JPH02267470A - Capacity controller of compressor for refrigerating plant - Google Patents

Capacity controller of compressor for refrigerating plant

Info

Publication number
JPH02267470A
JPH02267470A JP1089406A JP8940689A JPH02267470A JP H02267470 A JPH02267470 A JP H02267470A JP 1089406 A JP1089406 A JP 1089406A JP 8940689 A JP8940689 A JP 8940689A JP H02267470 A JPH02267470 A JP H02267470A
Authority
JP
Japan
Prior art keywords
capacity
compressor
unloading mechanism
inverter
over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1089406A
Other languages
Japanese (ja)
Other versions
JPH07122521B2 (en
Inventor
Osamu Tanaka
修 田中
Tadashi Matsushita
松下 忠志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1089406A priority Critical patent/JPH07122521B2/en
Publication of JPH02267470A publication Critical patent/JPH02267470A/en
Publication of JPH07122521B2 publication Critical patent/JPH07122521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PURPOSE:To restrict an abnormal increase of a high pressure caused by a changing-over operation and further prevent a protective device for a compressor from being operated by a method wherein a time for changing-over of an unloading mechanism is delayed more than a changing-over time of an output frequency of an inverter. CONSTITUTION:In case that an unloading mechanism 2a is changed over from its unloaded state to its loaded state by a controlling means 51, a time for changing-over the unloading mechanism 2a into its loaded condition is delayed by a changing-over limiting means 52. In case that capacities of compressors 1 and 2 are changed, the unloading mechanism 2a is changed over to its loading side and at the same time an output frequency of an inverter 15 is varied slightly. In this case, at first an output frequency of the inverter 15 is varied and then a capacity of the compressor is gradually decreased and after this state the unloading mechanism 2a is changed over to the loading side, resulting in that the capacity of the compressor just after this changing-over operation is not so high as expected. Thus, a high pressure is not abnormally increased, but the protection device against the compressors 1 and 2 is not operated, so that the compressors 1 and 2 may perform their continuous operation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍装置の圧縮機の容量制御装置に関し、特
に、アンロード機構とインバータとの双方で容量を制御
するものの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a capacity control device for a compressor of a refrigeration system, and particularly relates to an improvement in the capacity control device using both an unloading mechanism and an inverter.

(従来の技術) 従来より、この種の冷凍装置の圧縮機の容量制御装置と
して、例えば特開昭63−127864号公報に開示さ
れるように、アンロード機構により圧縮機をロード状態
とアンロード状態とに切換えると共に、インバータによ
り圧縮機の運転周波数を複数段階に変更することにより
、その双方の容量制御でもって圧縮機の容量を多段階に
調整するようにしたものが知られている。
(Prior Art) Conventionally, as a capacity control device for a compressor of this type of refrigeration equipment, for example, as disclosed in Japanese Unexamined Patent Publication No. 127864/1983, an unloading mechanism is used to control the compressor between a loaded state and an unloaded state. There is a known system in which the capacity of the compressor is adjusted in multiple stages by changing the operating frequency of the compressor into multiple stages using an inverter, thereby controlling the capacity of both.

(発明が解決しようとする課題) しかしながら、アンロード機構の切換動作は直ちに行わ
れるが、インバータは出力周波数の変化が徐々にしか行
えない。このため、圧縮機の容量を目標値に制御する場
合に、アンロード機構をロード側に切換えると共にイン
バータの出力周波数を低く変更する際には、インバータ
の出力周波数が未だ元の周波数の近傍にある状況でアン
ロード機構が直ちにロード側に切換わることになる。そ
の結果、圧縮機の容量はほぼ元の容量からアンロード機
構がロード側に切換わる分だけ一旦大きくなり、その後
にインバータの出力周波数の低下に伴って漸次低下する
。この場合、圧縮機の容量が大きくなった時点では、冷
媒の循環系統の高圧が異常に上昇し、これに伴い圧縮機
の保護装置が動作して圧縮機が強制的に停止側に制御さ
れてしまうことがある。
(Problems to be Solved by the Invention) However, although the switching operation of the unloading mechanism is performed immediately, the inverter can only change the output frequency gradually. Therefore, when controlling the compressor capacity to the target value, when switching the unload mechanism to the load side and changing the inverter output frequency to a lower value, the inverter output frequency is still near the original frequency. situation, the unloading mechanism will immediately switch to the loading side. As a result, the capacity of the compressor increases from its original capacity by the amount that the unloading mechanism switches to the load side, and then gradually decreases as the output frequency of the inverter decreases. In this case, when the capacity of the compressor increases, the high pressure in the refrigerant circulation system increases abnormally, and the compressor protection device operates accordingly, forcing the compressor to stop. Sometimes I put it away.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、圧縮機の容量の変更時に、アンロード機構をアン
ロード側からロード側に切換える場合、このロード側へ
の切換えに起因する高圧の異常上昇を抑えて圧縮機の保
護装置の作動を防止し、圧縮機の連続運転を行うことに
ある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to prevent the unloading mechanism from changing from the unloading side to the loading side when changing the capacity of the compressor. The purpose is to prevent the compressor's protection device from operating by suppressing abnormal increases in high pressure, and to allow the compressor to operate continuously.

(課題を解決するための手段) 上記の目的を達成するため、本発明では、アンロード機
構の切換動作の時期とインバータの出力周波数の変更の
時期との間で関連を付け、前者の切換時期を後者の変更
時期よりも遅くするようにしている。
(Means for Solving the Problems) In order to achieve the above object, the present invention establishes a relationship between the timing of the switching operation of the unloading mechanism and the timing of changing the output frequency of the inverter, and the timing of the switching operation of the former. The change timing is set later than the latter.

