JPH0226723B2 - - Google Patents

Info

Publication number
JPH0226723B2
JPH0226723B2 JP16489382A JP16489382A JPH0226723B2 JP H0226723 B2 JPH0226723 B2 JP H0226723B2 JP 16489382 A JP16489382 A JP 16489382A JP 16489382 A JP16489382 A JP 16489382A JP H0226723 B2 JPH0226723 B2 JP H0226723B2
Authority
JP
Japan
Prior art keywords
strain gauge
measured
electrode
capacitance
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16489382A
Other languages
Japanese (ja)
Other versions
JPS5954904A (en
Inventor
Yoshio Fukuda
Sukefumi Tsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16489382A priority Critical patent/JPS5954904A/en
Publication of JPS5954904A publication Critical patent/JPS5954904A/en
Publication of JPH0226723B2 publication Critical patent/JPH0226723B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はひずみゲージに係り、特に、高温、腐
食環境下の大きいひずみを測定するに好適な容量
型ひずみゲージに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a strain gauge, and particularly to a capacitive strain gauge suitable for measuring large strains in high-temperature, corrosive environments.

〔従来技術〕[Prior art]

従来の容量型ひずみゲージは第1図のように2
枚の半径の異なる弓形板に固定された平板の電極
の電気容量を検出する方法となつており、電極間
には空間を設けなければならない。したがつて、
従来の容量型ひずみゲージは設置するため大きな
空間が必要であること及び導電性の環境媒体中で
使用することはできなかつた。また、環境媒体の
温度変化による静電容量への影響が非常に大き
く、ひずみの測定精度を著しく低下させていた。
The conventional capacitive strain gauge has two
This method detects the capacitance of flat electrodes fixed to arcuate plates with different radii, and a space must be provided between the electrodes. Therefore,
Conventional capacitive strain gauges require a large space for installation and cannot be used in conductive environmental media. In addition, temperature changes in the environmental medium have a very large effect on capacitance, significantly reducing strain measurement accuracy.

〔発明の目的〕[Purpose of the invention]

本発明の目的はひずみゲージを取りまく環境媒
体の変化に対して受ける影響が少なく、かつ、設
置が容易なひずみゲージを提供するにある。
An object of the present invention is to provide a strain gauge that is less affected by changes in the environmental medium surrounding the strain gauge and is easy to install.

〔発明の概要〕[Summary of the invention]

本発明の要点はセラミツクスを介して細い管に
埋込まれた金属線が管の伸縮に良く追従すること
を利用し、細い線状の電極をセラミツクスを介し
て細い管に密封し、それを被測定物に貼付けて、
環境媒体の電気的影響をさけ、かつ、補償電極を
設けて温度の影響からまぬがれるにある。
The main point of the present invention is to take advantage of the fact that a metal wire embedded in a thin tube through ceramics follows the expansion and contraction of the tube well, to seal a thin wire electrode into the thin tube through ceramics, and to cover it. Attach it to the object to be measured,
The purpose is to avoid the electrical influence of the environmental medium and to avoid the influence of temperature by providing a compensation electrode.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図、第3図及び
第4図により説明する。
An embodiment of the present invention will be described below with reference to FIGS. 2, 3, and 4.

