここで
分取した残余の懸濁液と混合し;次いで、固液分
離帯域にて混合帯域からの流出液を分離液と濃縮
物とに分離する;各工程からなる懸濁液の固液分
離方法である。さらに本発明は、前記方法におい
て分取した懸濁液に高分子凝集剤の添加および混
合を昇温下で行い又は高分子凝集剤の添加、およ
び混合したのち昇温することを特徴とする方法で
ある。 発明の実施態様 以下、添付図面に従い本発明を詳述する。第1
図は本発明の方法の1例を示す工程図である。本
発明により処理される懸濁液1は、余剰汚泥、消
化汚泥あるいはこれらの濃縦汚泥、し尿、下水、
鉱山廃水または隧道工事水替廃水等何れの廃水で
あつてよい。濃縮手段として機械脱水を行う場合
には、余剰汚泥あるいは消化汚泥が好適な懸濁液
である。懸濁液中の固形分濃度は数百ppmないし
数万ppmまで幅広く適用できる。懸濁液が余剰汚
泥あるいは消化汚泥の場合、この固形分濃度は
5000ないし15000ppm、好ましくは6000ないし
10000ppmである。 懸濁液1を分流して分流した懸濁液をライン2
へ、残余の懸濁液をライン3に送る。分流する流
量の割合は、懸濁液の種類、その固形分濃度等に
より変化するが、懸濁液全流量の20%ないし80%
をライン2へ分流するのが好ましい。懸濁液が余
剰汚泥の場合、分流割合は40ないし60%が好適で
ある。 分流した懸濁液を凝集剤添加帯域に送つて、こ
こで高分子凝集剤をライン4から添加する。本発
明にて用いる高分子凝集剤は特に限定されるもの
ではなく、カチオン系,アニオン系およびノニオ
ン系の高分子凝集剤を使用できる。懸濁液中の固
形分の電荷と反対の電荷を有する高分子凝集剤が
好ましく、例えば余剰汚泥の処理においてはアク
リルアミド系カチオン性高分子凝集剤の使用が好
ましい。その他、ポリビニルピリジン塩酸塩、ポ
リアクリル酸ナトリウム等も適用できる。 凝集剤添加帯域5は撹拌機を備えた場合槽であ
つてよく、分流した懸濁液はこの混合槽で添加さ
れた高分子凝集剤と反応してフロツクを形成す
る。高分子凝集剤添加量は、懸濁液固形分重量の
約0.1ないし1.0%であつてよい。混合槽における
懸濁液の滞留時間は任意の値であることができる
が、数分ないし30分程度で所期の効果を達成で
き、好ましくは5分ないし15分である。撹拌機の
撹拌速度は、懸濁液と高分子凝集剤との十分均一
な接触を果すに適しておればよく、10ないし
100ppmの回転数で行なうことができる。混合槽
を二槽とし、前段の槽を急速撹拌槽、後段を緩速
撹拌槽とすることもできる。別法として、凝集剤
添加帯域5は濃縮装置とそれに続く混合槽の組合
せであつて混合槽に高分子凝集剤を添加する方式
であつてもよい。この場合、分流した懸濁液は濃
縮装置にて所定の固形分濃度まで濃縮され、次い
で混合槽にて高分子凝集剤と混合する。好ましい
濃縮装置は浮上濃縮装置であり、特に常圧浮上濃
縮装置が最も好ましい。常圧浮上濃縮装置は;凝
集剤と起泡剤を含む液相に常圧下で空気を吹込む
起泡区域、この起泡区域で発生した気泡と懸濁液
を混合する混合区域、および、濃縮液と分離液と
に分離する浮上区域から主として構成されてい
る。この濃縮液に混合槽にて高分子凝集剤を添加
する。 懸濁液が余剰汚泥あるいは消化汚泥の場合、こ
の常圧浮上濃縮装置にて固形分濃度4ないし8%
まで濃縮を行う。一般に下水処理場等で発生する
汚泥を脱水する場合、脱水機に供給される汚泥の
固形分濃度は2%〜3%であるため、ほとんどの
脱水機は低濃度(2〜3%)の汚泥を処理するよ
うに設計されている。このような処理場で4%以
上に濃縮できる常圧浮上濃縮装置を設置した場
合、脱水機に供給する固形分濃度が高すぎるた
め、脱水機の能力を有効に利用できないことがあ
る。本発明にて常圧浮上濃縮装置を用いた場合、
脱水機の性能を最も発揮できる濃度に任意に供給
汚泥濃度を設定し、最少の凝集剤添加量で、安定
して脱水を行なえる。 凝集剤添加帯域5を出た懸濁液はライン6を経
て混合帯域7に入り、ここでライン3からの残余
の懸濁液と混合される。この混合帯域7は特に限
定されるものではなく、ラインおよびライン6か
らの各懸濁液を十分均一に混合できる手段であれ
ばよい。一例として前述の混合槽と同様の混合槽
を適用できる。 混合帯域7からの混合懸濁液はライン8を経て
固液分離帯域9に送られ、分離液はライン11を
経ておよび濃縮物はライン10を経て、系外に排
出される。固液分離帯域9は、遠心分離、沈降濃
縮、浮上濃縮、過、ベルトプレス型脱水機等従
来から周知の固液分離手段を採用できる。処理さ
れる懸濁液濃度が低い場合は沈降濃縮が好まし
く、前記濃度が高い場合はベルトプレス型脱水機
あるいは遠心分離機を使用するのが好ましい。 本発明の他の態様として、前記凝集剤添加帯域
5に加熱手段を含めることにある。ライン2から
の懸濁液を加熱してから混合槽で高分子凝集剤と
反応させてもよく、混合槽を加熱してもよく混合
槽からライン6へいたる懸濁液を加熱してもよ
い。何れの方法においても懸濁液と高分子凝集剤
とを所定の昇温した温度で反応させることが肝要
である。混合槽の温度を少なくとも40℃以上、好
ましくは60℃以上にすることが好ましい。加熱手
段として、電気ヒーター、高温の気体又は蒸気、
等何れの手段も適用できる。本発明を下水処理場
で実施する場合は、嫌気性消化槽からのメタンガ
スの燃焼排ガスを混合槽に吹込んで加熱手段とす
ることもできる。この昇温を行うことにより高分
子凝集剤使用量をさらに低減できる。また混合槽
容量の小型化も可能である。この昇温による効果
がどのような凝集機構に基づくものであるか十分
には解明されていないが、凝集剤の固形分に対す
る吸着速度の増大を促がすこと、架橋反応の促
進、あるいは凝集剤の粘性低下等により凝集剤の
利用率が向上したと考えられる。 従来法においては懸濁液を分流することなく懸
濁液全量に対し高分子凝集剤の添加を行つてい
る。この方法では、凝集したフロツクの間隔に凝
集剤の一部が内包された状態になつている。この
内包された凝集剤を追い出すために撹拌力を大き
くあるいは撹拌時間を長くすると、フロツクが細
分化されて後段の固液分離手段に支障をきたす。
本発明の方法では分取した懸濁液と高分子凝集剤
の接触により凝集剤で被われた固形分からなるフ
ロツクが生成し、次に混合帯域にてこのフロツク
と残余の懸濁液を接触させるとフロツクが残余の
懸濁液中の固形分を取り込んで凝集する。このた
めすでに固形分に吸着している凝集剤が有効利用
され、残余の懸濁液中の固形分が先の凝集剤で被
われたフロツクのまわりに吸着される。凝集剤添
加帯域にて分取した懸濁液と凝集剤を混合する操
作は、フロツクの表面を凝集剤で被うための撹拌
であるから撹拌力を大きく及び撹拌時間を長くし
ても何ら支障ない。そのため凝集剤の固形分に対
する吸着量を多くすることができ、自由水中の凝
集剤濃度を低下させることができる。分取した懸
濁液と凝集剤を混合する操作を昇温下で行つた場
合、凝集剤の固形分に対する吸着速度が大きくな
り、自由水中の凝集剤濃度をさらに低減できる。 本発明の他の態様として、ライン1に懸濁物濃
度計を設置し、この濃度変化に応じて分取割合あ
るいは高分子凝集剤添加量を制御することもでき
る。この方法においては凝集剤使用量をさらに低
減できる。 実施例 1 第1図に示す方法により、活性汚泥法により生
じる余剰汚泥の濃縮を行つた。使用した余剰汚泥
の固形分濃度は6000ppmであり、凝集剤としてア
クリルアミド共重合物塩のカチオン性高分子凝集
剤を用い、処理される余剰汚泥の固形分重量に対
して1.0%の高分子凝集剤を分取した余剰汚泥に
添加した。本実施例では常温下で行つた。混合帯
域から流出した余剰汚泥の毛細管吸引時間
(CST)を第2図に示す。本図より、処理される
全余剰汚泥量の40ないし60%を分取してこれに高
分子凝集剤を添加した場合、汚泥の脱水性が最も
優れていることがわかる。 実施例 2 実施例1と同様に行つたが、凝集剤添加量を
0.7%ないし1.0%(余剰汚泥の固形分重量に対し
て)まで変化させ、また、凝集剤添加帯域の混合
槽を電気ヒーターにより40℃および60℃に昇温し
た。固液分離帯域には重力沈降装置を用いた。混
合帯域から流出した余剰汚泥のCSTおよび重力
沈降装置から排出された分離液中の高分子凝集剤
濃度を以下の表に示す。