つまり、本発明の具体的な解決手段は、第1図に示すよ
うに、圧縮機(1,2)の容量を調整するアンロード機
構(2a)及びインバータ(15)を備えた冷凍装置の
圧縮機の容量制御装置を前提として、上記圧縮機(1,
2)の目標容ff1(L+)を設定する目標容量設定手
段(50)と、該目標容量設定手段(50)の出力を受
け、圧縮機(1,2)の容量が目標容ff1(L+)に
なるように上記アンロード機構(2a)及びインバータ
(15)を制御する制御手段(51)とを備えたものに
適用し、上記制御手段(51)によりアンロード機構(
2a)をアンロード状態からロード状態に切換える場合
に、アンロード機構(2)をロード状態に切換える時期
を遅らせる切換制限手段(52)を設ける構成としてい
る。
In other words, the specific solution of the present invention is, as shown in FIG. The above compressor (1,
2) a target capacity setting means (50) for setting the target capacity ff1(L+); and receiving the output of the target capacity setting means (50), the capacity of the compressor (1, 2) is set to the target capacity ff1(L+). The unloading mechanism (2a) and the control means (51) for controlling the inverter (15) are applied so that the unloading mechanism (2a) is controlled by the control means (51).
2a) is provided with a switching restriction means (52) that delays the timing of switching the unloading mechanism (2) to the loading state when switching from the unloading state to the loading state.

(作用) 以上の構成により、本発明では、圧縮機(1,2)の容
量の変更時に、アンロード機構(2a)をロード側に切
換えると共にインバータ(15)の出力周波数を小さく
変更する場合には、先ずインバータ(15)の出力周波
数が変更されて圧縮機の容量が漸次低下し、その後にア
ンロード機構(25a)1がロード側に切換わるので、
この切換えの直後での圧縮機の容量はさほど大きくない
。従って、高圧は異常に高くならず、圧縮機(1,2)
の保護装置は作動しないので、圧縮機(1,2)の連続
運転ができる。
(Function) With the above configuration, in the present invention, when changing the capacity of the compressor (1, 2), the unloading mechanism (2a) is switched to the loading side and the output frequency of the inverter (15) is changed to a small value. First, the output frequency of the inverter (15) is changed and the capacity of the compressor is gradually reduced, and then the unloading mechanism (25a) 1 is switched to the loading side.
The capacity of the compressor immediately after this changeover is not very large. Therefore, the high pressure does not become abnormally high and the compressor (1, 2)
Since the protective device is not activated, the compressors (1, 2) can be operated continuously.

特に、インバータ(15)の出力周波数が目標値に変更
されて周波数の変更が完了した後に、アンロード機構(
2a)をロード側に切換えれば、圧縮機(1,2)の連
続運転が確実になる。
In particular, after the output frequency of the inverter (15) has been changed to the target value and the frequency change has been completed, the unloading mechanism (
By switching 2a) to the load side, continuous operation of the compressors (1, 2) is ensured.

(発明の効果) 以上説明したように、本発明の冷凍装置の圧縮機の容量
制御装置によれば、アンロード機構をロード側に切換え
る場合には、インバータの出力周波数を変更する時期と
同一時期とはせず、これよりも遅らせたので、冷媒回路
の高圧の異常上昇を抑えて、圧縮機の保護装置の作動を
防止でき、圧縮機の連続運転を行い得る範囲を拡大する
ことができる。
(Effects of the Invention) As explained above, according to the capacity control device for a compressor of a refrigeration system of the present invention, when switching the unload mechanism to the load side, the timing is the same as the time when the output frequency of the inverter is changed. Instead, it is delayed further than this, so it is possible to suppress an abnormal rise in the high pressure in the refrigerant circuit, prevent the compressor protection device from operating, and expand the range in which the compressor can be continuously operated.

(実施例) 以下、本発明の実施例を第2図以下の図面に基いて説明
すも。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

’R42図は本発明をマルチ型式の空気調和機に適用し
た実施例を示し、(A)は室外ユニット、(B)〜(P
)は同一内部構成の5台の室内ユニットであって、上記
室外ユニット(A)の内部には、互いに並列に接続され
た第1圧縮機(1)及び第2圧縮機(2)と、四路切換
弁(3)と、室外送風ファン(4a)を有する室外熱交
換器(4)と、膨張弁(5)とが備えられ、該各機器0
>〜(5)は各々冷媒配管(6)・・・で冷媒の流通可
能に接続されている。また、上記各室内ユニット(B)
〜(P)は、各々、室内送風ファン(log)を有する
室内熱交換器(10)と、膨張弁(11)とを備え、該
膨張弁(11)は、その弁開度が電気的に増減調整でき
る空調能力調整用の室内電動膨張弁で構成されていて、
該各機器(10)、(11)は冷媒配管(12)・・・
で冷媒の流通可能に接続されている。
Figure 'R42 shows an embodiment in which the present invention is applied to a multi-type air conditioner, in which (A) is an outdoor unit, (B) to (P
) are five indoor units with the same internal configuration, and inside the outdoor unit (A), there are a first compressor (1) and a second compressor (2) connected in parallel to each other, and four A path switching valve (3), an outdoor heat exchanger (4) having an outdoor fan (4a), and an expansion valve (5) are provided, and each of the devices is
> to (5) are connected to each other through refrigerant pipes (6) so that refrigerant can flow therethrough. In addition, each of the above indoor units (B)
- (P) each include an indoor heat exchanger (10) having an indoor ventilation fan (log) and an expansion valve (11), and the expansion valve (11) has an opening degree that is electrically controlled. It consists of an indoor electric expansion valve for adjusting air conditioning capacity that can be increased or decreased.
The respective devices (10) and (11) are refrigerant pipes (12)...
connected to allow refrigerant flow.

