JPH02267491A - Radiator - Google Patents

Radiator

Info

Publication number
JPH02267491A
JPH02267491A JP8812189A JP8812189A JPH02267491A JP H02267491 A JPH02267491 A JP H02267491A JP 8812189 A JP8812189 A JP 8812189A JP 8812189 A JP8812189 A JP 8812189A JP H02267491 A JPH02267491 A JP H02267491A
Authority
JP
Japan
Prior art keywords
radiator
cooling
tubes
heat sink
extended
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8812189A
Other languages
Japanese (ja)
Inventor
Yoshiki Yoshida
義樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8812189A priority Critical patent/JPH02267491A/en
Publication of JPH02267491A publication Critical patent/JPH02267491A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the weight of, to simplify a radiator and to automatically adjust heat radiation amount by providing cooling tubes made of shape memory alloy formed spirally or in a zigzag state in a repeating shape, and a heat sink plate made of aluminum foil extended between adjacent cooling tubes. CONSTITUTION:Since cooling tubes 8 are formed of shape memory alloy, they are contracted at a set temperature or lower (a), and extended at the set temperature or higher (b). A heat sink plate 9 made of aluminum foil extended between adjacent tubes 8 is extended or contracted upon extension of contraction of the tube 8, its surface area is varied, and cooling capacity of the radiator is varied in response to the variation. That is, the cooling capacity is increased due to extension when medium of high temperature flows in the tubes 8, and decreased due to contraction when medium of low temperature flows in the tubes 8. The adjustment of the capacity is automated only by the deformation of the alloy due to thermal load, and a valve and a control system are not required to be provided as a conventional one.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は宇宙ステーションの熱交換システム用のラジェ
ータ((関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radiator for a heat exchange system of a space station.

〔従来の技術〕[Conventional technology]

第4図に従来の宇宙ステーションの熱交換システムの系
統図を示す。図において、1はエバポレータ、2は排熱
配管、3はラジェータ、4は戻り配管、5はポンプであ
る。このシステム慢9 の中には、媒体7レオンまたはアンモニアが充填されて
いる。ま念Aは宇宙船外、Bは宇宙船内を示す。宇宙船
内の熱はエバポレータ1で集熱される。この時媒体は気
化し、宇宙船外のラジェータ3に送られ、そこで放射冷
却され液化する。戻り配管4を経てポンプ5に至り、そ
こで昇圧されて再びエバポレータ1へ送うれる。
Figure 4 shows a system diagram of a conventional space station heat exchange system. In the figure, 1 is an evaporator, 2 is a heat exhaust pipe, 3 is a radiator, 4 is a return pipe, and 5 is a pump. This system is filled with a medium 7 or ammonia. Note A indicates outside the spacecraft, and B indicates inside the spacecraft. Heat inside the spacecraft is collected by an evaporator 1. At this time, the medium is vaporized and sent to the radiator 3 outside the spacecraft, where it is radiatively cooled and liquefied. It reaches the pump 5 via the return pipe 4, where it is pressurized and sent to the evaporator 1 again.

宇宙船内で発生する熱量は、当然一定ではないので、ラ
ジェータ3から放射される熱量は調節される必要がある
。第5図に従来の放熱量調節装置の系統図を示す。6は
流量調節弁、7はジエータを備え、そこへ送られる媒体
の流量を、流量調節弁6を介して流量制御装置7で調節
している。
Since the amount of heat generated within the spacecraft is naturally not constant, the amount of heat radiated from the radiator 3 needs to be adjusted. FIG. 5 shows a system diagram of a conventional heat radiation amount adjusting device. 6 is a flow control valve, and 7 is a radiator, and the flow rate of the medium sent thereto is controlled by a flow control device 7 via the flow control valve 6.

〔発明が解決しようとする諌題〕[Problem that the invention aims to solve]

第5図に示した構成では、熱負荷の最大値に合せてラジ
ェータを複数個必要とし、またそれを調節する流量調節
弁6と制御システム7を備える必要があつ几。これは少
しでも軽量化したいという宇宙機器としては好ましくな
い。
The configuration shown in FIG. 5 requires a plurality of radiators depending on the maximum value of the heat load, and also requires a flow control valve 6 and a control system 7 to adjust the radiators. This is not desirable for space equipment that wants to be as light as possible.