TECHNICAL FIELD The present invention relates to a method for solid-liquid separation of a suspension, which comprises adding a polymer flocculant to the suspension and concentrating the suspension. Conventional technology and its problems Conventionally, surplus sludge discharged from the activated sludge treatment process, digested sludge discharged from an anaerobic digestion tank, or suspensions such as mine wastewater are reduced in volume by sedimentation concentration or mechanical dewatering. solid content is concentrated. In this type of method, a polymer flocculant is used in combination to improve the concentration rate or to improve the transient nature of the suspension. In conventional methods, the optimum amount of polymer flocculant is added in order to achieve stable concentration by taking into account various conditions such as the properties of the suspension, fluctuations in water temperature, and fluctuations in the solid content concentration in the suspension. It is set higher than the amount. Furthermore, even if this concentration is performed using the optimum amount of flocculant added in the conventional method, a large amount of unreacted polymer flocculant remains in the separated water. As described above, in the conventional method, the added flocculant is not effectively utilized. OBJECTS OF THE INVENTION An object of the present invention is to provide a method for concentrating a suspension that stably provides a high concentration rate with a much smaller amount of polymer flocculant than conventional methods. Summary of the Invention That is, the present invention involves: separating a portion of the suspension;
This fractionated suspension is supplied to a flocculant addition zone,
Here, a polymer flocculant is added and mixed; the effluent is supplied from the flocculant addition zone to the mixing zone, where it is mixed with the fractionated residual suspension; then, it is mixed in the solid-liquid separation zone. The effluent from the zone is separated into a separated liquid and a concentrate; this is a solid-liquid separation method for a suspension consisting of each step. Furthermore, the present invention provides a method characterized in that a polymer flocculant is added to the suspension separated in the above method and mixed at an elevated temperature, or the polymer flocculant is added and mixed, and then the temperature is raised. It is. Embodiments of the Invention The present invention will be described in detail below with reference to the accompanying drawings. 1st
The figure is a process diagram showing an example of the method of the present invention. The suspension 1 treated according to the present invention includes surplus sludge, digested sludge, or thick vertical sludge thereof, human waste, sewage,
The wastewater may be any wastewater such as mine wastewater or tunnel construction water change wastewater. When mechanical dewatering is used as a concentration means, surplus sludge or digested sludge is a suitable suspension. The solid content concentration in the suspension can be applied over a wide range from several hundred ppm to tens of thousands of ppm. If the suspension is excess sludge or digested sludge, the solids concentration is
5000 to 15000ppm, preferably 6000 to 15000ppm
It is 10000ppm. Suspension 1 is divided and the divided suspension is transferred to line 2.
and send the remaining suspension to line 3. The proportion of the flow rate to be diverted varies depending on the type of suspension, its solid content concentration, etc., but it is between 20% and 80% of the total flow rate of the suspension.
is preferably diverted to line 2. When the suspension is excess sludge, a diversion ratio of 40 to 60% is suitable. The divided suspension is sent to a flocculant addition zone, where a polymer flocculant is added through line 4. The polymer flocculant used in the present invention is not particularly limited, and cationic, anionic, and nonionic polymer flocculants can be used. A polymer flocculant having a charge opposite to that of the solid content in the suspension is preferred, and for example, in the treatment of excess sludge, it is preferred to use an acrylamide-based cationic polymer flocculant. In addition, polyvinylpyridine hydrochloride, sodium polyacrylate, etc. can also be applied. The flocculant addition zone 5 may be a tank if equipped with a stirrer, and the separated suspension reacts with the polymeric flocculant added in this mixing tank to form flocs. The amount of polymeric flocculant added may be about 0.1 to 1.0% of the suspension solids weight. The residence time of the suspension in the mixing tank can be set to any desired value, but the desired effect can be achieved in about a few minutes to 30 minutes, preferably 5 to 15 minutes. The stirring speed of the stirrer should be suitable to achieve sufficiently uniform contact between the suspension and the polymeric flocculant, and should be between 10 and 10 mm.