そして、上記5台の室内ユニット(B)〜(P)は、各
々冷媒配管(I3)・・・で互いに並列に接続されて上
記室外ユニット(A)に冷媒の循環可能に接続されて冷
媒循環系統(14)が形成されていて、冷房運転時には
、四路切換弁(3)を図中破線の如く切換えて冷媒を図
中破線矢印の如く循環させることにより、各室内熱交換
器(lO)・・・で室内から吸熱した熱量を室外熱交換
器(4)で外気に放熱することを繰返して各室内を冷房
する一方、暖房運転時には、四路切換弁(3)を図中実
線の如く切換えて冷媒を図中実線矢印の如く循環させる
ことにより、熱量の授受を上記とは逆にして、室内を暖
房するようにしている。
The five indoor units (B) to (P) are connected in parallel to each other through refrigerant piping (I3), and connected to the outdoor unit (A) so that the refrigerant can be circulated. A system (14) is formed, and during cooling operation, the four-way switching valve (3) is switched as shown by the broken line in the figure to circulate the refrigerant as shown by the broken line arrow in the figure, thereby controlling each indoor heat exchanger (1O). The heat absorbed from the room is repeatedly radiated to the outside air by the outdoor heat exchanger (4) to cool each room, while during heating operation, the four-way selector valve (3) is turned on as shown by the solid line in the figure. By switching the refrigerant and circulating the refrigerant as shown by the solid arrow in the figure, the amount of heat exchanged is reversed to heat the room.

また、上記ml圧縮機<1)にはインバータ(15)が
接続されていて、該インバータ(15)の30%から1
0%刻みの周波数設定信号の出力により、圧縮機(1)
の運転周波数を8段階に高低調整して、その容量を複数
段階(停止時を含んで9段階)に増減調整するようにな
されている。
In addition, an inverter (15) is connected to the ml compressor <1), and 30% to 1
By outputting the frequency setting signal in 0% increments, the compressor (1)
The operating frequency of the pump is adjusted in eight steps, and the capacity is increased or decreased in multiple steps (nine steps including when stopped).

また、第2圧縮機(2)は、第3図に詳示すように、密
閉ケーシング(2b)に吸入口(2c)と吐出口(2d
)とが形成され、該密閉ケーシング(2b)内には、モ
ータ(2e)により駆動軸(2f)を介して駆動される
ピストン(2g)が配置され、該ピストン(2g)によ
り圧送されるガス(吐出ガス)を吐出ガス通路(2h)
から該吐出ガス通路(2b)に開口する吐出ガス管(2
])を介して、上記吐出口(2d)に導くようになって
いる。そして、上記吐出ガス通路(2h)の途中には、
アンロード機構(2a)が配置され、該アンロード機構
(2a)は、吐出ガス通路(2h)の隔壁(2j)に設
けた開口(2k)を開閉する弁体(2りと、該弁体(2
1)を開弁方向に付勢するスプリング(2m)と、弁体
(21)の後方に圧力室(2n)とを有する。そして、
上記弁体(21)は、圧力室(2n)に連通ずるパイロ
ット圧導入通路(1B)に設けたパイロット電磁弁(1
7)の閉時に高圧(吐出ガス圧)が作用することにより
、上記開口(2k)を弁体(21)で閉じて、吐出ガス
の全量を吐出口(2d)に導き、第2圧縮機(2)の容
量をフルロード(100%)にする一方、パイロット電
磁弁(17)の開時には低圧が作用することにより、ス
プリング(2■)の付勢力で弁体(21)を図中右方向
に付勢して開口(2k)を開き、吐出ガスの一部を該開
口(2k)を介して密閉ケーシング(2b)内下部にバ
イパスして、第2圧縮機(2)の容量を50%にアンロ
ードするものである。
Furthermore, as shown in detail in FIG.
) is formed, and a piston (2g) driven by a motor (2e) via a drive shaft (2f) is disposed within the sealed casing (2b), and a gas pumped by the piston (2g) is arranged. (Discharged gas) Discharged gas passage (2h)
A discharge gas pipe (2b) opens from the discharge gas passageway (2b).
]) to the discharge port (2d). And, in the middle of the discharge gas passage (2h),
An unloading mechanism (2a) is arranged, and the unloading mechanism (2a) includes a valve body (2 k) that opens and closes an opening (2k) provided in a partition wall (2j) of a discharge gas passage (2h), (2
1) It has a spring (2m) that biases the valve in the valve opening direction and a pressure chamber (2n) behind the valve body (21). and,
The valve body (21) is a pilot solenoid valve (1) provided in a pilot pressure introduction passage (1B) communicating with a pressure chamber (2n).
7), the high pressure (discharge gas pressure) acts on the valve body (21) to close the opening (2k) and guide the entire amount of discharge gas to the discharge port (2d), which causes the second compressor ( While the capacity of 2) is set to full load (100%), low pressure is applied when the pilot solenoid valve (17) is opened, and the urging force of the spring (2■) pushes the valve body (21) toward the right in the figure. is energized to open the opening (2k), and a portion of the discharged gas is bypassed to the lower part of the sealed casing (2b) through the opening (2k), reducing the capacity of the second compressor (2) to 50%. It is to be unloaded.

また、第2図において、(20)は四路切換弁(3)前
後の冷媒配管(6)、(8)(吐出管と吸入管)を接続
する均圧ホットガスバイパス回路であって、該バイパス
回路(20)には、冷房運転状態での低負荷時及び室外
熱交換器(4)の除霜運転時等に開作動するホットガス
電磁弁(21)が介設されている。
In addition, in FIG. 2, (20) is a pressure equalizing hot gas bypass circuit that connects the refrigerant pipes (6) and (8) (discharge pipe and suction pipe) before and after the four-way switching valve (3). The bypass circuit (20) is provided with a hot gas solenoid valve (21) that is opened during low load during cooling operation and during defrosting operation of the outdoor heat exchanger (4).