本発明は軽量・シンプルで、かつ自動的に放熱量を調節
するラジェータを提供しようとする本のである。
The present invention is a book that attempts to provide a radiator that is lightweight, simple, and automatically adjusts the amount of heat radiation.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記課題を解決したものであって、螺旋状ある
いは蛇行状等の反復形状く形成された形状記憶合金製の
冷却管と、隣り合う前記冷却管の間(張られたアルミ箔
製の放熱板とを備えたラジェータに関するものである。
The present invention has solved the above problem, and consists of cooling pipes made of a shape memory alloy formed in a repeating shape such as a spiral or meandering shape, and a space between the cooling pipes (made of stretched aluminum foil). The present invention relates to a radiator equipped with a heat sink.

〔作用〕[Effect]

本発明のラジェータにおいては、冷却管は形状記憶合金
で作られているので、温度に応じて螺旋または蛇行の中
心線の方向に伸縮する。ま念、冷却管の伸縮に伴って、
冷却管の間に張られたアルミ箔製の放熱板は展張収納さ
れる。冷却管内の媒体の温度が高い時くけ冷却管が伸び
放熱板が広が9放熱量が増大し、冷却管内の媒体の温度
が低い時には放熱量が減少する。し念かって放熱量は自
動的に調節される。
In the radiator of the present invention, the cooling tube is made of a shape memory alloy, so it expands and contracts in the direction of the center line of the spiral or meander depending on the temperature. As the cooling pipe expands and contracts,
The aluminum foil heat sink stretched between the cooling pipes is expanded and stored. When the temperature of the medium in the cooling tube is high, the cooling tube stretches and the heat sink spreads (9) and the amount of heat radiation increases, and when the temperature of the medium in the cooling tube is low, the amount of heat radiation decreases. As a precaution, the amount of heat dissipation is automatically adjusted.

〔実施例〕〔Example〕

はその中間状態を示す。図において、8は形状記憶合金
製の冷却管で、螺旋状に形成されている。9は隣シ合う
冷却管80間に張られた°アルミ箔製の放熱板、10は
フレキシブルチューブである。
indicates an intermediate state. In the figure, reference numeral 8 denotes a cooling pipe made of a shape memory alloy, which is formed in a spiral shape. 9 is a heat sink made of aluminum foil stretched between adjacent cooling pipes 80, and 10 is a flexible tube.

第2図は上記実施例の冷却管と放熱板の接続部を示す断
面図である。同図(a)において、11は冷却管8IC
設けられたスリットである。同図(b)は放熱板9を前
記スリット11に挿入し、かしめ部12においてかしめ
て固定された状態を示している。同図(e)は放熱板9
を前記スリット11に挿入した後、溶接部13にで溶接
して固定された状態を示している。冷却管8と放熱板9
の接続はいずれの方法によってもよい。
FIG. 2 is a sectional view showing the connecting portion between the cooling pipe and the heat sink of the above embodiment. In the same figure (a), 11 is the cooling pipe 8IC.
It is a slit provided. FIG. 2B shows a state in which the heat dissipation plate 9 is inserted into the slit 11 and fixed by being caulked at the caulking portion 12. The figure (e) shows the heat sink 9.
After inserting into the slit 11, the welding part 13 is welded and fixed. Cooling pipe 8 and heat sink 9
may be connected by any method.

以上述べた構造を°有するラジェータにおいて温度が上
昇して気化している媒体が、冷却W8の中を通過すると
、媒体の熱は熱伝導によって放熱板9に伝わ〕、放熱板
9から宇宙へ熱放射によって熱を放散する。放熱板の表
面積が大きいほど熱放射量は多くなり、冷却能力が大と
なる。
When the medium whose temperature rises and is vaporized in the radiator having the structure described above passes through the cooling W8, the heat of the medium is transferred to the heat sink 9 by thermal conduction, and the heat is transferred from the heat sink 9 to space. Dissipates heat by radiation. The larger the surface area of the heat sink, the greater the amount of heat radiation and the greater the cooling capacity.

冷却管8は形状記憶合金で作られているので、ある設定
温度以下では第1図(IL)のように収縮しており、あ
る設定温度以上になると同図(e)のように伸長する。
Since the cooling pipe 8 is made of a shape memory alloy, it contracts as shown in FIG. 1 (IL) below a certain set temperature, and expands as shown in FIG. 1 (e) when the temperature exceeds a certain set temperature.