並行する一対の耐熱金属からなる電極1及び2
は線間面積を大きくするため、ベローズ状に曲げ
られ、取付け板6に近い位置の被覆管5内部にセ
ラミツクス7でモールドされる。ほぼ、同じ形状
の他の一対の電極3及び4が電極1及び2の近傍
に直交する方向に同様に被覆管6内にセラミツク
スでモールドされる。電極線1及び4の一端は、
シールド線9及び11に接続し、電極線2及び3
の一端は同じシールド線10に接続される。被覆
管5は取付け板6に固定される。取付け板6は被
測定物8にその周囲を(例えばスポツト溶接等
で)貼付けられる。今、被測定物8に第2図の水
平方向に力が作用し、かつ、高温ふん囲気中に置
かれた場合を考える。取付け板6及び被覆管5は
固定部を介して、また管内部のセラミツクス7は
被覆管5を介してそれぞれ水平方向に伸び、同時
に、それと直交方向に収縮する。これにともない
セラミツクスにモールドされた電極線1と2との
間隔は大きくなり、電極線3と4の間隔は小さく
なる。電極線1と2及び電極線3と4の間の静電
容量の初期値をそれぞれC12及びC34とし、外力に
よる変化量をΔCT 12及びΔCP 34、温度変化による変
化量をΔCT 12及びΔCT 34とすれば、第5図に示す回
路によりΔCP 12を測定することができ、水平方向
の外力による伸びを測定することができる。すな
わち、初期のC12及びC34をほぼ同じに設定してお
けば ΔC12=ΔCP 12+ΔCT 12 ΔC34=ΔCP 34+ΔCT 34 ΔVg=(ΔC12−ΔC34)×VB/C12 ここでΔCP 34=−νΔCP 12、(νはポアソン比) ΔCT 34=ΔCT 12 ΔVg=(1+ν)ΔCP 12×VB/C12 一方、電極線間と静電容量の間に次の関係があ
るから C12=A・b+l/D12 ΔCP 12/C12=−ΔC12/D12 ΔVg VB=−(1+ν)ΔC12/D12=−(1+ν)・B・ε すなわち、被測定物のひずみεをブリツジの不
平衡電圧として測定することができる。また、素
線には従来の抵抗線型と異なり、電気抵抗特性を
確保する必要がなく、良導体の金属、例えば、白
金などの延性の大きいものを使用できるので、構
造物が破壊する以前に断線することはない。
Electrodes 1 and 2 made of a pair of parallel heat-resistant metals
is bent into a bellows shape in order to increase the area between the wires, and is molded with ceramics 7 inside the cladding tube 5 at a position close to the mounting plate 6. Another pair of electrodes 3 and 4 having substantially the same shape are similarly molded with ceramics within the cladding tube 6 in a direction orthogonal to the vicinity of the electrodes 1 and 2. One end of the electrode wires 1 and 4 is
Connect to shield wires 9 and 11, electrode wires 2 and 3
One end of the two is connected to the same shielded wire 10. The cladding tube 5 is fixed to a mounting plate 6. The mounting plate 6 is attached to the object to be measured 8 at its periphery (for example, by spot welding or the like). Now, let us consider a case where a force is applied to the object to be measured 8 in the horizontal direction as shown in FIG. 2, and the object is placed in a high-temperature atmosphere. The mounting plate 6 and the cladding tube 5 extend horizontally through the fixing part, and the ceramic 7 inside the tube extends through the cladding tube 5 in the horizontal direction, and at the same time contracts in a direction perpendicular thereto. Accordingly, the distance between electrode wires 1 and 2 molded in ceramic becomes larger, and the distance between electrode wires 3 and 4 becomes smaller. The initial values of capacitance between electrode wires 1 and 2 and electrode wires 3 and 4 are respectively C 12 and C 34 , the amount of change due to external force is ΔC T 12 and ΔC P 34 , and the amount of change due to temperature change is ΔC T 12 and ΔC T 34 , ΔC P 12 can be measured by the circuit shown in FIG. 5, and elongation due to external force in the horizontal direction can be measured. That is, if the initial C 12 and C 34 are set almost the same, ΔC 12 = ΔC P 12 + ΔC T 12 ΔC 34 = ΔC P 34 + ΔC T 34 ΔV g = (ΔC 12 − ΔC 34 )×V B / C 12 Here, ΔC P 34 = −νΔC P 12 , (ν is Poisson's ratio) ΔC T 34 = ΔC T 12 ΔV g = (1+ν) ΔC P 12 ×V B /C 12 On the other hand, the capacitance between the electrode wires and Since there is the following relationship between C 12 = A・b+l/D 12 ΔC P 12 /C 12 = −ΔC 12 /D 12 ΔV g V B =−(1+ν)ΔC 12 /D 12 =−(1+ν)・B・ε In other words, the strain ε of the object to be measured can be measured as the unbalanced voltage of the bridge. In addition, unlike conventional resistance wire types, there is no need to ensure electrical resistance characteristics for the strands, and metals with good conductivity, such as platinum, with high ductility can be used, so the wires will break before the structure is destroyed. Never.

第6図は電極線の異なる型状の一例で櫛形を組
合せた形状となつている。これによれば櫛の歯を
結ぶ部分の寸法を大きくすることができるので、
さらに、耐久性のあるゲージを作ることができ
る。
FIG. 6 is an example of a different shape of the electrode wire, which is a combination of comb shapes. According to this, the size of the part where the teeth of the comb are tied can be increased,
Furthermore, a durable gauge can be made.

第7図は平板から打抜きにより製作する電極線
の一例で、本方法によれば、安定した一定形状の
電極線が得られるので特性の一定したひずみゲー
ジを製作することができる。
FIG. 7 shows an example of an electrode wire manufactured by punching from a flat plate. According to this method, an electrode wire with a stable constant shape can be obtained, so that a strain gauge with constant characteristics can be manufactured.

本実施例によれば外部環境媒体の影響を受けな
い。大きな変形に対しても破壊しない高温ひずみ
を測定できる。
According to this embodiment, there is no influence from external environmental media. It can measure high-temperature strain without breaking even under large deformations.