さらに、(22)は暖房運転時に吐出管となる冷媒配管
(8)に接続された暖房過負荷時バイパス回路であって
、該バイパス回路(22)には、補助コンデンサ(23
)及び、冷媒の高圧時に開く高圧制御弁(24)が介設
されており、暖房過負荷時に圧縮機(1)。
Furthermore, (22) is a heating overload bypass circuit connected to the refrigerant pipe (8) which becomes a discharge pipe during heating operation, and the bypass circuit (22) includes an auxiliary capacitor (23).
) and a high-pressure control valve (24) that opens when the refrigerant pressure is high.

(2)からの冷媒を該バイパス回路(22)を介して各
室内熱交換器(10)・・・をバイパスして、各室内熱
交換器(10)・・・下流側の冷媒配管(6)にバイパ
スするようにしている。
(2) through the bypass circuit (22) and bypasses each indoor heat exchanger (10)...downstream refrigerant piping (6). ).

加えて、(25)は上記暖房過負荷時バイパス回路(2
2)の補助コンデンサ(23)下流側を、四路切換弁(
3)下流側の冷媒配管(6)(吸入管)に接続するリキ
ッドインジェクションバイパス回路であって、該リキッ
ドインジェクションバイパス回路(25)には圧縮機(
1) 、 (2)の作動に連動して開閉するインジェク
ション用電磁弁(2B)と、膨張弁(27)とが介設さ
れている。
In addition, (25) is the heating overload bypass circuit (2
The downstream side of the auxiliary condenser (23) of 2) is connected to the four-way selector valve (
3) A liquid injection bypass circuit connected to the refrigerant pipe (6) (suction pipe) on the downstream side, and the liquid injection bypass circuit (25) is equipped with a compressor (
An injection solenoid valve (2B) that opens and closes in conjunction with the operations of 1) and (2) and an expansion valve (27) are interposed.

また、(30)はレシーバ、(31)はアキュムレータ
、(32)は過冷却コイル、(33)は油分離器であっ
て、該油分離S (33)で分離された潤滑油は油通路
(34)を介して内圧縮機(1) 、 (2)に戻され
る。
Further, (30) is a receiver, (31) is an accumulator, (32) is a supercooling coil, and (33) is an oil separator, and the lubricating oil separated by the oil separator S (33) is passed through the oil passage ( 34) and is returned to the inner compressors (1) and (2).

さらに、各室内ユニット(B)〜(P)において、(T
ll 1 )は対応する室内の空気の温度(吸込空気温
度)を検出する室温センサ、(Tll2)及び(Tll
3)は各々冷房運転時に蒸発器として作用する室内熱交
換器(10)・・・前後の冷vi、温度を検出する温度
センサである。また、室外ユニット(A)において、(
T114)は第1及び第2圧縮機(1) 、 (2)の
冷媒吐出温度を検出する温度センサ、(TI15)は暖
房運転時に室外熱交換器(4)での冷媒の蒸発温度を検
出する蒸発温度センサ、(Ti[i)は第1及び第2圧
縮機(1) 、 (2)への吸入ガス温度を検出する吸
入ガス温度センサである。また、(PI)は暖房運7転
時には吐出ガス圧力を、冷房運転時には吸入ガス圧力を
各々検出する圧力センサ、(IIPS)は圧縮機保護用
の高圧圧力開閉器である。
Furthermore, in each indoor unit (B) to (P), (T
ll1) is a room temperature sensor that detects the temperature of the corresponding indoor air (intake air temperature), (Tll2) and (Tll
3) is an indoor heat exchanger (10) that acts as an evaporator during cooling operation, and a temperature sensor that detects the temperature of the front and rear cooling vi. In addition, in the outdoor unit (A), (
T114) is a temperature sensor that detects the refrigerant discharge temperature of the first and second compressors (1) and (2), and (TI15) is a temperature sensor that detects the evaporation temperature of the refrigerant in the outdoor heat exchanger (4) during heating operation. The evaporation temperature sensor (Ti[i) is an intake gas temperature sensor that detects the intake gas temperature to the first and second compressors (1) and (2). Further, (PI) is a pressure sensor that detects the discharge gas pressure during heating operation and the intake gas pressure during cooling operation, and (IIPS) is a high pressure switch for protecting the compressor.

次に、上記第1及び第2圧縮機(1)、(2)の容量制
御を冷房運転時を例に挙げて第4図の制御フローに基い
て説明する。尚、この容量制御は、室外ユニット(A)
内に備える室外制御部(図示せず)により行われる。
Next, capacity control of the first and second compressors (1) and (2) will be explained based on the control flow shown in FIG. 4, taking the case of cooling operation as an example. Note that this capacity control is performed by the outdoor unit (A).
This is performed by an indoor outdoor control unit (not shown).

第4図において、スタートして、ステップS1で圧力セ
ンサ(P1)により検出した吸入ガス圧力を相当飽和温
度に換算して得られる冷媒温度T2、つまり蒸発温度(
暖房運転時には冷媒の凝縮温度)を検出した後、圧縮機
(1)、’(2)の合計容量のフィードバック制御とし
てPI副制御比例−積分制御)を行うこととし、ステッ
プS2で圧縮機(1)、(2)の目標合計容量L1を、
上記蒸発温度T2とその目標値T2oとの偏差の、今回
と前回の値e (1)、 e (t−Δ1)に基いて、
蒸発温度T2がその目標値T20になるよう下記式 %式%) ))] Lo;現在の合計容量 Kc;ゲイン(定数) TI ;積分定数 Δt ;サンプリング時間 で演算する。
In FIG. 4, the refrigerant temperature T2, that is, the evaporation temperature (
During heating operation, after detecting the condensation temperature of the refrigerant, PI sub-control proportional-integral control is performed as feedback control of the total capacity of the compressors (1) and '(2), and in step S2, the compressor (1) ), the target total capacity L1 of (2) is
Based on the current and previous values e (1) and e (t-Δ1) of the deviation between the evaporation temperature T2 and its target value T2o,
Calculate using the following formula (% formula %)) Lo: Current total capacity Kc: Gain (constant) TI: Integral constant Δt: Sampling time so that the evaporation temperature T2 becomes the target value T20.