ま友その中間的状態として同図伽)、のように半分だけ
伸長した状態もめる。冷却管8の伸縮に伴って放熱板9
も展張あるいは収納され、その表面積が変わシ、それに
応じてラジェータの冷却能力が変る。すなわち冷却管8
の中を高温の媒体が流れる時に伸長して冷却能力が増し
、冷却管8の中を低温の媒体が流れる時には収縮して冷
却能力が減少する。この冷却能力の調節は、熱負荷によ
る形状記憶合金の変形のみで自動的に行われ、従来のよ
う忙、弁や制御システムを設ける必要がなく、非常にシ
ンプルである。
As an intermediate state, the state in which it is only half-extended is also seen. As the cooling pipe 8 expands and contracts, the heat sink 9
When the radiator is expanded or retracted, its surface area changes and the cooling capacity of the radiator changes accordingly. That is, the cooling pipe 8
When a high temperature medium flows through the cooling pipe 8, it expands and the cooling capacity increases, and when a low temperature medium flows through the cooling pipe 8, it contracts and the cooling capacity decreases. Adjustment of this cooling capacity is performed automatically by simply deforming the shape memory alloy due to heat load, and is extremely simple, without the need for conventional valves or control systems.

第3図に本発明の第2の実施例の断面図を示す。図にお
いて、8は平面内で蛇行状く形成された冷却管、9は同
冷却管の間に、水鳥の足の水掻き状に張られた、アルミ
箔製の放熱板、10は7レキシプルチユーブである。冷
却管8と放熱板9との接続部は、第1実施例の場合と同
様である。本実施例の場合も、第1実施例と同じ原理に
よって、冷却管内を流れる媒体の温度に応じて冷却管8
が伸縮し、それに伴って放熱板9が展張・収納され、そ
の面積が変る。したがってその作用効果も第1実施例の
場合と同じである。
FIG. 3 shows a sectional view of a second embodiment of the invention. In the figure, 8 is a cooling pipe formed in a serpentine shape within a plane, 9 is an aluminum foil heat sink stretched between the cooling pipes in the shape of a waterfowl's foot, and 10 is a 7 lexiple tube. It is. The connection between the cooling pipe 8 and the heat sink 9 is the same as in the first embodiment. In the case of this embodiment as well, based on the same principle as the first embodiment, the cooling pipe 8 is adjusted according to the temperature of the medium flowing inside the cooling pipe.
expands and contracts, and accordingly, the heat sink 9 is expanded and retracted, changing its area. Therefore, the operation and effect are the same as in the first embodiment.

要するに1本実施例のラジェータは、形状記憶合金製の
冷却管を用い、その間にアルミ箔製の放熱板を設けたこ
とによって、軽量・シンプルでかつ自動的に放熱量を調
節することができる。
In short, the radiator of this embodiment is lightweight, simple, and can automatically adjust the amount of heat radiation by using a cooling pipe made of a shape memory alloy and providing a heat sink made of aluminum foil between them.

〔発明の効果〕〔Effect of the invention〕

本発明のラジェータは、螺旋状あるいは蛇行状等の反復
形状に形成された形状記憶合金製の冷却管と、隣り合う
前記冷却管の間に張られたアルミ箔製の放熱板とを備え
ているので、軽量・シンプルで、かつ、自動的に放熱量
を調節することができる。
The radiator of the present invention includes cooling pipes made of a shape memory alloy formed in a repeating shape such as a spiral or meandering shape, and a heat sink made of aluminum foil stretched between adjacent cooling pipes. Therefore, it is lightweight, simple, and can automatically adjust the amount of heat dissipation.

【図面の簡単な説明】 第1図は、本発明のラジェータの第1実施例の断面図で
、(a)(b)(c)は各種媒体温度に応じた伸縮状態
を示す。 第2図は、上記実施例の冷却管と放熱板の接続部加工説
明図である。 第3図は本発明のラジェータの第2実施例の断面図で、
(a)(b)は媒体温度に応じ九伸縮状!F!1を示す
。 第4図は、従来の宇宙ステーションの熱交換システムの
系統図、第5図は従来の放熱量調節装置の系統図で心る
。 A・・・宇宙船外、 B・・・宇宙船内、・・・エバポ
レータ、  2−・・排熱配管、・・・ラジェータ、 
 4・・・戻シ配管、・・・ポンプ、  6・・・流量
調節弁、・・・流量制御装置、  8−・・冷却管、・
・・放熱板、  10−・・フレキシブルチューブ、1
・・・スリット、  12・・・かしめ部、3・・・溶
接部。 代理人 弁理士 坂 関  暁  外2名躬1図 (b) CC) A3rA (α) 葛2悶 (b) CC) (b)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a first embodiment of a radiator according to the present invention, and (a), (b), and (c) show expansion and contraction states according to various medium temperatures. FIG. 2 is an explanatory diagram of processing the connection portion between the cooling pipe and the heat sink of the above embodiment. FIG. 3 is a sectional view of a second embodiment of the radiator of the present invention.
(a) and (b) are nine expansion/contraction shapes depending on the medium temperature! F! 1 is shown. FIG. 4 is a system diagram of a conventional space station heat exchange system, and FIG. 5 is a system diagram of a conventional heat radiation amount adjustment device. A...Outside the spacecraft, B...Inside the spacecraft,...Evaporator, 2-...Exhaust heat piping,...Radiator,
4...Return pipe,...Pump, 6...Flow rate control valve,...Flow rate control device, 8-...Cooling pipe,...
・・Heat sink, 10−・・Flexible tube, 1
...Slit, 12...Caulking part, 3...Welding part. Agent Patent attorney Akira Saka Seki 1 figure (b) CC) A3rA (α) Kuzu 2 agony (b) CC) (b)