〔発明の効果〕〔Effect of the invention〕

本発明によれば測定空間の小さい高温環境中に
もひずみを測定することができる。
According to the present invention, strain can be measured even in a high temperature environment with a small measurement space.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の容量型高温ひずみゲージの側面
図、第2図は本発明の容量型高温ひずみゲージの
平面図、第3図は第2図の−矢視断面図、第
4図は第3図の電極線の部分拡大図、第5図は本
発明の一実施例の電気回路図、第6図及び第7図
は本発明の他の実施例の電極形状の平面図であ
る。 1,2……主電極線対、3,4……従電極線
対、5……被覆管、6……取付け板、7……セラ
ミツクス、8……被測定物、9,10,11……
シールド線。
FIG. 1 is a side view of a conventional capacitive high temperature strain gauge, FIG. 2 is a plan view of the capacitive high temperature strain gauge of the present invention, FIG. 3 is a sectional view taken along the - arrow in FIG. 2, and FIG. 3 is a partially enlarged view of the electrode wire, FIG. 5 is an electric circuit diagram of one embodiment of the present invention, and FIGS. 6 and 7 are plan views of electrode shapes of other embodiments of the present invention. 1, 2... Main electrode wire pair, 3, 4... Subordinate electrode wire pair, 5... Covering tube, 6... Mounting plate, 7... Ceramics, 8... Measured object, 9, 10, 11... …
Shielded wire.

Claims (1)

【特許請求の範囲】 1 被測定物の表面に貼付け被測定物の伸縮量を
静電容量の変化量として検出する容量型ひずみゲ
ージにおいて、 前記、被測定物とほぼ等距離で平行に設置され
る線状の電極対を設けたことを特徴とする容量型
ひずみゲージ。 2 特許請求の範囲第1項の記載において、同じ
伸縮量に対して、静電容量の変化量の異なる2対
の電極を接近して設けたことを特徴とする容量型
ひずみゲージ。
[Claims] 1. A capacitive strain gauge that is attached to the surface of an object to be measured and detects the amount of expansion and contraction of the object as a change in capacitance, comprising: A capacitive strain gauge characterized by having a pair of linear electrodes. 2. A capacitive strain gauge as set forth in claim 1, characterized in that two pairs of electrodes having different amounts of change in capacitance for the same amount of expansion and contraction are provided close to each other.
JP16489382A 1982-09-24 1982-09-24 Capacity type strain gage Granted JPS5954904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16489382A JPS5954904A (en) 1982-09-24 1982-09-24 Capacity type strain gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16489382A JPS5954904A (en) 1982-09-24 1982-09-24 Capacity type strain gage

Publications (2)

Publication Number Publication Date
JPS5954904A JPS5954904A (en) 1984-03-29
JPH0226723B2 true JPH0226723B2 (en) 1990-06-12

Family

ID=15801872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16489382A Granted JPS5954904A (en) 1982-09-24 1982-09-24 Capacity type strain gage

Country Status (1)

Country Link
JP (1) JPS5954904A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2749158B2 (en) * 1989-11-17 1998-05-13 株式会社日立製作所 Adhesive capacitance strain gauge
KR100421304B1 (en) * 1999-07-09 2004-03-09 엔이씨 도낀 가부시끼가이샤 Capacitive strain sensor and method for using the same
JP5496446B2 (en) * 2007-07-12 2014-05-21 東海ゴム工業株式会社 Capacitive sensor
US9733062B2 (en) * 2015-11-20 2017-08-15 General Electric Company Systems and methods for monitoring component strain

Also Published As

Publication number Publication date
JPS5954904A (en) 1984-03-29

Similar Documents

Publication Publication Date Title
US5492016A (en) Capacitive melt pressure measurement with center-mounted electrode post
US4064744A (en) Strain sensorextensiometer
US5827980A (en) Force or extension sensor
US5224383A (en) Melt pressure measurement and the like
JPH06500630A (en) capacitive force sensor
JPH0226723B2 (en)
JPS58197780A (en) Semiconductor pressure converter
JP2523772B2 (en) Clip type capacitive strain gauge
JP2514067Y2 (en) Ceramic transformer
JP3766190B2 (en) Capacitance type 3-axis acceleration sensor
JP6448436B2 (en) Piezoelectric element and pressure sensor
JPH0584870B2 (en)
JP6573051B1 (en) Capacitance strain gauge and strain measurement system
JP3275117B2 (en) High temperature strain gauge apparent strain compensation circuit
JP5034832B2 (en) Shear force detector
JP2749158B2 (en) Adhesive capacitance strain gauge
JP2865266B2 (en) Semiconductor acceleration sensor
KR20020022621A (en) Bending moment sensor
JPH03210404A (en) Shape sensor
JPS5850406A (en) Method and device for measuring strain
JPH02126103A (en) Capacitive strain gauge
JPH0560506A (en) Lead wire for strain gauge
KR20240073553A (en) Load cell using nano strain sensor
KR20020022620A (en) Mechanical/electrical transducer insensitive to bending and transverse force
JPH04127537U (en) force detection device