しかる後、ステップS3で第1表の合計容量マツプに基
いて上記合計目標容fi L +に対応した圧縮機(1
) 、 (2)の合計容量を把握して、この合計容量に
対応する第2表の各圧縮機(1)、(2)の実際の容量
マツプに基いて第1の圧縮機(1)の容量をインバータ
(15)で制御すると共に、第2の圧縮機(2)の容量
をアンロード機構(2a)で調整する。そして、ステッ
プS4でサンプリング時間Δtの経過を待って上記ステ
ップS!に戻って、以上の動作を繰返す。
After that, in step S3, the compressor (1
), (2), and calculate the capacity of the first compressor (1) based on the actual capacity map of each compressor (1), (2) in Table 2 corresponding to this total capacity. The capacity is controlled by an inverter (15), and the capacity of the second compressor (2) is adjusted by an unloading mechanism (2a). Then, in step S4, wait for the sampling time Δt to elapse, and then proceed to step S! Go back and repeat the above steps.

第  1 表 第 表 ここに、上記第1表の合計容量マツプは、圧縮機(1)
、(2)の制御すべき合計容量が零値の場合と、30%
値から漸次lO%づづ増大して200%値に至る多段階
(19段階)に区分されていると共に、合計目標容量L
1の範囲が容量の増大時と減少時とで区別されている。
Table 1 Here, the total capacity map in Table 1 above is for compressor (1)
, (2) when the total capacity to be controlled is zero, and when 30%
The total target capacity L
The range of 1 is distinguished between when the capacity increases and when it decreases.

また、上記第2表の各圧縮機(1) 、 (2)の容量
マツプは、合計容量が30%から100%までの範囲に
おいて、第1の圧縮機(Oの容量が10%刻みで増大す
ると共に、第2の圧縮機(2)の容量が0%(停止)を
保持する第1マツプと、合計容量が80%から150%
までの範囲において、第1の圧縮機(1)の容量が上記
と同様に10%刻みで増大し、第2の圧縮機(2)の容
量が50%を保持するm2のマツプと、合計容量が13
0%から200%までの範囲において、第1の圧縮機(
1)の容量が10%刻みで増大し、第2の圧縮機(2)
の容量が100%を保涛する第3マツプとからなる。そ
して、上記第1マツプで合計容量が増減し、第1の圧縮
機(1)の容量が最大値(100%)の状態で、合計容
量が110%に増大すると、第2マツプに移行して、第
2の圧縮機(2)の容量がアンロード機構(2a)で0
%から50%に増大調整されると共に、第1の圧縮機(
1)の容量がインバータ(15)で100%から60%
に減少調整され、その後は、合計容量の増減変化に応じ
てこの第2マツプの各容量値を取り、第1の圧縮機(1
)の容量値が最小値の30%の状態で合計容量が80%
から70%に減少する場合には、上記第1マツプに移行
して、第2の圧縮機(2)の容量が0%に調整されると
共に、第1の圧縮機(1)の容量がインバータ(15)
で70%に調整される。
In addition, the capacity map of each compressor (1) and (2) in Table 2 above shows that the capacity of the first compressor (O increases in 10% increments) when the total capacity ranges from 30% to 100%. At the same time, the first map holds the capacity of the second compressor (2) at 0% (stopped), and the total capacity changes from 80% to 150%.
In the range of is 13
In the range from 0% to 200%, the first compressor (
The capacity of 1) increases in 10% increments, and the second compressor (2)
and a third map whose capacity is 100%. Then, the total capacity increases or decreases in the first map, and when the total capacity increases to 110% while the capacity of the first compressor (1) is at its maximum value (100%), the map shifts to the second map. , the capacity of the second compressor (2) is 0 at the unloading mechanism (2a).
% to 50%, and the first compressor (
1) Capacity is increased from 100% to 60% by inverter (15)
After that, each capacity value of this second map is taken according to the increase/decrease change in the total capacity, and the first compressor (1
) when the capacity value is 30% of the minimum value, the total capacity is 80%.
When the capacity decreases from 1 to 70%, the process shifts to the first map, and the capacity of the second compressor (2) is adjusted to 0%, and the capacity of the first compressor (1) is adjusted to 0%. (15)
is adjusted to 70%.

同様に、第2マツプで合計容量が増減し、第1の圧縮機
(1)の容量が最大値(100%)の状態で、合計容量
が150%から160%に増大すると、第3マツプに移
行して、第2の圧縮機(2)の容量がアンロード機構(
2a)で50%から100%に増大調整されると共に、
第1の圧縮機(1)の容量がインバータ(15)で10
0%から60%に減少調整される。その後は、合計容量
の増減変化に応じてこの第3マツプの各容量値を取り、
第1の圧縮機(1)の容量値が最小値の30%の状態で
合計容量が130%から120%に減少する場合には、
上記第2マツプに移行して、第2の圧縮機(2)の容量
が100%から50%に減少I!J整されると共に、第
1の圧縮機(1)の容量がインバータ(15)で70%
に調整される。
Similarly, if the total capacity increases or decreases in the second map, and the capacity of the first compressor (1) is at its maximum value (100%), and the total capacity increases from 150% to 160%, the third map changes. The capacity of the second compressor (2) is increased by the unloading mechanism (
In 2a), the increase is adjusted from 50% to 100%, and
The capacity of the first compressor (1) is 10 with the inverter (15)
Adjusted to decrease from 0% to 60%. After that, each capacity value of this third map is taken according to the increase/decrease change in the total capacity,
When the capacity value of the first compressor (1) is 30% of the minimum value and the total capacity decreases from 130% to 120%,
Moving to the second map above, the capacity of the second compressor (2) decreases from 100% to 50% I! The capacity of the first compressor (1) is increased to 70% by the inverter (15).
is adjusted to