Claims (1)

【特許請求の範囲】[Claims] 螺旋状あるいは蛇行状等の反復形状に形成された形状記
憶合金製の冷却管と、隣り合う前記冷却管の間に張られ
たアルミ箔製の放熱板とを備えたラジエータ。
A radiator comprising cooling pipes made of a shape memory alloy formed in a repeating shape such as a spiral or meandering shape, and a heat sink made of aluminum foil stretched between adjacent cooling pipes.
JP8812189A 1989-04-10 1989-04-10 Radiator Pending JPH02267491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8812189A JPH02267491A (en) 1989-04-10 1989-04-10 Radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8812189A JPH02267491A (en) 1989-04-10 1989-04-10 Radiator

Publications (1)

Publication Number Publication Date
JPH02267491A true JPH02267491A (en) 1990-11-01

Family

ID=13934074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8812189A Pending JPH02267491A (en) 1989-04-10 1989-04-10 Radiator

Country Status (1)

Country Link
JP (1) JPH02267491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1479987A3 (en) * 2003-05-21 2005-08-17 Whirlpool Corporation Refrigerator with evaporator of variable dimensions
WO2009097543A2 (en) * 2008-01-30 2009-08-06 The Trustees Of Dartmouth College Compact helical heat exchanger with stretch to maintain airflow

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1479987A3 (en) * 2003-05-21 2005-08-17 Whirlpool Corporation Refrigerator with evaporator of variable dimensions
US7114350B2 (en) 2003-05-21 2006-10-03 Whirlpool Corporation Refrigerator with evaporator of variable dimensions
WO2009097543A2 (en) * 2008-01-30 2009-08-06 The Trustees Of Dartmouth College Compact helical heat exchanger with stretch to maintain airflow
WO2009097543A3 (en) * 2008-01-30 2009-09-24 The Trustees Of Dartmouth College Compact helical heat exchanger with stretch to maintain airflow
US8418484B2 (en) 2008-01-30 2013-04-16 The Trustees Of Dartmouth College Compact helical heat exchanger with stretch to maintain airflow

Similar Documents

Publication Publication Date Title
JP2859927B2 (en) Cooling device and temperature control device
US5117901A (en) Heat transfer system having a flexible deployable condenser tube
US4825661A (en) High efficiency, orientation-insensitive evaporator
EP0751365B1 (en) Heat transfer device having metal band formed with longitudinal holes
US6397936B1 (en) Freeze-tolerant condenser for a closed-loop heat-transfer system
US4869313A (en) Low pressure drop condenser/evaporator pump heat exchanger
US5535815A (en) Package-interface thermal switch
US7090001B2 (en) Optimized multiple heat pipe blocks for electronics cooling
US3929305A (en) Heat exchanger system and method
EP0438938A2 (en) Spacecraft radiator system
JP3158267B2 (en) Loop type meandering thin tube heat pipe
CN212876430U (en) Heat radiator
EP2631183A1 (en) Thermal control device regulated by pressure
US11333445B1 (en) Modular membrane controlled three-phase deployable radiator
CN107917554A (en) Flat-plate heat pipe expanded type condensing unit
JPH02267491A (en) Radiator
JP2006029672A (en) Heat transportation device using latent heat fluid loop
CN100449244C (en) Heat transfer system
CN111806730A (en) Phase change radiator
JP2006057925A (en) Two-phase flow loop type heat transport device
JP6625302B1 (en) Electronics
JPH05259667A (en) Heat radiating structure
Bugby et al. Development of advanced tools for cryogenic integration
JP7459741B2 (en) Heat Transport Device
WO2022230129A1 (en) Cooling device and cosmic structure