This can be done at a rotation speed of 100 ppm. It is also possible to use two mixing tanks, with the first tank being a rapid stirring tank and the second tank being a slow stirring tank. Alternatively, the flocculant addition zone 5 may be a combination of a concentrator followed by a mixing tank, into which the polymeric flocculant is added. In this case, the divided suspension is concentrated to a predetermined solid content concentration in a concentrator, and then mixed with a polymer flocculant in a mixing tank. A preferred concentrator is a flotation concentrator, and most preferably an atmospheric flotation concentrator. The atmospheric flotation concentration equipment includes: a foaming section that blows air under normal pressure into a liquid phase containing a flocculant and a foaming agent, a mixing section that mixes the air bubbles generated in this foaming section and the suspension, and a concentration section. It mainly consists of a flotation zone that separates into a liquid and a separated liquid. A polymer flocculant is added to this concentrated solution in a mixing tank. If the suspension is excess sludge or digested sludge, the solid content concentration is 4 to 8% using this normal pressure flotation thickener.
Concentrate up to Generally, when dewatering sludge generated in sewage treatment plants, etc., the solid content concentration of the sludge supplied to the dehydrator is 2% to 3%, so most dehydrators use sludge with a low concentration (2 to 3%). is designed to handle. If a normal pressure flotation concentrator capable of concentrating to 4% or more is installed in such a treatment plant, the solid content concentration supplied to the dehydrator may be too high, making it impossible to effectively utilize the dehydrator's capacity. When a normal pressure flotation concentration device is used in the present invention,
The supplied sludge concentration can be arbitrarily set to a concentration that maximizes the performance of the dehydrator, and stable dewatering can be performed with the minimum amount of flocculant added. The suspension leaving flocculant addition zone 5 enters mixing zone 7 via line 6 where it is mixed with the remaining suspension from line 3. This mixing zone 7 is not particularly limited, and may be any means that can sufficiently uniformly mix the suspensions from the line and the line 6. As an example, a mixing tank similar to the above-mentioned mixing tank can be used. The mixed suspension from the mixing zone 7 is sent to the solid-liquid separation zone 9 via line 8, the separated liquid is discharged from the system via line 11, and the concentrate via line 10. The solid-liquid separation zone 9 can employ conventionally known solid-liquid separation means such as centrifugation, sedimentation concentration, flotation concentration, filtration, and belt press type dehydrators. When the concentration of the suspension to be treated is low, sedimentation concentration is preferred, and when the concentration is high, it is preferred to use a belt press type dehydrator or a centrifugal separator. Another aspect of the invention is that the flocculant addition zone 5 includes heating means. The suspension from line 2 may be heated and then reacted with the polymer flocculant in a mixing tank, or the mixing tank may be heated or the suspension from the mixing tank to line 6 may be heated. . In either method, it is important to react the suspension and the polymer flocculant at a predetermined elevated temperature. It is preferred that the temperature of the mixing tank be at least 40°C or higher, preferably 60°C or higher. As a heating means, an electric heater, high temperature gas or steam,
Any means can be applied. When the present invention is implemented in a sewage treatment plant, methane combustion exhaust gas from an anaerobic digestion tank can be blown into a mixing tank to serve as a heating means. By increasing the temperature, the amount of polymer flocculant used can be further reduced. It is also possible to downsize the mixing tank capacity. It is not fully understood what kind of agglomeration mechanism this effect of temperature elevation is based on, but it may be that it promotes an increase in the adsorption rate of the flocculant to the solid content, promotes the crosslinking reaction, or that the flocculant It is thought that the utilization rate of the flocculant improved due to a decrease in the viscosity of the coagulant. In the conventional method, a polymer flocculant is added to the entire suspension without dividing the suspension. In this method, a portion of the flocculant is encapsulated between the flocs. If the stirring force is increased or the stirring time is increased in order to expel the encapsulated flocculant, the flocs will be fragmented and this will interfere with the subsequent solid-liquid separation means.
In the method of the present invention, a floc consisting of solids covered with the flocculant is produced by contacting the fractionated suspension with a polymer flocculant, and then this floc is brought into contact with the remaining suspension in a mixing zone. The flocs take up the solids in the remaining suspension and coagulate. Therefore, the flocculant that has already been adsorbed to the solids is effectively utilized, and the remaining solids in the suspension are adsorbed around the flocs covered with the flocculant. The operation of mixing the suspension separated in the flocculant addition zone with the flocculant is for the purpose of covering the surface of the flocs with the flocculant, so there is no problem even if the stirring force is large and the stirring time is long. do not have. Therefore, the adsorption amount of the flocculant to the solid content can be increased, and the concentration of the flocculant in free water can be reduced. When the operation of mixing the fractionated suspension and the flocculant is performed at an elevated temperature, the adsorption rate of the flocculant to the solid content increases, and the concentration of the flocculant in free water can be further reduced. As another embodiment of the present invention, a suspended matter concentration meter may be installed in the line 1, and the fractionation ratio or the amount of polymer flocculant added may be controlled in accordance with changes in the concentration. In this method, the amount of flocculant used can be further reduced. Example 1 Excess sludge produced by the activated sludge method was concentrated by the method shown in FIG. The solid content concentration of the surplus sludge used was 6000 ppm, and a cationic polymer flocculant of acrylamide copolymer salt was used as the flocculant, and the amount of polymer flocculant was 1.0% based on the solid weight of the surplus sludge to be treated. was added to the collected excess sludge. In this example, the test was carried out at room temperature. Figure 2 shows the capillary suction time (CST) of excess sludge flowing out of the mixing zone. From this figure, it can be seen that the dewaterability of sludge is the best when 40 to 60% of the total amount of excess sludge to be treated is separated and a polymer flocculant is added to it. Example 2 The same procedure as Example 1 was carried out, but the amount of flocculant added was changed.
It was varied from 0.7% to 1.0% (based on the solid weight of excess sludge), and the temperature of the mixing tank in the flocculant addition zone was raised to 40°C and 60°C using an electric heater. A gravity sedimentation device was used in the solid-liquid separation zone. The table below shows the CST of excess sludge flowing out of the mixing zone and the concentration of polymer flocculant in the separated liquid discharged from the gravity settling device.

【表】 本表から、本発明によれば凝集剤使用量を従来
法よりも20ないし30%低減でき、分離液中の凝集
剤濃度も30ないし90%低下することがわかる。 実施例 3 コミユニテイープラントからの余剰汚泥(固形
分濃度8000ppm)2.36ないし2.93m3/hのうち2
m3/hを常圧浮上濃縮装置に供給して濃縮した
後、その濃縮汚泥に高分子凝集剤を混合槽で添加
しこの濃縮汚泥に分取した残りの余剰汚泥0.36な
いし0.93m3/hを加えて混合しベルトプレス型脱
水機で脱水した。凝集剤としてポリアクリルアミ
ド系強カチオン性高分子凝集剤を用いた。前記混
合槽に投げ込みヒーターを入れて60℃に昇温し
た。第2表に昇温しない時(20℃)の結果を、第
3表に昇温を行つた時(60℃)の結果を、それぞ
れ示す。
[Table] This table shows that according to the present invention, the amount of flocculant used can be reduced by 20 to 30% compared to the conventional method, and the concentration of flocculant in the separated liquid is also reduced by 30 to 90%. Example 3 Excess sludge from a community plant (solid content concentration 8000 ppm) 2.36 to 2.93 m 3 /h
m 3 /h is fed to a normal pressure flotation thickener and concentrated, a polymer flocculant is added to the thickened sludge in a mixing tank, and the remaining surplus sludge is separated into this thickened sludge, 0.36 to 0.93 m 3 /h. were added, mixed, and dehydrated using a belt press type dehydrator. A polyacrylamide-based strong cationic polymer flocculant was used as the flocculant. A heater was placed in the mixing tank and the temperature was raised to 60°C. Table 2 shows the results when the temperature was not raised (20°C), and Table 3 shows the results when the temperature was raised (60°C).

【表】【table】

【表】 このように本発明によれば、濃縮汚泥濃度は安
定しており、浮上濃縮装置に供給せずに直接混合
装置に送る汚泥量を調節することにより脱水機に
供給する汚泥の固形分濃度を2%、3%と任意に
設定することができる。又、濃縮汚泥に高分子凝
集剤を添加する工程で汚泥を昇温することによ
り、昇温しない場合に比べ、高分子凝集剤の添加
量を約20%低減することができる。
[Table] According to the present invention, the concentration of thickened sludge is stable, and the solid content of sludge supplied to the dehydrator can be reduced by adjusting the amount of sludge sent directly to the mixing device without being supplied to the flotation thickener. The concentration can be arbitrarily set to 2% or 3%. Furthermore, by raising the temperature of the sludge in the step of adding the polymer flocculant to the thickened sludge, the amount of polymer flocculant added can be reduced by about 20% compared to the case where the temperature is not raised.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を示す工程図、第2図は
分取した割合とCSTの関係を示す線図である。 5……凝集剤添加帯域、7……混合帯域、9…
…固液分離帯域。
FIG. 1 is a process diagram showing the method of the present invention, and FIG. 2 is a diagram showing the relationship between fractionated fraction and CST. 5...Flocculant addition zone, 7...Mixing zone, 9...
...Solid-liquid separation zone.

Claims (1)

【特許請求の範囲】 1 懸濁液の一部を分取し;この分取した懸濁液
を凝集剤添加帯域に供給し、ここで高分子凝集剤
を添加しかつ混合し;凝集剤添加帯域からの流出
液を混合帯域に供給し、ここで分取した残余の懸
濁液と混合し;次いで、固液分離帯域にて混合帯
域からの流出液を分離液と濃縮物とに分離する;
各工程からなる懸濁液の固液分離方法。 2 懸濁液が余剰汚泥である、特許請求の範囲第
1項記載の方法。 3 処理される懸濁液の40ないし60%を分取して
凝集剤添加帯域に供給する、特許請求の範囲第1
項に記載の方法。 4 凝集剤添加帯域が浮上濃縮装置と混合槽から
なる、特許請求の範囲第1項記載の方法。 5 固液分離帯域がベルトプレス型脱水機からな
る、特許請求の範囲第1項記載の方法。 6 懸濁液の一部を分取し;この分取した懸濁液
を凝集剤添加帯域に供給し、ここで高分子凝集剤
を添加しかつ昇温下で混合し、又は混合したのち
昇温し;凝集剤添加帯域からの流出液を混合帯域
に供給し、ここで分取した残余の懸濁液と混合
し;次いで固液分離帯域にて混合帯域からの流出
液を分離液と濃縮物とに分離する;各工程からな
る懸濁液の固液分離方法。 7 懸濁液が余剰汚泥である、特許請求の範囲第
6項記載の方法。 8 昇温が40℃以上である、特許請求の範囲第6
項記載の方法。 9 処理される懸濁液の40%ないし60%を分取し
て凝集剤添加帯域に供給する、特許請求の範囲第
6項記載の方法。 10 凝集剤添加帯域が浮上濃縮装置と混合槽か
らなる、特許請求の範囲第6項記載の方法。 11 固液分離帯域がベルトプレス型脱水機から
なる、特許請求の範囲第6項記載の方法。
[Claims] 1. Part of the suspension is separated; the separated suspension is supplied to a flocculant addition zone, where a polymer flocculant is added and mixed; flocculant addition The effluent from the mixing zone is fed to a mixing zone where it is mixed with the fractionated residual suspension; the effluent from the mixing zone is then separated into a separated liquid and a concentrate in a solid-liquid separation zone. ;
A solid-liquid separation method for a suspension consisting of each step. 2. The method according to claim 1, wherein the suspension is excess sludge. 3. Claim 1, in which 40 to 60% of the suspension to be treated is separated and fed to the flocculant addition zone.
The method described in section. 4. The method according to claim 1, wherein the flocculant addition zone comprises a flotation concentration device and a mixing tank. 5. The method according to claim 1, wherein the solid-liquid separation zone comprises a belt press type dehydrator. 6. Separate a portion of the suspension; feed this separated suspension to a flocculant addition zone, where a polymer flocculant is added and mixed at elevated temperature, or after mixing, Warm; supply the effluent from the flocculant addition zone to the mixing zone, where it is mixed with the fractionated residual suspension; then, in the solid-liquid separation zone, the effluent from the mixing zone is concentrated with the separated liquid. A solid-liquid separation method for a suspension consisting of each step. 7. The method according to claim 6, wherein the suspension is excess sludge. 8 Claim No. 6 in which the temperature rise is 40°C or more
The method described in section. 9. The method of claim 6, wherein 40% to 60% of the suspension to be treated is separated and fed to the flocculant addition zone. 10. The method according to claim 6, wherein the flocculant addition zone comprises a flotation concentration device and a mixing tank. 11. The method according to claim 6, wherein the solid-liquid separation zone comprises a belt press type dehydrator.
JP58103639A 1983-06-10 1983-06-10 Solid-liquid separation of slurry Granted JPS59228905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58103639A JPS59228905A (en) 1983-06-10 1983-06-10 Solid-liquid separation of slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58103639A JPS59228905A (en) 1983-06-10 1983-06-10 Solid-liquid separation of slurry

Publications (2)

Publication Number Publication Date
JPS59228905A JPS59228905A (en) 1984-12-22
JPH0227002B2 true JPH0227002B2 (en) 1990-06-14

Family

ID=14359333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58103639A Granted JPS59228905A (en) 1983-06-10 1983-06-10 Solid-liquid separation of slurry

Country Status (1)

Country Link
JP (1) JPS59228905A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164864B2 (en) * 2013-02-19 2017-07-19 水ing株式会社 Organic wastewater treatment method and apparatus
JP6164878B2 (en) * 2013-03-08 2017-07-19 水ing株式会社 Organic wastewater treatment method
JP6193716B2 (en) * 2013-10-11 2017-09-06 水ing株式会社 Organic wastewater treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus

Also Published As

Publication number Publication date
JPS59228905A (en) 1984-12-22

Similar Documents

Publication Publication Date Title
CA2266583C (en) Water and wastewater treatment system with internal recirculation
JP6121589B2 (en) Anaerobic treatment method
US20060006116A1 (en) Method of dewatering thin stillage processing streams
CA2248479A1 (en) Starch/cationic polymer combinations as coagulants for the mining industry
AU2013298635A1 (en) Concentration of suspensions
JPH0227002B2 (en)
JP3401881B2 (en) Method for washing and concentration of digested sludge and washing concentrate
JPH07204699A (en) Method for concentrating sludge slurry
JP3194848B2 (en) Sludge dewatering method
JPH0661550B2 (en) Organic wastewater treatment method
JPS6125700A (en) Dehydrating method of organic sludge
JPS6041600A (en) Dehydration method of sludge
JPH0561994B2 (en)
CN112093846B (en) Urban sewage treatment method for recycling organic matters
RU2253632C1 (en) Method of dehydration of suspensions
JPH0230320B2 (en)
JPH11347599A (en) Flocculant injection amount determining apparatus
JPS61268399A (en) Method for conditioning organic sludge
JPS62168600A (en) Concentrating process for organic sludge
JPS5854639B2 (en) Sludge thickening method and its equipment
JPH08323400A (en) Method for dehydrating sludge
JPH01168399A (en) Sludge treatment
SU1564120A1 (en) Method of dehydration of thin suspensions
SU831141A1 (en) Method of thickening suspension
JPH0688037B2 (en) How to treat human waste