よって、上記第4図の制御フローのステップS2により
、蒸発温度T2が設定値(目標値T、Q)になるよう、
圧縮機(1)、(2)の合計目標容量L1を演算して設
定するようにした目標容量設定手段(50)を構成して
いる。また、ステップS3により、上記目標容量設定手
段(50)の出力を受け、圧縮機(1)、(2)の合計
容量を上記の合計目標容RL1に近い段階の合計容量に
するようインバータ(15)及びアンロード機構(2a
)を制御するようにした制御手段(51)を構成してい
る。そして、上記制御手段(51)は、上記第2表の各
圧縮機(1) 、 (2)の容量マツプを備えて、圧縮
機(1)、(2)の合計容量が150%から100%に
増大する時に、アンロード機+fW(2a)をアンロー
ド状態からロード状態に切換えて第2の圧縮機(2)の
容量を100%にすると共に、インバーク(15)の出
力周波数を低くして第1の圧縮機(1)の容量を100
%から60%に低減する機能を有する。
Therefore, in step S2 of the control flow in FIG. 4 above, the evaporation temperature T2 is set to the set value (target values T, Q).
A target capacity setting means (50) is configured to calculate and set a total target capacity L1 of the compressors (1) and (2). Further, in step S3, the inverter (15) receives the output of the target capacity setting means (50) and sets the total capacity of the compressors (1) and (2) to a level close to the total target capacity RL1. ) and unloading mechanism (2a
) constitutes a control means (51) configured to control. The control means (51) is equipped with a capacity map of each compressor (1) and (2) in Table 2, and the total capacity of the compressors (1) and (2) is between 150% and 100%. When the load increases, the unloading machine +fW (2a) is switched from the unloading state to the loading state to make the capacity of the second compressor (2) 100%, and the output frequency of the inverter (15) is lowered. The capacity of the first compressor (1) is 100
% to 60%.

次に、上記制御フローの動作を特に合計容ff1150
%→160%への増大時を中心に第5図及び第6図に基
いて説明する。
Next, we will explain the operation of the above control flow, especially the total capacity ff1150.
The explanation will be based on FIG. 5 and FIG. 6, focusing on the increase from % to 160%.

第5図において、アンロード機構(2K)のパイロット
電磁弁(17)がON(開)動作した第2圧縮機(2)
のアンロード時(「1」位置時)に、サーモがOFF動
作して容量の増大が要求されると、パイロット電磁弁(
17)をOFF (閉)側に切換えて第2圧縮機(2)
をフルロード状態とする( 「0]位置)。
In Fig. 5, the pilot solenoid valve (17) of the unloading mechanism (2K) is turned on (opened) in the second compressor (2).
When unloading (at "1" position), if the thermostat turns OFF and an increase in capacity is requested, the pilot solenoid valve (
17) to the OFF (closed) side and turn on the second compressor (2).
is in a fully loaded state (“0” position).

また、この状態でサーモがON動作して容量の減少が要
求されれば、第1の圧縮機(1)が!00%00%容量
いときに限り「1」位置に遷移し第2圧縮機(2)のア
ンロード状態とする。
Also, if the thermostat is turned on in this state and a reduction in capacity is requested, the first compressor (1) will be activated! Only when the capacity is 00%, it transits to the "1" position and the second compressor (2) is in an unloaded state.

また、「1」位置にて、第1の圧縮機(1)が100%
容量になると、容量の150%→180%への増大に待
機すべく、周波数一致カウンタ(後述)をリセットして
「2」位置に遷移して、パイロット電磁弁(17)のO
N(開)動作による第2圧縮機(2)のアンロード状態
を維持する。
In addition, at the "1" position, the first compressor (1) is at 100%
When the capacity is reached, in order to wait for the capacity to increase from 150% to 180%, the frequency matching counter (described later) is reset to the "2" position, and the O of the pilot solenoid valve (17) is turned off.
The unloaded state of the second compressor (2) is maintained by the N (open) operation.

そして、「2」位置にてサーモがOFF動作して容量の
160%への増大が要求されると、第1の圧縮機(1)
が80%容量になる時期を待つ、つまりインバータ(1
5)の出力周波数が目標値になる時期を待つべく、第6
図のカウンタ制御フローを行う。この制御フローは、ス
タートして、ステップS1でインバータ(15)から出
力周波数が目標値に一致したことを意味する周波数一致
信号の受信の有無を判別し、受信しないNoの場合には
ステップS2で周波数一致カウンタをリセットしてリタ
ーンする。また、周波数一致信号を受信したYESの場
合には、周波数一致カウンタで時間をカウントし、ステ
ップS3でこのカウントのアップを判別し、NOの場合
にはステップS4でカウントを続行してリターンする一
方、カウントを完了するとアンロード機構(2a)をフ
ルロード状態に切換えるべく、直ちにリターンする。
Then, when the thermostat turns off at the "2" position and an increase in capacity to 160% is requested, the first compressor (1)
wait for the time when the capacity reaches 80%, that is, the inverter (1
In order to wait for the time when the output frequency of 5) reaches the target value, the 6th
Perform the counter control flow shown in the figure. This control flow starts, and in step S1, it is determined whether or not a frequency matching signal is received from the inverter (15), which means that the output frequency matches the target value.If it is not received, step S2 is performed. Reset the frequency match counter and return. In addition, in the case of YES when the frequency match signal is received, the frequency match counter counts the time, and in step S3 it is determined whether this count has increased, and in the case of NO, the count is continued in step S4 and the process returns. When the count is completed, the process immediately returns to switch the unload mechanism (2a) to the full load state.

そして、第6図の「2」位置にて、周波数一致カウンタ
がアップしたのを確認すると、1130%容量への増大
制御が可能であると判断して、「2」位置から「0」位
置に遷移して、パイロット電磁弁(17)をOPI’(
閉)側に切換えて第2圧縮機(2)をフルロード状態と
する。
When the frequency matching counter is confirmed to have increased at the "2" position in Figure 6, it is determined that the capacity can be increased to 1130%, and the frequency matching counter is changed from the "2" position to the "0" position. The pilot solenoid valve (17) is set to OPI' (
(closed) side to bring the second compressor (2) into a full load state.

よって、上記第5図及び第6図の制御フローにより、容
量の150%→180%への増大の要求時に、上記制御
手段(51)によりアンロード機構(2a)をアンロー
ド状態からロード状態に切換える場合は、このアンロー
ド機構(2)をロード状態に切換える時期を遅らせて、
インバータ(15)の出力周波数が目標周波数になった
ことを確認するまで待ち、これを確認した場合に限り、
アンロード機構(2)をロード状態に切換えることを許
容するようにした切換制限手段(52)を構成している
Therefore, according to the control flow shown in FIGS. 5 and 6, when an increase in capacity from 150% to 180% is requested, the control means (51) changes the unloading mechanism (2a) from the unloading state to the loading state. When switching, delay the timing of switching this unloading mechanism (2) to the loading state,
Wait until it is confirmed that the output frequency of the inverter (15) has reached the target frequency, and only when this is confirmed,
It constitutes a switching restriction means (52) that allows the unloading mechanism (2) to be switched to the loading state.

したがって、上記実施例においては、第7図に示すよう
に、150%→180%への容量増大時に、インバータ
(15)側の第1圧縮機(1)ではインバータ(15)
の出力周波数の低下により容量が100%から60%に
低減し、アンロード機?!(2a)側の第2の圧縮機(
2)ではアンロード機構(2a)のフルロード側への切
換えにより50%容量から100%容量に増大制御され
る。
Therefore, in the above embodiment, as shown in FIG. 7, when the capacity is increased from 150% to 180%, the first compressor (1) on the inverter (15) side
The capacity is reduced from 100% to 60% due to the decrease in the output frequency of the unloading machine? ! (2a) side second compressor (
In 2), the capacity is increased from 50% to 100% by switching the unloading mechanism (2a) to the full load side.

この際、従来では、図中破線で示すようにインバータ(
15)側の第1圧縮機(1)の容量が元の100%容量
の近傍にある状況で、アンロード機構(2a)がフルロ
ード側に切換わって第2の圧縮機(2)が100%容量
になるために、合計容量は異常に大きくなり、圧縮機保
護用の高圧の限界値(高圧圧力開閉器(IPS)の作動
値)に相当する容量値(図中−点鎖線で示す)を越え、
その結果、圧縮機の保護装置が作動して圧縮機(1) 
、 (2)の運転が強制的に停止することになる。
At this time, conventionally, the inverter (
15) When the capacity of the first compressor (1) on the side is close to the original 100% capacity, the unload mechanism (2a) switches to the full load side and the second compressor (2) % capacity, the total capacity becomes abnormally large, and the capacity value (indicated by the dotted chain line in the figure) corresponds to the high pressure limit value for compressor protection (operating value of the high pressure switch (IPS)). beyond,
As a result, the compressor protection device is activated and the compressor (1)
, the operation in (2) will be forcibly stopped.

しかし、本発明では、図中実線で示すように、インバー
タ(15)の出力周波数が目標値に達して第1圧縮機(
1)の容量が60%の目標容量になった時点でアンロー
ド機構(2a)がフルロード側に切換わるので、図中−
点鎖線で示す限界容量値を越えることがなく、圧縮機(
1)、(2)の連続運転を行うことができる。
However, in the present invention, as shown by the solid line in the figure, the output frequency of the inverter (15) reaches the target value and the first compressor (
When the capacity of 1) reaches the target capacity of 60%, the unloading mechanism (2a) switches to the full load side, so - in the figure
The compressor (
Continuous operation of 1) and (2) can be performed.

尚、上記実施例では、第1の圧縮機(1)をインバータ
(15)で制御し、第2の圧縮機(2)をアンロード機
構(2a)で制御したが、−台の圧縮機に対してインバ
ータとアンロード機構の双方で容量を制御するものにし
ても同様に適用できるのは勿論である。
In the above embodiment, the first compressor (1) was controlled by the inverter (15), and the second compressor (2) was controlled by the unloading mechanism (2a). On the other hand, it goes without saying that the present invention can be similarly applied even if the capacity is controlled by both the inverter and the unloading mechanism.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図である。 第2図ないし第7図は本発明の実施例を示し、第2図は
マルチ型式の空気調和機に適用した冷媒配管系統図、第
3図は第2の圧縮機の具体的な内部構成を示す図、第4
図は圧縮機の容量制御を示すフローチャート図、第5図
及び第6図は容量を変更する際の制限を課す場合のフロ
ーチャート図、第7図は作動説明図である。 <1)第1の圧縮機、(2) ・・・第2の圧縮機、(
2a)・・・アンロード機構、(21)・・・弁体、(
2n)・・・圧力室、(14)・・・冷媒配管系統、(
15)・・・インバータ、(17)・・・パイロット電
磁弁、(50)・・・目標容量設定手段、(51)・・
・制御手段、(52)・・・切換制限手段。 第 図 第 図 第 図
FIG. 1 is a block diagram showing the configuration of the present invention. Figures 2 to 7 show embodiments of the present invention, Figure 2 is a refrigerant piping system diagram applied to a multi-type air conditioner, and Figure 3 shows the specific internal configuration of the second compressor. Figure shown, 4th
The figure is a flowchart showing the capacity control of the compressor, FIGS. 5 and 6 are flowcharts for imposing restrictions when changing the capacity, and FIG. 7 is an operation explanatory diagram. <1) First compressor, (2) ... second compressor, (
2a)...Unloading mechanism, (21)...Valve body, (
2n)...Pressure chamber, (14)...Refrigerant piping system, (
15)...Inverter, (17)...Pilot solenoid valve, (50)...Target capacity setting means, (51)...
- Control means, (52)...Switching restriction means. Figure Figure Figure

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機(1,2)の容量を調整するアンロード機
構(2a)及びインバータ(15)を備えた冷凍装置の
圧縮機の容量制御装置であって、上記圧縮機(1,2)
の目標容量(L_1)を設定する目標容量設定手段(5
0)と、該目標容量設定手段(50)の出力を受け、圧
縮機(1,2)の容量が目標容量(L_1)になるよう
に上記アンロード機構(2a)及びインバータ(15)
を制御する制御手段(51)とを備えると共に、上記制
御手段(51)によりアンロード機構(2a)をアンロ
ード状態からロード状態に切換える場合に、アンロード
機構(2)をロード状態に切換える時期を遅らせる切換
制限手段(52)を備えたことを特徴とする冷凍装置の
圧縮機の容量制御装置。
(1) A compressor capacity control device for a refrigeration system comprising an unloading mechanism (2a) and an inverter (15) for adjusting the capacity of the compressor (1, 2), the compressor (1, 2)
target capacity setting means (5) for setting a target capacity (L_1) of
0) and the output of the target capacity setting means (50), the unloading mechanism (2a) and the inverter (15) are operated so that the capacity of the compressor (1, 2) becomes the target capacity (L_1).
and a control means (51) for controlling the timing of switching the unloading mechanism (2) to the loading state when the control means (51) switches the unloading mechanism (2a) from the unloading state to the loading state. 1. A capacity control device for a compressor of a refrigeration system, characterized in that the device includes switching limiting means (52) for delaying switching.
(2)切換制限手段(52)は、インバータ(15)の
出力周波数が目標周波数になったことを確認した場合に
限り、アンロード機構(2)をロード状態に切換えるこ
とを許容するものである冷凍装置の圧縮機の容量制御装
置。
(2) The switching restriction means (52) allows the unloading mechanism (2) to be switched to the loading state only when it is confirmed that the output frequency of the inverter (15) has reached the target frequency. Capacity control device for compressor of refrigeration equipment.
JP1089406A 1989-04-06 1989-04-06 Capacity control device for compressor of refrigeration equipment Expired - Fee Related JPH07122521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1089406A JPH07122521B2 (en) 1989-04-06 1989-04-06 Capacity control device for compressor of refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1089406A JPH07122521B2 (en) 1989-04-06 1989-04-06 Capacity control device for compressor of refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH02267470A true JPH02267470A (en) 1990-11-01
JPH07122521B2 JPH07122521B2 (en) 1995-12-25

Family

ID=13969764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1089406A Expired - Fee Related JPH07122521B2 (en) 1989-04-06 1989-04-06 Capacity control device for compressor of refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH07122521B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255350A (en) * 2017-06-28 2017-10-17 广东美的暖通设备有限公司 The energy-saving control method and device of multiple on-line system, multiple on-line system
CN112648714A (en) * 2020-12-09 2021-04-13 广东西屋康达空调有限公司 Constant temperature control method and system for air-cooled modular unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424186A (en) * 1987-07-20 1989-01-26 Daikin Ind Ltd Compressor capacity control device for refrigerating unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424186A (en) * 1987-07-20 1989-01-26 Daikin Ind Ltd Compressor capacity control device for refrigerating unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255350A (en) * 2017-06-28 2017-10-17 广东美的暖通设备有限公司 The energy-saving control method and device of multiple on-line system, multiple on-line system
CN112648714A (en) * 2020-12-09 2021-04-13 广东西屋康达空调有限公司 Constant temperature control method and system for air-cooled modular unit

Also Published As

Publication number Publication date
JPH07122521B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
JP3347103B2 (en) How to run a compressor in steady state
WO2021039087A1 (en) Heat source unit and refrigeration device
JP2003240391A (en) Air conditioner
US20220205680A1 (en) Heat source unit and refrigeration apparatus
JPH11142001A (en) Air conditioner
CN112400088A (en) Refrigeration device and associated operating method
JP3291753B2 (en) Refrigerant charging amount detection device for refrigeration equipment
JPH02267470A (en) Capacity controller of compressor for refrigerating plant
JPS63297784A (en) Protecting device for refrigeration device
JP3348465B2 (en) Binary refrigeration equipment
JP2508043B2 (en) Compressor capacity control device for refrigeration equipment
JP3303689B2 (en) Binary refrigeration equipment
KR20060069714A (en) Over heating control method of compressor in air-conditioner
JPH0217358A (en) Degree of overheat control device for freezing device
KR20150048350A (en) Air conditioner
US11573039B2 (en) Heat source unit and refrigeration apparatus
JPH11118264A (en) Freezer adapted to hfc refrigerant
JP3059886B2 (en) Refrigeration equipment
WO2022149187A1 (en) Refrigeration cycle apparatus
JPH0814432B2 (en) Refrigerator overload control device
JPS63297786A (en) Control device for compressor capacity of refrigeration device
JPS63180051A (en) Humid operation protective device for air conditioner
JPH10253182A (en) Binary refrigerating device
JPS63172864A (en) Compressore capacity controller for refrigerator
JPS63180050A (en) Electric expansion valve controller for air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees