JP3766190B2 - Capacitance type 3-axis acceleration sensor - Google Patents

Capacitance type 3-axis acceleration sensor Download PDF

Info

Publication number
JP3766190B2
JP3766190B2 JP29260197A JP29260197A JP3766190B2 JP 3766190 B2 JP3766190 B2 JP 3766190B2 JP 29260197 A JP29260197 A JP 29260197A JP 29260197 A JP29260197 A JP 29260197A JP 3766190 B2 JP3766190 B2 JP 3766190B2
Authority
JP
Japan
Prior art keywords
electrode
displacement
weight
axis
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29260197A
Other languages
Japanese (ja)
Other versions
JPH11133055A (en
Inventor
栄治 玉越
克則 長野
Original Assignee
内外ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 内外ゴム株式会社 filed Critical 内外ゴム株式会社
Priority to JP29260197A priority Critical patent/JP3766190B2/en
Publication of JPH11133055A publication Critical patent/JPH11133055A/en
Application granted granted Critical
Publication of JP3766190B2 publication Critical patent/JP3766190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Description

【0001】
【発明の属する技術分野】
本発明は、検出精度を高めうる静電容量形3軸加速度センサに関する。
【0002】
【従来の技術】
加速度センサは、サーボ形、圧電形、ピエゾ抵抗形、静電容量形などが知られており、近年では例えば地震などの縦揺れ、横揺れなど複数の方向の加速度を同時に検出するために、X−Y−Zの3軸方向でそれぞれ加速度を検出しうる3軸加速度センサが開発されつつある。
【0003】
静電容量形3軸加速度センサは、特開平4−148833号公報などで提案され、例えば図14(a)に示すように、固定板aと、重錘cを固着させた可撓板bとが向き合ってケース体dに固定され、前記固定板a、可撓板bの向き合う面に、固定電極E1と変位電極E2とが設けられている。
【0004】
前記固定板aは、例えば剛性が高く撓みを生じにくい材料からなり、前記可撓板bは、本例では可撓性を有し、力が加わると容易に撓みを生じる材料で構成されているものを示す。また、前記固定電極E1は、図15(a)に示すように平面視が円形をなすものであり、他方、変位電極E2は例えば図15(b)に示すように5分割した分離電極片、すなわち中央で円形をなす電極EZ1と、この電極EZ1の中心を原点としたときに可撓板bの平面方向に沿ったX軸方向正負に配された電極EX1、EX2と、Y軸方向正負に配された電極EY1、EY2とから構成される。
【0005】
このような加速度センサsに外部から加速度が与えられると、図14(b)に示すように、重錘cの重心にあたる作用点Pに力FXが作用して重錘cが変位することにより可撓板bが撓む。また固定電極E1と変位電極E2との間の電極間距離が変化して両電極間の静電容量値も変化する。この静電容量値の変化をX軸方向、Y軸方向、Z軸方向それぞれ下記▲1▼〜▲3▼式の如く検出して加速度を検出しうる。
【0006】

Figure 0003766190
なお静電容量値Cは、誘電率をε、電極の表面積をS、電極間距離をdとすると次の式で与えられる。
C=ε・S/d
【0007】
【発明が解決しようとする課題】
図14(b)には、静電容量型3軸加速度センサにX軸方向の加速度のみが作用した状態を示したが、通常、可撓板bには、剛性の指向性がない材料が選ばれるため、重錘cの重心を通る垂直軸が可撓板bの厚さの中心を通る可撓板bの原点OはZ軸方向には変位せず、該原点Oの回りにモーメントが生じるものとみなして良い。そして、重錘cは、可撓板bの剛性に見合った変位をなして釣り合う。
【0008】
ここで、電極EX1およびEX2の表面積をそれぞれS2、センサに重力加速度のみが作用する無負荷状態での電極eX1およびeX2と固定電極e1との間の初期の電極間距離をD0とし、力FXが作用することで可撓板bが撓み電極EX1およびEX2に生じる固定電極E1との電極間距離の変化量をDXとすると、X軸方向の加速度に対応する静電容量値CXは、前記▲1▼式から下記数1のように表しうる。
【数1】
Figure 0003766190
【0009】
また初期の電極間距離D0に対する電極間距離の変化量DXの比(DX/D0)をdxで表すと、上記数1は下記数2のように表しうる。
【数2】
Figure 0003766190
【0010】
ところが、このような静電容量形3軸加速度センサは、X軸方向の加速度とZ軸方向の加速度(本例では上向き)とが同時に負荷されるような加速度を受けた場合、力FXが作用することで電極EX1およびEX2に生じる電極間距離の変化量をDXとし、他方、力FZを受けたときの電極間距離の変化量をDZとし、(DZ/D0)をdzで表すと、X軸方向の静電容量値CXAは、力FZによりDZだけZ軸方向上向きに変位した変位電極E2が、さらに、X軸方向の力FXにより±DXだけ傾斜して変位したX軸方向の静電容量値CX1およびCX2の差で表すことができ、下記数3のように表しうる。
【数3】
Figure 0003766190
【0011】
このように、上記数3では、数2と異なり、X軸方向の静電容量値に、Z軸方向の変化率dzの因子が含まれていることが判る。
【0012】
静電容量値と電極間距離の関係を図16に示している。図では、横軸に電極間距離dを、縦軸にX軸方向の静電容量値CXをとっている。電極間距離dが、無負荷状態の初期の設定値D0の場合、X軸方向の加速度により可撓板bの変位量が±DXであったとき、静電容量値CXは、ΔC0となる。これに対して、Z軸方向の加速度が同時に作用し、電極間距離dが初期の設定値D0よりDZ大きいとき又はDZだけ小さいときにX軸方向の加速度により可撓板bの変位量が±DXであると、それぞれ静電容量値は、ΔC+z、ΔC−zにばらつくことになる。
【0013】
このように、電極間の静電容量値は、電極間距離の影響を強く受けるため、静電容量形3軸加速度センサでは、上述のようにZ軸方向の加速度がX軸方向又はY軸方向といった水平軸方向の加速度に同時に加わると、その影響により、X軸方向(又はY軸方向)の検出加速度にバラツキが生じ、検出精度が悪化するという問題がある。
【0014】
このような問題を解決するために、例えば電気的に補正回路を組み込むことや、物理的に水平方向の感度を上げることなどが考えられるが、前者の場合には回路が複雑となり、また回路基板を組み込むためにセンサが大型化するという問題があり、また後者の方法では、基板サイズの大型化などの他、コストの面から見ても望ましいとは言えない。
【0015】
本発明者らは、静電容量形3軸加速度センサの機械的な構造を改良することにより水平方向の静電容量値からZ軸方向の加速度の影響を排除する方法について鋭意検討を重ねたところ、センサ本体にZ軸方向の加速度による変位によって、電極間距離が一方は増加しかつ他方は減少する2つの電極群を設けるとともに、これらの各電極群の静電容量の変化差をとることによって、水平方向の加速度に基づく静電容量からZ軸方向の加速度の影響を大幅に除去しうることを見出したのである。
【0016】
以上のように本発明は、電気的補正回路に頼ることなく、センサ出力を向上しつつも垂直方向の加速度が水平方向の加速度と同時に作用した場合であっても水平方向の加速度の検出精度を向上しうる静電容量形3軸加速度センサを提供することを目的としている。
【0017】
【課題を解決するための手段】
本発明のうち請求項1記載の発明は、重錘と、この重錘が取付られかつこの重錘に作用する加速度による重錘の動きにより変位する変位部を有する可撓板とからなる重錘可撓部材、
この重錘可撓部材の一方の第1の変位面に向き合う第1の静止面を有する第1の固定部、
及びこの重錘可撓部材の他方の第2の変位面に向き合う第2の静止面を有する第2の固定部、
をそれぞれセンサ筐体に固定し、かつ
前記第1の変位面に設けられた第1の変位電極と、第1の静止面に設けられた第1の固定電極とからなる第1の電極群、
及び前記第2の変位面に設けられた第2の変位電極と、第2の静止面に設けられた第2の固定電極とからなる第2の電極群とを配したセンサ本体を具えるとともに、
第1の変位電極と、第1の固定電極の少なくとも一方、第2の変位電極と、第2の固定電極の少なくとも一方は、ともに4つ以上かつ同数しかも電気的に独立した分離電極片からなり、
しかも第1の電極群の第1の変位電極は、第2の電極群の第2の変位電極と、前記第1の電極群の第1の固定電極は、第2の電極群の第2の固定電極とそれぞれ同形とするとともに
重錘の動きにより前記第1の電極群の第1の変位電極と第1の固定電極との間に生じる静電容量の変化、前記第2の電極群の第2の変位電極と、第2の固定電極との間に生じる静電容量の変化との差を出力することにより加速度を測定する演算部を具えたことを特徴とする静電容量形3軸加速度センサである。
【0018】
また請求項2記載の発明は、前記第1の変位面は、前記重錘が取り付かない側の可撓板の面であり、かつ第2の変位面が前記重錘の面であることを特徴とする請求項1記載の静電容量形3軸加速度センサである。
【0019】
また請求項3記載の発明は、前記第1の変位面は、前記重錘が取り付かない側の可撓板の面であり、かつ第2の変位面が前記重錘が取り付く側の可撓板の面であることを特徴とする請求項1記載の静電容量形3軸加速度センサである。
【0020】
また請求項4記載の発明は、前記分離電極片は、前記可撓板の面と直交しその中心を通る中心線回りの中央電極片と、前記中心線が可撓面と交わる原点を通り前記可撓板面と平行なX軸、Y軸側で中央電極片の外側かつ正負の位置に配される正、負の周辺X軸電極片と、正、負の周辺Y軸電極片との合計5つを含むことを特徴とする請求項1乃至3のいずれか1に記載の静電容量形3軸加速度センサである。
【0021】
また請求項5記載の発明は、前記中央分離電極片はリング状をなすことを特徴とする請求項4記載の静電容量形3軸加速度センサである。
【0022】
また請求項6記載の発明は、前記分離電極片が形成されない変位面、又は静止面は、金属材からなることを特徴とする請求項1乃至5のいずれか1に記載の静電容量形3軸加速度センサである。
【0023】
また請求項7記載の発明は、第1の電極群の中央電極片による静電容量値をC11、正、負の周辺X軸電極片の静電容量値をC12、C14、正、負の周辺Y軸電極片の静電容量値をC13、C15、第2の電極群の中央電極片による静電容量値をC21、正、負の周辺X軸電極片の静電容量値をC22、C24、正、負の周辺Y軸電極片の静電容量値をC23、C25としたとき、各XYZ軸方向の加速度に対応する静電容量値をCX、CY、CZを次式により算出して、前記重錘に作用した加速度を検出することを特徴とする請求項4記載の静電容量形3軸加速度センサである。
CX=(C12−C14)−(C22−C24)
CY=(C13−C15)−(C23−C25)
CZ=(C11)−(C21)
【0024】
【発明の実施の形態】
以下、本発明の実施の一形態を図面に基づき説明する。
本発明の静電容量形3軸加速度センサは、図1に示すように、重錘可撓部材2と、この重錘可撓部材2の一方の第1の変位面2aに向き合う第1の静止面3aを有する第1の固定部3と、前記重錘可撓部材2の他方の第2の変位面2bに向き合う第2の静止面4bを有する第2の固定部4とをそれぞれセンサ筐体7に固定している。
【0025】
前記重錘可撓部材2は、重錘5と、この重錘5が取付られかつこの重錘5に作用する加速度による重錘5の動きにより変位する変位部を有する可撓板6とから構成され、本例では重錘5は前記可撓板6の下面に取り付けされているものを示す。
【0026】
また本実施形態において、前記第1の変位面2aは、前記重錘5が取り付かない側の可撓板6の面であり、かつ第2の変位面2bが前記重錘5の面、本例では重錘5の下面であるものを例示している。なお本例では、前記第1、第2の固定部3、4、重錘5、可撓板6はいずれもガラス、樹脂、セラミックといった絶縁材料から構成されたものを例示している。
【0027】
また前記重錘可撓部材2の第1の変位面2aには、第1の変位電極ef1が設けられ、この第1の変位面2aに向き合う第1の静止面3aには、前記第1の変位電極ef1から距離を隔てて第1の固定電極e1が形成される。これにより、第1の変位電極ef1と第1の固定電極e1とが第1の電極群EUを構成しうる。
【0028】
同様に、前記第2の変位面2bには、第2の変位電極ef2が設けられ、この第2の変位面2bに向き合う第2の静止面4bには、前記第2の変位電極ef2から距離を隔てて第2の固定電極e2が形成されている。これにより、第2の変位電極ef2と第2の固定電極e2とが第2の電極群EDを構成しうる。
【0029】
このように、センサ本体1は、第1の電極群EUと第2の電極群EDとを具えている。また本発明では、前記第1の変位電極ef1と、第1の固定電極e1の少なくとも一方、第2の変位電極ef2と、第2の固定電極e2の少なくとも一方は、ともに4つ以上かつ同数しかも電気的に独立した分離電極片から構成されることを特徴の一つとしている。
【0030】
本実施形態では、前記第1の固定電極e1と、第2の固定電極e2とを図2(a)、(b)に示すように、ともに5つしかも電気的に独立した分離電極片から構成したものを例示している。これらの分離電極片は、図の如く前記可撓板6の面と直交しその中心を通る中心線回りの中央電極片eZ1、eZ2と、前記中心線が可撓板6の面と交わる原点を通り前記可撓板6の面と平行なX軸、Y軸側で中央電極片eZ1、eZ2の外側かつ正負の位置に配される正、負の周辺X軸電極片eX1、eX2、及びeX3、eX4と、正、負の周辺Y軸電極片eY1、eY2、及びeY3、eY4との5つをそれぞれ含むものを例示し、これらは互いに電気的に絶縁されて配置される。
【0031】
これにより、第1の電極群EU、第2の電極群EDは、それぞれ分離電極片と変位電極との対によりそれぞれ5組、合計10組の容量素子を形成しうる。なお第1、第2の変位電極ef1、ef2は、本例では図2(c)に示すように、一体型の円盤状にて形成されるものを示す。これらの各電極は、導電性の性質を持つ材料であれば種々のものを用いることができるが、これらは同一の材料で構成するのが望ましく、本例では同じ金属材料で構成される。
【0032】
また本発明では、前記第1の電極群EU、第2の電極群EDにおいて、前記可撓板6を挟んで対向する前記分離電極片は、それぞれ同一の形状で構成しているため、例えば第1の電極群EUのX軸方向に配された分離電極片eX1、eX2と、第2の電極群EDのX軸方向に配された分離電極片eX3、eX4とは、ともに表面積がS2で等しくなる。即ち第1の電極群EUの第1の変位電極ef1は、第2の電極群EDの第2の変位電極ef2と、前記第1の電極群EUの第1の固定電極e1は、第2の電極群EDの第2の固定電極e2とそれぞれ同形としいる。
【0033】
また、本実施形態では、センサに重力加速度のみが作用する無負荷状態において、前記第1の電極群EUの電極間距離D1は、第2の電極群EDの電極間距離D2と等しく設定したものを例示している。
【0034】
そして、このような静電容量型3軸加速度センサは、加速度による重錘5の動きにより前記第1の電極群EUの第1の変位電極ef1と第1の固定電極e1との間に生じる静電容量の変化と、前記第2の電極群EDの第2の変位電極ef2と、第2の固定電極e2との間に生じる静電容量の変化との差を出力することにより加速度を測定する演算部(図5〜7に示す)を具えている。
【0035】
このように、本例ではZ軸方向の加速度による変位によって、電極間距離が一方は増加しかつ他方は減少する2つの電極群、すなわち第1の電極群EU、第2の電極群EDを形成し、これらの各電極群の静電容量の差をとることによって、水平方向の加速度に基づく静電容量からZ軸方向の加速度の影響を大幅に除去しうるのである。すなわち、第1の電極群EUの静電容量値から、第2の電極群EDでの静電容量値を差し引くことにより、X軸方向及びY軸方向の加速度にZ軸方向の加速度が同時に作用した場合であっても、Z軸方向の加速度がX軸方向及びY軸方向の静電容量値に与える影響を小にすることができ、検出精度を大幅に高めることができる。
【0036】
例えば図2(a)、(b)に示すように、第1の電極群EUの中央電極片eZ1と変位電極ef1とによる静電容量値をC11、正、負の周辺X軸電極片eX1、eX2の静電容量値をC12、C14、正、負の周辺Y軸電極片eY1、eY2の静電容量値をC13、C15、第2電極群EDの中央電極片eZ2による静電容量値C21、正、負の周辺X軸電極片eX3、eX4の静電容量値をC22、C24、正、負の周辺Y軸電極片eY3、eY4の静電容量値をC23、C25としたとき、各XYZ軸方向の加速度に対応する静電容量値CX、CY、CZの演算は、次の▲4▼〜▲6▼式により行いうる。
CX=(C12−C14)−(C22−C24) … ▲4▼
CY=(C13−C15)−(C23−C25) … ▲5▼
CZ=(C11)−(C21) … ▲6▼
【0037】
ここで、本発明の静電容量形3軸加速度センサの検出精度について上記演算式を用いながら説明する。先ず、重錘5が加速度を受けこの重錘5の作用点Pに、X方向の力FX(図1に示す方向)のみが加わった場合、X軸上の正負に配された分離電極片eX1、eX2、eX3、eX4において、分離電極片eX1、eX4は変位電極ef1、ef2との電極間距離を減じ静電容量値C12、C24を増大させる一方、分離電極片eX2、eX3は変位電極ef1、ef2との間の電極間距離を増し、静電容量値C14、C22を減少させる。
【0038】
これらの静電容量を算出するに当たり、従来の静電容量形3軸加速度センサと比較するため、可撓板、電極、および重錘の形状、寸法、材質、重量を統一することにより両者の基本的諸元を揃え、また電極(例えば電極の平面の図心位置)に生じる電極間距離の変化量を±DXとすると、本発明のセンサのX軸方向の加速度に対応する静電容量値CXは、数4のように表される。なお分離電極片eX1、eX2、eX3、eX4の表面積をS2、誘電率をε、力FXによって生じる電極間距離の変位量を±DX、初期の電極間距離D0と前記変位量DXとの比(DX/D0)をdxとしている。
【数4】
Figure 0003766190
【0039】
このように、X軸方向(又はY軸方向)の加速度のみが、重錘5に加えられた場合、数2で示した従来の静電容量形3軸加速度センサの静電容量値CXと比較すると、本発明のものは静電容量値(出力)が2倍となり、X軸方向(又はY軸方向)の検出感度が向上していることが判る。
【0040】
また、Z軸方向の加速度のみが重錘5に加えられた場合、中央電極片eZ1、eZ2の表面積をS1、中央電極片eZ1と変位電極ef1との間及び中央電極片eZ2と変位電極ef2との間にそれぞれ生じる電極間距離の変化量を±DZとし、初期の電極間距離D0との比(DZ/D0)をdzで表すと、本発明のセンサの静電容量値CZは、数5のようになる。
【数5】
Figure 0003766190
【0041】
これに対して、従来のセンサでは、数6のようになる。
【数6】
Figure 0003766190
【0042】
ここで、dzは通常最大で0.1程度で使用されるのが好ましく、この場合、本実施形態の静電容量形3軸加速度センサは、Z軸方向の静電容量値においても実質的に2倍の出力をうることができる。このように、X軸方向(又はY軸方向)あるいはZ軸方向の力が、それぞれ独立して加えられた場合、本発明の静電容量形3軸加速度センサは、従来のセンサに比べ出力がともに2倍となり、しかもZ軸方向の静電容量値については、バラツキも減少していることが判る。
【0043】
なお、Z軸方向の静電容量値の変化を検出するには、図3に示すように、中央電極片を独立して設けず、4分割した分離電極片eX1、eX2、eY1、eY2の静電容量値の総和の変化から算出することも可能である。しかし、本実施形態のように中央分離電極片eZ1を有する5分割とした場合には、検出の電気回路が単純化され、小型化に有利であり、また電極の原点に近いほど、他軸の影響を受け難いため、Z軸方向の加速度の検出精度をさらに向上しうる利点がある。
【0044】
次に、X軸方向の加速度とZ軸方向の加速度とが同時に重錘5に負荷された場合について考える。この場合図4に示すように、変位電極ef1、ef2がZ軸方向の力FZにより、上向きの変位量DZを生じさせていると同時に、X軸方向の力FXにより変位量±DXが生じているものと考えることができる。この場合のX軸方向の静電容量値CXBは数7に示すようになる。
【数7】
Figure 0003766190
【0045】
ここで、数3に示した従来のセンサの静電容量値CXAは、本発明のセンサの静電容量値CXBとを比較するために分母の共通化を図ると、数8のように表すことができる。
【数8】
Figure 0003766190
【0046】
静電容量形3軸加速度センサは、その構造上、作動範囲において通常、dx、dzの最大値を0.1程度で使用するのが好ましいため、dx、dzの最大値を0.1とすると、前記数7、8の式の分母{(1−dz)2 −dx2 }{(1+dz)2 −dx2 }は、0.96〜1.00の範囲をとり得る。また、各分子のうち(dz2 −dx2 )の項は、−0.01〜0.01の範囲を取りうる。
【0047】
また本発明の静電容量形3軸加速度センサと従来のセンサの静電容量値CXB、CXAを比較すると、従来のもの(数8)には、分子において「1」に「2dz」の因子を加えた形となっている。この「2dz」は、最大で0.2の値をとるため、最大で±20%のバラツキを与えるものとなる。
【0048】
これに対して、本発明の静電容量形3軸加速度センサは、静電容量値CXBが従来のものに比して2倍になっており、検出感度を向上しうるとともに、従来のセンサに比べ、X又はY軸方向といった水平方向の加速度にZ軸方向の加速度が同時に加わったような場合でも、従来のZ軸方向の加速度の影響(2dz)を排除してX軸方向(又はY軸方向)の静電容量値を取得することができるため、検出精度を大幅に向上しうる。
【0049】
次に演算部の回路構成の一例を図5〜7に示す。図5はX軸方向の加速度出力、図6はY軸方向の加速度出力、図7はZ軸方向の加速度出力を行うものである。例えば図5において、電極eX1、ef1間の静電容量C12、電極eX2、ef1間の静電容量C14、電極eX3、ef2間の静電容量C22、電極eX4、ef2間の静電容量C24は、それぞれCV変換器H1〜H4により電圧値V1〜V4に変換されて出力される。
【0050】
また、差動増幅器A1は、CV変換器H1、H2により変換された電圧値V1とV2との差の電圧V5を、また差動増幅器A2は、CV変換器H3、H4により変換された電圧値V3とV4との差の電圧V6をそれぞれ差動増幅器A3に出力する。差動増幅器A3は電圧V5とV6の差をとり、これをX軸方向の加速度に対応する電圧値V7として出力しうる。
【0051】
なおY軸方向もX軸方向の場合と同様、電極eY1、ef1間の静電容量C13、電極eY2、ef1間の静電容量C15、電極eY3、ef2間の静電容量C23、電極eY4、ef2間の静電容量C25は、それぞれCV変換器H5〜H8により電圧値V10〜V13に変換され、差動増幅器A4は、CV変換器H5、H6により変換された電圧値V10とV11との差の電圧V14を、また差動増幅器A5は、CV変換器H7、H8により変換された電圧値V12とV13との差の電圧V15をそれぞれ差動増幅器A6に出力する。また差動増幅器A6は電圧V14とV15の差をとり、これをY軸方向の加速度に対応した電圧値V16として出力する。
【0052】
またZ軸方向については、電極eZ1、ef1間の静電容量C11、電極eZ2、ef2間の静電容量C21をそれぞれCV変換器H9、H10により対応する電圧V17、V18に変換するとともに、差動増幅器A7により電圧V17、V18の差をとり、これをZ軸方向の加速度に対応した電圧値V19として出力しうる。
【0053】
そして、センサ本体の前記各電極に所定の配線を施して、上述のような演算動作を行う回路に接続することによって、重錘5に作用した加速度に対応する電圧値を、3次元の各軸方向成分ごとに精度良く取り出すことができる。なおこの演算回路は一例であり、たとえば、前記▲4▼〜▲6▼式を変形して、それに対応した演算回路を組むことも、勿論可能である。
【0054】
また前記無負荷状態において、第1の電極群EUの第1の固定電極e1と第1の変位電極ef1との電極間距離D1と、第2の電極群EDの第2の固定電極e2と第2の変位電極ef2との電極間距離D2とは、実質的に等しくすることが望ましい。
【0055】
図8(a)に示す曲線G1aは、前記電極間距離をD1=D2=D0とした場合の第1の電極群EUの相対出力を示している。同曲線G1bは、第2の電極群EDの相対出力であり、同曲線G1は、これらの相対出力の和であり、センサとしての相対出力を示している。図から明らかなとおり、曲線G1は、加速度センサの実用域であるdz=0近傍で、出力が非常に安定しており、最も適したものとなっている。
【0056】
また、曲線G2aは、前記電極間距離D1=D2=2D0とした場合の第1の電極群EUの相対出力を示している。同曲線G2bは、第2の電極群EDの相対出力であり、同曲線G2は、これらの相対出力の和であり、センサとしての相対出力を示している。この曲線G2では、出力が、広範囲に亘り安定するものの出力自体が小さくなる。
【0057】
なお図8(b)に示す曲線G3aは、前記電極間距離D1=D0、D2=2D0としたD1≠D2の場合の第1の電極群EUの相対出力を示し、同曲線G3bは、第2の電極群EDの相対出力であり、同曲線G3は、これらの相対出力の和であり、センサとしての相対出力を示している。図から明らかなとおり、曲線G3は、補償が小さくなり、出力の曲線が従来のものに近づくため好ましくない。
【0058】
また図8(b)に示す曲線G4aは、前記電極間距離D1=D0、D2=D0/2としたD1≠D2の場合の第1の電極群EUの相対出力を示し、同曲線G4bは、第2の電極群EDの相対出力であり、同曲線G4は、これらの相対出力の和であり、センサとしての相対出力を示している。図から明らかなとおり、曲線G4は、D2が小さいため、補償が大きすぎ、逆に精度を悪くしている。
【0059】
したがって、初期の電極間距離D1、D2は、ともに等しく設定するとともに、個々のセンサに応じて出力特性(曲線)が安定する値を採用するのが良い。
【0060】
次に、本発明の他の実施形態について説明する。本実施形態では、図9に示すように、前記第1の変位面2aは、前記重錘5が取り付かない側の可撓板6の面であり、かつ前記第2の変位面2bが前記重錘5が取り付く側の可撓板6の面であることを特徴としている。前記第2の電極群EDは、本例では中央部に重錘5が貫通するものを例示し、このため、第2の固定部4は、重錘5が通る透孔4cが形成されるとともに、前記中央電極片eZ1、eZ2が、図10に示すように前記重錘5の周囲を囲むリング状をなすものを採用している。
【0061】
この実施形態では、X軸方向の力が加わって重錘5が可撓板6の原点Oの回りに回転したときに生じる、第1、第2の電極群EU、EDの電極間距離の変化の微小な差異を減じることができ、かつ組立寸法精度や組立加工性を向上しうる点で好ましい。
【0062】
なお、本例では全ての電極を、図10に示すような同形の分離電極片にて構成しているが、第1の電極群EU、第2の電極群EDそれぞれについて、固定電極e1(e2)、又は変位電極ef1(ef2)のいずれか一方、に上述の様な分離電極片を具えていれば良い。また、その他の構成については、検出回路を含めて、図1に示す構造の装置と概略同様である。
【0063】
また図11、図12には、本発明の他の実施形態を示している。この例では、第1、第2の固定部3、4、重錘5、可撓板6およびセンサ筐体7が金属材料にて構成されている。また、可撓板6は、本例では、センサ筐体7から放射状にのびる複数本のアーム部材により弾性的に支持されたものを例示する。
【0064】
また前記アーム部材12は、図12に図11のA−A断面を示すように、例えば可撓板6よりも十分に弾性変形しやすいものとすることにより、可撓板6を変形させずアーム部材12のみが弾性変形することにより可撓板6を変位させることもできる。この場合、可撓板6の変位による電極間距離の変位が線形に変化し易くなり、検出精度の向上にさらに役立つ。またこのように放射状に配されたアーム部材12を設けることにより、可撓板6の変位をより指向性のないものとしうる結果、さらに検出精度の向上に効果がある。またこの例では、変位電極ef1、ef2は、いずれも可撓板6、重錘5自体を電極として用いることができ、構造の簡素化も役立つ。
【0065】
なお可撓板6と重錘5とは、導電性を有する固着方法、例えば、溶接等により接合するのが好ましい。また第1、第2の固定部3、4には、絶縁材10、11を介して分離電極片eX1などを配している。
【0066】
以上詳述したが、分離電極片は、重錘可撓部材2に設けても良い。さらに、可撓板6は好ましい可撓性を与えるために、環状又は放射状にスリット等の切り込みを入れたダイヤフラム状のものを使用することができる。
【0067】
またセンサが、大きな衝撃を受ける場合には、センサ本体の強度を向上させることが望ましく、各部材に金属を使用するのが好ましい。一方、絶縁物として、又加工性や単価などの理由で、樹脂やセラミックスなども使用しうる。これらには、熱膨張率が大きく異なるものがあり、センサが自動車のように使用温度がかなり広範囲にわたるところに使用される場合には、熱膨張の差が電極間距離dに与える影響は無視できない。そのため、部材としては、熱膨張率の小さなものが望ましく、また、本例のように熱膨張率の近似した材料で構成することによって、温度による誤差等を減じるのが好ましい。
【0068】
またセンサの検出精度を考慮すると、前述の変位率dx、dy、dzそれぞれを0.1程度以下に抑え込むことが望ましいため、そのように各種構成材料の弾性率、厚さ、支持方式、重錘の形状と質量などを設計することも好ましい。さらに前記分離電極面が形成されない第1ないし第2の変位面、又は第1ないし第2の静止面は、金属材料から構成することもできる。さらに、各電極群における電極の大きさは、重錘が変位したときでも十分に垂直方向で重なり合う大きさとするのが良い。
【0069】
【実施例】
本発明の静電容量形3軸加速度センサとして、最大1Gを測定しうる図11に示した構造のセンサ(実施例)を試作し、図14に示した従来構造のセンサ(従来例)と性能を比較した。
【0070】
図13は、実施例、従来例の各センサに、X軸方向の一定の加速度AXを与えつつ、同時に±1G以内のZ軸方向の加速度AZを負荷した時のX軸方向の相対出力CXを実測した結果を示している。測定にあたっては、両センサとも測定条件は同一とした。
【0071】
図13から明らかなように、従来例のセンサでは、Z軸方向の加速度に比例してX軸方向の加速度の出力のバラツキが大きくなっていることが判る(ただし、X軸方向の加速度AXの大きい範囲、とくに0.8〜1.0Gの範囲では、Z軸方向加速度AZが小さな値(0.5〜0G)しか負荷できなかったため、比較的小さなバラツキに止まっている)。また実施例のセンサは、従来例に比べて出力が約2倍となっており、検出感度が向上していること、及びZ軸方向の加速度が負荷された場合であっても、出力のバラツキが非常に小さく、大幅な検出精度の向上が確認でき、計算式を用いて検証したのとほぼ同様の結果が得られている。
【0072】
【発明の効果】
以上説明したように、本発明の静電容量形3軸加速度センサによれば、3軸の各方向の加速度検出感度を向上しうる。また、X軸方向及びY軸方向といった水平方向の加速度に、垂直方向(Z軸方向)の加速度が加わったような場合でも水平方向の加速度を、負荷された垂直方向の加速度の影響を実質的に受けることなく、精度良く検出できる。このため、複雑な電気的な補正回路をセンサに組み込む必要がなくなり、センサを小型できかつ構造を簡素化した安価な静電容量形3軸加速度センサを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示すセンサ本体の断面図である。
【図2】(a)は第1の固定電極、(b)は第2の固定電極、(c)は第1、第2の変位電極を示す平面図である。
【図3】分離電極片の他の例を示す平面図である。
【図4】変位電極の変位を説明する線図である。
【図5】X軸方向の演算部の回路図である。
【図6】Y軸方向の演算部の回路図である。
【図7】Z軸方向の演算部の回路図である。
【図8】(a)、(b)は、電極間距離を種々変えたときのセンサ出力を説明するためのグラフである。
【図9】本発明の他の実施形態を示すセンサの断面図である。
【図10】その分離電極片を示す平面図である。
【図11】本発明の他の実施形態を示すセンサの断面図である。
【図12】そのA−A断面図である。
【図13】本発明の性能を示すグラフである。
【図14】従来の静電容量形3軸加速度センサの断面図であり、(a)は無負荷状態、(b)は力FXが作用した状態をそれぞれ示す。
【図15】(a)は固定電極、(b)は変位電極を示す平面図である。
【図16】静電容量と電極間距離を示すグラフである。
【符号の説明】
1 センサ本体
2 重錘可撓部材
2a 第1の変位面
2b 第2の変位面
3a 第1の静止面
3 第1の固定部
4 第2の固定部
4b 第2の静止面
5 重錘
6 可撓板
7 センサ筐体
ef1 第1の変位電極
e1 第1の固定電極
EU 第1の電極群
ef2 第2の変位電極
e2 第2の固定電極
ED 第2の電極群
eX1〜eX4、eY1〜eY4、eZ1、eZ2 分離電極片
10X、10Y、10Z 演算部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a capacitance type triaxial acceleration sensor capable of improving detection accuracy.
[0002]
[Prior art]
Accelerometers are known as servo type, piezoelectric type, piezoresistive type, capacitance type, etc. In recent years, in order to detect accelerations in multiple directions such as pitch and roll such as earthquakes at the same time, X A triaxial acceleration sensor capable of detecting acceleration in the three axial directions of −YZ is being developed.
[0003]
A capacitance type triaxial acceleration sensor is proposed in Japanese Patent Application Laid-Open No. 4-148833. For example, as shown in FIG. 14A, a fixed plate a and a flexible plate b to which a weight c is fixed are provided. Are fixed to the case body d, and a fixed electrode E1 and a displacement electrode E2 are provided on the facing surfaces of the fixed plate a and the flexible plate b.
[0004]
The fixed plate a is made of, for example, a material having high rigidity and is less likely to bend, and the flexible plate b is made of a material that has flexibility in this example and easily bends when a force is applied. Show things. Further, the fixed electrode E1 has a circular shape in plan view as shown in FIG. 15 (a), while the displacement electrode E2 is a separated electrode piece divided into five parts as shown in FIG. 15 (b), for example. That is, an electrode EZ1 that is circular at the center, electrodes EX1 and EX2 that are arranged positively and negatively in the X-axis direction along the plane direction of the flexible plate b when the center of the electrode EZ1 is the origin, and positive and negative in the Y-axis direction The electrodes EY1 and EY2 are arranged.
[0005]
When acceleration is applied to the acceleration sensor s from the outside, as shown in FIG. 14B, the force FX acts on the action point P corresponding to the center of gravity of the weight c, and the weight c is displaced. The bending plate b bends. Further, the interelectrode distance between the fixed electrode E1 and the displacement electrode E2 changes, and the capacitance value between both electrodes also changes. Acceleration can be detected by detecting this change in capacitance value in the X-axis direction, Y-axis direction, and Z-axis direction according to the following equations (1) to (3).
[0006]
Figure 0003766190
The capacitance value C is given by the following equation where ε is the dielectric constant, S is the surface area of the electrodes, and d is the distance between the electrodes.
C = ε · S / d
[0007]
[Problems to be solved by the invention]
FIG. 14B shows a state in which only the acceleration in the X-axis direction is applied to the capacitance type triaxial acceleration sensor. Usually, a material having no rigid directivity is selected for the flexible plate b. Therefore, the origin O of the flexible plate b whose vertical axis passing through the center of gravity of the weight c passes the center of the thickness of the flexible plate b is not displaced in the Z-axis direction, and a moment is generated around the origin O. It can be regarded as a thing. The weight c balances with a displacement corresponding to the rigidity of the flexible plate b.
[0008]
Here, the surface area of the electrodes EX1 and EX2 is S2, respectively, and the initial inter-electrode distance between the electrodes eX1 and eX2 and the fixed electrode e1 in a no-load state where only gravitational acceleration acts on the sensor is D0, and the force FX is Assuming that the amount of change in the distance between the fixed electrode E1 and the fixed electrode E1 generated on the flexible electrodes EX1 and EX2 by the action of the flexible plate b is DX, the capacitance value CX corresponding to the acceleration in the X-axis direction is ▲ 1 From the formula, it can be expressed as the following formula 1.
[Expression 1]
Figure 0003766190
[0009]
Further, when the ratio (DX / D0) of the change amount DX of the inter-electrode distance to the initial inter-electrode distance D0 is expressed by dx, the above formula 1 can be expressed as the following formula 2.
[Expression 2]
Figure 0003766190
[0010]
However, such a capacitive three-axis acceleration sensor receives a force FX when it receives an acceleration in which an acceleration in the X-axis direction and an acceleration in the Z-axis direction (upward in this example) are simultaneously applied. Then, the change amount of the interelectrode distance generated in the electrodes EX1 and EX2 is DX, and on the other hand, the change amount of the interelectrode distance when receiving the force FZ is DZ, and (DZ / D0) is expressed by dz. The electrostatic capacitance value CXA in the axial direction is an electrostatic capacity value in the X-axis direction in which the displacement electrode E2 that is displaced upward in the Z-axis direction by DZ by the force FZ is further inclined and displaced by ± DX by the force FX in the X-axis direction. It can be expressed by the difference between the capacitance values CX1 and CX2, and can be expressed as the following Equation 3.
[Equation 3]
Figure 0003766190
[0011]
Thus, in the above equation (3), unlike the equation (2), it can be seen that the capacitance value in the X-axis direction includes a factor of the change rate dz in the Z-axis direction.
[0012]
FIG. 16 shows the relationship between the capacitance value and the distance between the electrodes. In the figure, the inter-electrode distance d is taken on the horizontal axis, and the capacitance value CX in the X-axis direction is taken on the vertical axis. When the inter-electrode distance d is the initial set value D0 in the no-load state, when the displacement amount of the flexible plate b is ± DX due to acceleration in the X-axis direction, the capacitance value CX becomes ΔC0. In contrast, when the acceleration in the Z-axis direction acts simultaneously and the inter-electrode distance d is larger than the initial set value D0 by DZ or smaller by DZ, the displacement amount of the flexible plate b is ±± due to the acceleration in the X-axis direction. In the case of DX, the capacitance values vary in ΔC + z and ΔC−z, respectively.
[0013]
As described above, since the capacitance value between the electrodes is strongly influenced by the distance between the electrodes, in the capacitance type triaxial acceleration sensor, the acceleration in the Z-axis direction is in the X-axis direction or the Y-axis direction as described above. If the acceleration is applied simultaneously to the acceleration in the horizontal axis direction, the detection acceleration in the X-axis direction (or Y-axis direction) varies due to the influence, and the detection accuracy is deteriorated.
[0014]
In order to solve such a problem, for example, it is conceivable to electrically incorporate a correction circuit or physically increase the sensitivity in the horizontal direction. However, in the former case, the circuit is complicated, and the circuit board is used. However, the latter method is not desirable from the viewpoint of cost as well as increasing the substrate size.
[0015]
The inventors of the present invention have made extensive studies on a method of eliminating the influence of acceleration in the Z-axis direction from the horizontal capacitance value by improving the mechanical structure of the capacitive three-axis acceleration sensor. The sensor body is provided with two electrode groups in which the distance between the electrodes is increased and the other is decreased by displacement due to the acceleration in the Z-axis direction, and by taking the difference in capacitance of each of these electrode groups The present inventors have found that the influence of acceleration in the Z-axis direction can be largely removed from the electrostatic capacitance based on the acceleration in the horizontal direction.
[0016]
As described above, the present invention increases the detection accuracy of the horizontal acceleration even when the vertical acceleration acts simultaneously with the horizontal acceleration while improving the sensor output without relying on the electrical correction circuit. An object of the present invention is to provide a capacitance type triaxial acceleration sensor that can be improved.
[0017]
[Means for Solving the Problems]
  The invention according to claim 1 of the present invention is a weight comprising a weight and a flexible plate to which the weight is attached and having a displacement portion that is displaced by movement of the weight due to acceleration acting on the weight. Flexible member,
  A first fixed portion having a first stationary surface facing one of the first displacement surfaces of the weight flexible member;
  And a second fixed portion having a second stationary surface facing the other second displacement surface of the weight flexible member,
  Are fixed to the sensor housing, and
  A first electrode group consisting of a first displacement electrode provided on the first displacement surface and a first fixed electrode provided on the first stationary surface;
  And a sensor main body provided with a second electrode group including a second displacement electrode provided on the second displacement surface and a second fixed electrode provided on the second stationary surface. ,
  At least one of the first displacement electrode and the first fixed electrode, at least one of the second displacement electrode, and the second fixed electrode is composed of four or more and the same number of electrically separated separation electrode pieces. ,
  In addition, the first displacement electrode of the first electrode group includes the second displacement electrode of the second electrode group, and the first fixed electrode of the first electrode group includes the second displacement electrode of the second electrode group. The same shape as the fixed electrode,
  A change in capacitance that occurs between the first displacement electrode and the first fixed electrode of the first electrode group due to the movement of the weight, the second displacement electrode of the second electrode group, and a second An electrostatic capacitance type three-axis acceleration sensor comprising an arithmetic unit that measures acceleration by outputting a difference from a change in capacitance generated between the fixed electrode and the fixed electrode.
[0018]
The invention according to claim 2 is characterized in that the first displacement surface is a surface of a flexible plate on the side where the weight is not attached, and the second displacement surface is a surface of the weight. The capacitance type triaxial acceleration sensor according to claim 1.
[0019]
According to a third aspect of the present invention, the first displacement surface is a surface of a flexible plate to which the weight is not attached, and the second displacement surface is a flexible plate to which the weight is attached. 2. The capacitance type three-axis acceleration sensor according to claim 1, wherein
[0020]
According to a fourth aspect of the present invention, the separation electrode piece includes a center electrode piece around a center line orthogonal to the surface of the flexible plate and passing through the center thereof, and an origin where the center line intersects the flexible surface. The total of positive and negative peripheral X-axis electrode pieces and positive and negative peripheral Y-axis electrode pieces arranged on the X-axis and Y-axis sides parallel to the flexible plate surface at the positive and negative positions outside the central electrode piece The electrostatic capacitance type three-axis acceleration sensor according to claim 1, comprising five.
[0021]
According to a fifth aspect of the present invention, in the capacitance type triaxial acceleration sensor according to the fourth aspect, the center separation electrode piece has a ring shape.
[0022]
The capacitance type 3 according to any one of claims 1 to 5, wherein the displacement surface or the stationary surface on which the separation electrode piece is not formed is made of a metal material. It is an axial acceleration sensor.
[0023]
According to the seventh aspect of the present invention, the capacitance value of the central electrode piece of the first electrode group is C11, the capacitance value of the positive and negative peripheral X-axis electrode pieces is C12, C14, and the positive and negative peripheral values. The capacitance value of the Y-axis electrode piece is C13, C15, the capacitance value by the center electrode piece of the second electrode group is C21, the capacitance value of the positive and negative peripheral X-axis electrode pieces is C22, C24, When the capacitance values of the positive and negative peripheral Y-axis electrode pieces are C23 and C25, the capacitance values corresponding to the acceleration in the XYZ-axis directions are calculated by the following formulas, 5. The capacitance type triaxial acceleration sensor according to claim 4, wherein the acceleration acting on the weight is detected.
CX = (C12-C14)-(C22-C24)
CY = (C13-C15)-(C23-C25)
CZ = (C11)-(C21)
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the capacitance-type triaxial acceleration sensor of the present invention includes a weight flexible member 2 and a first stationary face that faces one first displacement surface 2 a of the weight flexible member 2. A sensor housing includes a first fixing portion 3 having a surface 3a and a second fixing portion 4 having a second stationary surface 4b facing the other second displacement surface 2b of the weight flexible member 2. 7 is fixed.
[0025]
The weight flexible member 2 includes a weight 5 and a flexible plate 6 to which the weight 5 is attached and which has a displacement portion that is displaced by the movement of the weight 5 due to the acceleration acting on the weight 5. In this example, the weight 5 is attached to the lower surface of the flexible plate 6.
[0026]
In the present embodiment, the first displacement surface 2a is the surface of the flexible plate 6 on the side where the weight 5 is not attached, and the second displacement surface 2b is the surface of the weight 5, this example. FIG. 6 illustrates the lower surface of the weight 5. In the present example, the first and second fixing parts 3 and 4, the weight 5 and the flexible plate 6 are all made of an insulating material such as glass, resin or ceramic.
[0027]
A first displacement electrode ef1 is provided on the first displacement surface 2a of the weight flexible member 2, and the first stationary surface 3a facing the first displacement surface 2a has the first displacement surface 2a. A first fixed electrode e1 is formed at a distance from the displacement electrode ef1. Accordingly, the first displacement electrode ef1 and the first fixed electrode e1 can constitute the first electrode group EU.
[0028]
Similarly, a second displacement electrode ef2 is provided on the second displacement surface 2b, and a distance from the second displacement electrode ef2 is provided on the second stationary surface 4b facing the second displacement surface 2b. A second fixed electrode e2 is formed with a gap therebetween. Accordingly, the second displacement electrode ef2 and the second fixed electrode e2 can constitute the second electrode group ED.
[0029]
As described above, the sensor main body 1 includes the first electrode group EU and the second electrode group ED. In the present invention, at least one of the first displacement electrode ef1 and the first fixed electrode e1, the second displacement electrode ef2 and at least one of the second fixed electrodes e2 may be four or more and the same number. One of the features is that it is composed of an electrically independent separation electrode piece.
[0030]
In this embodiment, the first fixed electrode e1 and the second fixed electrode e2 are composed of five separate and electrically independent separation electrode pieces as shown in FIGS. 2 (a) and 2 (b). This is an example. These separation electrode pieces have center electrode pieces eZ1 and eZ2 around a center line orthogonal to the surface of the flexible plate 6 and passing through the center thereof as shown in the figure, and an origin at which the center line intersects the surface of the flexible plate 6. Positive and negative peripheral X-axis electrode pieces eX1, eX2, and eX3, which are arranged outside the central electrode pieces eZ1 and eZ2 on the X-axis and Y-axis side parallel to the surface of the flexible plate 6 and at positive and negative positions, Examples include eX4 and five positive and negative peripheral Y-axis electrode pieces eY1, eY2, and eY3, eY4, respectively, which are arranged to be electrically insulated from each other.
[0031]
As a result, the first electrode group EU and the second electrode group ED can form a total of 10 capacitive elements, each consisting of 5 pairs of pairs of separation electrode pieces and displacement electrodes. In this example, the first and second displacement electrodes ef1 and ef2 are formed in an integrated disk shape as shown in FIG. 2 (c). Various materials can be used for each of these electrodes as long as they have conductive properties. However, these electrodes are preferably made of the same material, and in this example, are made of the same metal material.
[0032]
  In the present invention, in the first electrode group EU and the second electrode group ED, the separation electrode pieces facing each other with the flexible plate 6 interposed therebetween are configured in the same shape. The separation electrode pieces eX1, eX2 arranged in the X-axis direction of the first electrode group EU and the separation electrode pieces eX3, eX4 arranged in the X-axis direction of the second electrode group ED are both equal in surface area S2. Become. That isThe first displacement electrode ef1 of the first electrode group EU is the second displacement electrode ef2 of the second electrode group ED, and the first fixed electrode e1 of the first electrode group EU is the second electrode Each of the second fixed electrodes e2 of the group ED has the same shape.
[0033]
In the present embodiment, the interelectrode distance D1 of the first electrode group EU is set equal to the interelectrode distance D2 of the second electrode group ED in a no-load state in which only gravitational acceleration acts on the sensor. Is illustrated.
[0034]
Such a capacitance type triaxial acceleration sensor has a static force generated between the first displacement electrode ef1 and the first fixed electrode e1 of the first electrode group EU due to the movement of the weight 5 due to the acceleration. The acceleration is measured by outputting the difference between the change in capacitance and the change in capacitance generated between the second displacement electrode ef2 of the second electrode group ED and the second fixed electrode e2. An arithmetic unit (shown in FIGS. 5 to 7) is provided.
[0035]
As described above, in this example, two electrode groups in which the distance between the electrodes is increased and the other is decreased due to the displacement due to the acceleration in the Z-axis direction, that is, the first electrode group EU and the second electrode group ED are formed. By taking the difference in capacitance between these electrode groups, the influence of acceleration in the Z-axis direction can be largely removed from the capacitance based on the acceleration in the horizontal direction. That is, by subtracting the capacitance value of the second electrode group ED from the capacitance value of the first electrode group EU, the acceleration in the Z-axis direction acts simultaneously on the acceleration in the X-axis direction and the Y-axis direction. Even in this case, the influence of the acceleration in the Z-axis direction on the capacitance values in the X-axis direction and the Y-axis direction can be reduced, and the detection accuracy can be greatly increased.
[0036]
For example, as shown in FIGS. 2A and 2B, the capacitance value of the central electrode piece eZ1 and the displacement electrode ef1 of the first electrode group EU is C11, and the positive and negative peripheral X-axis electrode pieces eX1, The capacitance value of eX2 is C12, C14, the positive and negative peripheral Y-axis electrode pieces eY1, eY2 are C13, C15, and the capacitance value C21 of the second electrode group ED is the central electrode piece eZ2. When the electrostatic capacitance values of the positive and negative peripheral X-axis electrode pieces eX3 and eX4 are C22 and C24, and the electrostatic capacitance values of the positive and negative peripheral Y-axis electrode pieces eY3 and eY4 are C23 and C25, the XYZ axes The capacitance values CX, CY, and CZ corresponding to the direction acceleration can be calculated by the following equations (4) to (6).
CX = (C12−C14) − (C22−C24) (4)
CY = (C13-C15)-(C23-C25) (5)
CZ = (C11) − (C21) (6)
[0037]
Here, the detection accuracy of the capacitance type triaxial acceleration sensor of the present invention will be described using the above arithmetic expression. First, when the weight 5 is accelerated and only the force FX (direction shown in FIG. 1) in the X direction is applied to the action point P of the weight 5, the separation electrode pieces eX1 arranged positively and negatively on the X axis. , EX2, eX3, eX4, the separation electrode pieces eX1, eX4 reduce the distance between the displacement electrodes ef1, ef2 and increase the capacitance values C12, C24, while the separation electrode pieces eX2, eX3 are the displacement electrodes ef1, The distance between the electrodes with ef2 is increased, and the capacitance values C14 and C22 are decreased.
[0038]
In calculating these capacitances, in order to compare with the conventional capacitance type triaxial acceleration sensor, the shape, size, material, and weight of the flexible plate, electrode, and weight are unified to provide the basics of both. The capacitance value CX corresponding to the acceleration in the X-axis direction of the sensor of the present invention is assumed when the technical specifications are aligned and the change amount of the inter-electrode distance generated at the electrode (for example, the centroid position of the electrode plane) is ± DX. Is expressed as in Equation 4. The surface area of the separation electrode pieces eX1, eX2, eX3, eX4 is S2, the dielectric constant is ε, the displacement amount of the interelectrode distance caused by the force FX is ± DX, and the ratio between the initial interelectrode distance D0 and the displacement DX ( DX / D0) is dx.
[Expression 4]
Figure 0003766190
[0039]
In this way, when only the acceleration in the X-axis direction (or Y-axis direction) is applied to the weight 5, it is compared with the capacitance value CX of the conventional capacitance type three-axis acceleration sensor expressed by Equation 2. Then, it can be seen that the capacitance value (output) of the present invention is doubled and the detection sensitivity in the X-axis direction (or Y-axis direction) is improved.
[0040]
When only the acceleration in the Z-axis direction is applied to the weight 5, the surface area of the central electrode pieces eZ1 and eZ2 is S1, the distance between the central electrode piece eZ1 and the displacement electrode ef1, and the central electrode piece eZ2 and the displacement electrode ef2 When the amount of change in the interelectrode distance that occurs during each period is ± DZ and the ratio (DZ / D0) to the initial interelectrode distance D0 is represented by dz, the capacitance value CZ of the sensor of the present invention is become that way.
[Equation 5]
Figure 0003766190
[0041]
On the other hand, in the conventional sensor, Equation 6 is obtained.
[Formula 6]
Figure 0003766190
[0042]
Here, it is preferable that dz is normally used at a maximum of about 0.1. In this case, the capacitance type triaxial acceleration sensor of the present embodiment is substantially also in the capacitance value in the Z-axis direction. Double output can be obtained. In this way, when forces in the X-axis direction (or Y-axis direction) or Z-axis direction are applied independently, the capacitive three-axis acceleration sensor of the present invention has an output compared to conventional sensors. It can be seen that both of them are doubled and the variation in the Z-axis direction capacitance value is also reduced.
[0043]
In order to detect the change in the electrostatic capacitance value in the Z-axis direction, as shown in FIG. 3, the central electrode piece is not provided independently, and the four separated electrode pieces eX1, eX2, eY1, and eY2 are static. It is also possible to calculate from the change of the total capacitance value. However, in the case of five divisions having the central separation electrode piece eZ1 as in the present embodiment, the detection electric circuit is simplified, which is advantageous for downsizing, and the closer to the origin of the electrode, the other axis Since it is hardly affected, there is an advantage that the detection accuracy of acceleration in the Z-axis direction can be further improved.
[0044]
Next, consider a case where the acceleration in the X-axis direction and the acceleration in the Z-axis direction are simultaneously loaded on the weight 5. In this case, as shown in FIG. 4, the displacement electrodes ef1 and ef2 generate an upward displacement amount DZ by the force FZ in the Z-axis direction, and at the same time, a displacement amount ± DX is generated by the force FX in the X-axis direction. Can be considered. The capacitance value CXB in the X-axis direction in this case is as shown in Equation 7.
[Expression 7]
Figure 0003766190
[0045]
Here, the capacitance value CXA of the conventional sensor shown in Equation 3 is expressed as Equation 8 when the denominator is shared in order to compare with the capacitance value CXB of the sensor of the present invention. Can do.
[Equation 8]
Figure 0003766190
[0046]
Because of the structure of the capacitance type triaxial acceleration sensor, it is usually preferable to use the maximum value of dx and dz at about 0.1 in the operating range. Therefore, assuming that the maximum value of dx and dz is 0.1. , Denominator {(1-dz)2-Dx2} {(1 + dz)2-Dx2} Can take the range of 0.96 to 1.00. In addition, among each molecule (dz2-Dx2) Can take a range of -0.01 to 0.01.
[0047]
Further, when comparing the capacitance values CXB and CXA of the capacitance type triaxial acceleration sensor of the present invention and the conventional sensor, the conventional one (Equation 8) has a factor of “2 dz” to “1” in the numerator. It is an added form. Since this “2dz” takes a value of 0.2 at maximum, it gives a variation of ± 20% at maximum.
[0048]
In contrast, the capacitance type triaxial acceleration sensor of the present invention has a capacitance value CXB that is twice that of the conventional one, which can improve detection sensitivity and In comparison, even when the acceleration in the Z-axis direction is simultaneously added to the acceleration in the horizontal direction such as the X- or Y-axis direction, the influence (2dz) of the conventional acceleration in the Z-axis direction is eliminated, and the X-axis direction (or the Y-axis) (Direction) capacitance value can be acquired, and detection accuracy can be greatly improved.
[0049]
Next, an example of the circuit configuration of the arithmetic unit is shown in FIGS. 5 shows acceleration output in the X-axis direction, FIG. 6 shows acceleration output in the Y-axis direction, and FIG. 7 shows acceleration output in the Z-axis direction. For example, in FIG. 5, the capacitance C12 between the electrodes eX1 and ef1, the capacitance C14 between the electrodes eX2 and ef1, the capacitance C22 between the electrodes eX3 and ef2, and the capacitance C24 between the electrodes eX4 and ef2 are: These are converted into voltage values V1 to V4 by CV converters H1 to H4, respectively, and output.
[0050]
The differential amplifier A1 is a voltage V5 which is a difference between the voltage values V1 and V2 converted by the CV converters H1 and H2, and the differential amplifier A2 is a voltage value converted by the CV converters H3 and H4. A difference voltage V6 between V3 and V4 is output to the differential amplifier A3. The differential amplifier A3 can take the difference between the voltages V5 and V6 and output it as a voltage value V7 corresponding to the acceleration in the X-axis direction.
[0051]
Note that the Y-axis direction is the same as in the X-axis direction, the capacitance C13 between the electrodes eY1 and ef1, the capacitance C15 between the electrodes eY2 and ef1, the capacitance C23 between the electrodes eY3 and ef2, and the electrodes eY4 and ef2. The capacitance C25 between them is converted into voltage values V10 to V13 by CV converters H5 to H8, respectively. The differential amplifier A4 is the difference between the voltage values V10 and V11 converted by the CV converters H5 and H6. The differential amplifier A5 outputs the voltage V14 to the differential amplifier A6, and the differential amplifier A5 outputs the difference voltage V15 between the voltage values V12 and V13 converted by the CV converters H7 and H8, respectively. The differential amplifier A6 takes the difference between the voltages V14 and V15 and outputs the difference as a voltage value V16 corresponding to the acceleration in the Y-axis direction.
[0052]
Regarding the Z-axis direction, the capacitance C11 between the electrodes eZ1 and ef1 and the capacitance C21 between the electrodes eZ2 and ef2 are converted into corresponding voltages V17 and V18 by CV converters H9 and H10, respectively, and differential The difference between the voltages V17 and V18 is obtained by the amplifier A7, and this can be output as a voltage value V19 corresponding to the acceleration in the Z-axis direction.
[0053]
Then, by applying predetermined wiring to each electrode of the sensor body and connecting it to a circuit that performs the above-described calculation operation, the voltage value corresponding to the acceleration acting on the weight 5 can be obtained for each three-dimensional axis. Each direction component can be extracted with high accuracy. Note that this arithmetic circuit is an example. For example, it is of course possible to modify the equations (4) to (6) and construct an arithmetic circuit corresponding thereto.
[0054]
In the no-load state, the interelectrode distance D1 between the first fixed electrode e1 and the first displacement electrode ef1 of the first electrode group EU, the second fixed electrode e2 of the second electrode group ED, and the second It is desirable that the distance D2 between the two displacement electrodes ef2 is substantially equal.
[0055]
A curve G1a shown in FIG. 8A shows the relative output of the first electrode group EU when the distance between the electrodes is D1 = D2 = D0. The curve G1b is the relative output of the second electrode group ED, and the curve G1 is the sum of these relative outputs, indicating the relative output as a sensor. As is apparent from the figure, the curve G1 is the most suitable because the output is very stable in the vicinity of dz = 0, which is the practical range of the acceleration sensor.
[0056]
A curve G2a indicates the relative output of the first electrode group EU when the interelectrode distance D1 = D2 = 2D0. The curve G2b is the relative output of the second electrode group ED, and the curve G2 is the sum of these relative outputs, indicating the relative output as a sensor. In this curve G2, although the output is stable over a wide range, the output itself is small.
[0057]
A curve G3a shown in FIG. 8B shows the relative output of the first electrode group EU when D1 ≠ D2 where the interelectrode distance D1 = D0 and D2 = 2D0, and the curve G3b The curve G3 is the sum of these relative outputs and shows the relative output as a sensor. As is apparent from the figure, the curve G3 is not preferable because the compensation is small and the output curve is close to the conventional one.
[0058]
A curve G4a shown in FIG. 8B shows the relative output of the first electrode group EU when D1 ≠ D2 where the interelectrode distance D1 = D0 and D2 = D0 / 2, and the curve G4b is This is the relative output of the second electrode group ED, and the curve G4 is the sum of these relative outputs and shows the relative output as a sensor. As is clear from the figure, the curve G4 has a small D2, so the compensation is too large, and conversely the accuracy is degraded.
[0059]
Accordingly, it is preferable to set the initial inter-electrode distances D1 and D2 to be equal to each other and to adopt a value at which the output characteristic (curve) is stabilized according to each sensor.
[0060]
Next, another embodiment of the present invention will be described. In the present embodiment, as shown in FIG. 9, the first displacement surface 2a is the surface of the flexible plate 6 on the side where the weight 5 is not attached, and the second displacement surface 2b is the weight. It is a surface of the flexible plate 6 on the side to which the weight 5 is attached. In this example, the second electrode group ED is exemplified by the weight 5 penetrating through the center portion. For this reason, the second fixing portion 4 has a through hole 4c through which the weight 5 passes. The center electrode pieces eZ1 and eZ2 adopt a ring shape surrounding the weight 5 as shown in FIG.
[0061]
In this embodiment, a change in the distance between the electrodes of the first and second electrode groups EU and ED, which occurs when the weight 5 rotates around the origin O of the flexible plate 6 by applying a force in the X-axis direction. This is preferable in that the minute difference can be reduced and the assembly dimensional accuracy and assembly processability can be improved.
[0062]
In this example, all the electrodes are configured by the same-shaped separation electrode pieces as shown in FIG. 10, but the fixed electrode e1 (e2) is used for each of the first electrode group EU and the second electrode group ED. ) Or the displacement electrode ef1 (ef2) may be provided with a separation electrode piece as described above. Other configurations are substantially the same as the apparatus having the structure shown in FIG. 1, including the detection circuit.
[0063]
11 and 12 show another embodiment of the present invention. In this example, the 1st, 2nd fixing | fixed part 3, 4, the weight 5, the flexible plate 6, and the sensor housing | casing 7 are comprised with the metal material. In the present example, the flexible plate 6 is illustrated as being elastically supported by a plurality of arm members extending radially from the sensor housing 7.
[0064]
Further, as shown in the cross section AA of FIG. 11 in FIG. 12, the arm member 12 is, for example, sufficiently elastically deformable than the flexible plate 6 so that the flexible plate 6 is not deformed. Only the member 12 is elastically deformed so that the flexible plate 6 can be displaced. In this case, the displacement of the distance between the electrodes due to the displacement of the flexible plate 6 easily changes linearly, which is further useful for improving the detection accuracy. Further, by providing the arm members 12 arranged in a radial manner in this manner, the displacement of the flexible plate 6 can be made less directional, and the detection accuracy is further improved. Further, in this example, the displacement electrodes ef1 and ef2 can both use the flexible plate 6 and the weight 5 themselves as electrodes, and the simplification of the structure is also useful.
[0065]
The flexible plate 6 and the weight 5 are preferably joined by a conductive fixing method such as welding. In addition, the first and second fixing portions 3 and 4 are provided with a separation electrode piece eX1 and the like via insulating materials 10 and 11, respectively.
[0066]
As described above in detail, the separation electrode piece may be provided on the weight flexible member 2. Further, the flexible plate 6 may be a diaphragm having a slit or the like cut in a ring shape or a radial shape in order to give a preferable flexibility.
[0067]
Further, when the sensor receives a large impact, it is desirable to improve the strength of the sensor body, and it is preferable to use metal for each member. On the other hand, resin, ceramics, etc. can be used as an insulator and for reasons such as processability and unit price. Some of these have greatly different coefficients of thermal expansion, and when the sensor is used in a wide range of operating temperatures, such as an automobile, the influence of the difference in thermal expansion on the inter-electrode distance d cannot be ignored. . Therefore, it is desirable that the member has a small coefficient of thermal expansion, and it is preferable to reduce an error due to temperature by using a material having a similar coefficient of thermal expansion as in this example.
[0068]
Considering the detection accuracy of the sensor, it is desirable to suppress each of the above-mentioned displacement rates dx, dy, dz to about 0.1 or less, and as such, the elastic modulus, thickness, support method, weight of various constituent materials It is also preferable to design the shape, mass and the like. Furthermore, the first or second displacement surface or the first or second stationary surface on which the separation electrode surface is not formed can be made of a metal material. Furthermore, the size of the electrodes in each electrode group should be sufficiently large to overlap in the vertical direction even when the weight is displaced.
[0069]
【Example】
As a capacitance type triaxial acceleration sensor of the present invention, a sensor (Example) having the structure shown in FIG. 11 capable of measuring a maximum of 1 G was prototyped, and the sensor having the conventional structure (Conventional Example) shown in FIG. Compared.
[0070]
FIG. 13 shows the relative output CX in the X-axis direction when a constant acceleration AX in the X-axis direction is given to each sensor of the example and the conventional example, and simultaneously the acceleration AZ in the Z-axis direction within ± 1 G is loaded. The result of actual measurement is shown. In the measurement, the measurement conditions were the same for both sensors.
[0071]
As can be seen from FIG. 13, in the sensor of the conventional example, the variation in the output of the acceleration in the X-axis direction is increased in proportion to the acceleration in the Z-axis direction (however, the acceleration AX in the X-axis direction is increased). In a large range, particularly in the range of 0.8 to 1.0 G, the Z-axis direction acceleration AZ can only be loaded with a small value (0.5 to 0 G), so that the variation is relatively small. In addition, the output of the sensor of the example is about twice that of the conventional example, the detection sensitivity is improved, and even when the acceleration in the Z-axis direction is loaded, the output varies. Is very small, and a significant improvement in detection accuracy can be confirmed. The result is almost the same as that verified using a calculation formula.
[0072]
【The invention's effect】
As described above, according to the capacitance type triaxial acceleration sensor of the present invention, the acceleration detection sensitivity in each direction of the three axes can be improved. In addition, even when the acceleration in the vertical direction (Z-axis direction) is added to the acceleration in the horizontal direction such as the X-axis direction and the Y-axis direction, the horizontal acceleration is substantially affected by the applied vertical acceleration. Can be detected with high accuracy. For this reason, it is not necessary to incorporate a complicated electrical correction circuit in the sensor, and it is possible to provide an inexpensive capacitive three-axis acceleration sensor that can be downsized and simplified in structure.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a sensor body showing an embodiment of the present invention.
2A is a plan view showing a first fixed electrode, FIG. 2B is a second fixed electrode, and FIG. 2C is a first and second displacement electrode;
FIG. 3 is a plan view showing another example of the separation electrode piece.
FIG. 4 is a diagram illustrating displacement of a displacement electrode.
FIG. 5 is a circuit diagram of a calculation unit in the X-axis direction.
FIG. 6 is a circuit diagram of a calculation unit in the Y-axis direction.
FIG. 7 is a circuit diagram of a calculation unit in the Z-axis direction.
FIGS. 8A and 8B are graphs for explaining sensor output when various distances between electrodes are changed.
FIG. 9 is a sectional view of a sensor showing another embodiment of the present invention.
FIG. 10 is a plan view showing the separation electrode piece.
FIG. 11 is a cross-sectional view of a sensor showing another embodiment of the present invention.
FIG. 12 is a cross-sectional view taken along the line AA.
FIG. 13 is a graph showing the performance of the present invention.
14A and 14B are cross-sectional views of a conventional capacitive triaxial acceleration sensor, where FIG. 14A shows a no-load state and FIG. 14B shows a state where a force FX is applied.
15A is a plan view showing a fixed electrode, and FIG. 15B is a plan view showing a displacement electrode.
FIG. 16 is a graph showing capacitance and distance between electrodes.
[Explanation of symbols]
1 Sensor body
Double weight flexible member
2a First displacement surface
2b Second displacement surface
3a First stationary surface
3 First fixing part
4 Second fixing part
4b Second stationary surface
5 weights
6 Flexible plate
7 Sensor housing
ef1 first displacement electrode
e1 first fixed electrode
EU first electrode group
ef2 second displacement electrode
e2 Second fixed electrode
ED Second electrode group
eX1 to eX4, eY1 to eY4, eZ1, eZ2 Separation electrode piece
10X, 10Y, 10Z operation unit

Claims (7)

重錘と、この重錘が取付られかつこの重錘に作用する加速度による重錘の動きにより変位する変位部を有する可撓板とからなる重錘可撓部材、
この重錘可撓部材の一方の第1の変位面に向き合う第1の静止面を有する第1の固定部、
及びこの重錘可撓部材の他方の第2の変位面に向き合う第2の静止面を有する第2の固定部、
をそれぞれセンサ筐体に固定し、かつ
前記第1の変位面に設けられた第1の変位電極と、第1の静止面に設けられた第1の固定電極とからなる第1の電極群、
及び前記第2の変位面に設けられた第2の変位電極と、第2の静止面に設けられた第2の固定電極とからなる第2の電極群とを配したセンサ本体を具えるとともに、
第1の変位電極と、第1の固定電極の少なくとも一方、第2の変位電極と、第2の固定電極の少なくとも一方は、ともに4つ以上かつ同数しかも電気的に独立した分離電極片からなり、
しかも第1の電極群の第1の変位電極は、第2の電極群の第2の変位電極と、前記第1の電極群の第1の固定電極は、第2の電極群の第2の固定電極とそれぞれ同形とするとともに
重錘の動きにより前記第1の電極群の第1の変位電極と第1の固定電極との間に生じる静電容量の変化、前記第2の電極群の第2の変位電極と、第2の固定電極との間に生じる静電容量の変化との差を出力することにより加速度を測定する演算部を具えたことを特徴とする静電容量形3軸加速度センサ。
A weight flexible member comprising a weight and a flexible plate to which the weight is attached and a displacement portion that is displaced by the movement of the weight due to acceleration acting on the weight;
A first fixed portion having a first stationary surface facing one of the first displacement surfaces of the weight flexible member;
And a second fixed portion having a second stationary surface facing the other second displacement surface of the weight flexible member,
A first electrode group consisting of a first displacement electrode provided on the first displacement surface and a first fixed electrode provided on the first stationary surface,
And a sensor main body provided with a second electrode group including a second displacement electrode provided on the second displacement surface and a second fixed electrode provided on the second stationary surface. ,
At least one of the first displacement electrode and the first fixed electrode, at least one of the second displacement electrode, and the second fixed electrode is composed of four or more and the same number of electrically separated separation electrode pieces. ,
In addition, the first displacement electrode of the first electrode group includes the second displacement electrode of the second electrode group, and the first fixed electrode of the first electrode group includes the second displacement electrode of the second electrode group. The same shape as the fixed electrode ,
A change in capacitance that occurs between the first displacement electrode and the first fixed electrode of the first electrode group due to the movement of the weight, the second displacement electrode of the second electrode group, and a second A capacitive three-axis acceleration sensor comprising an arithmetic unit for measuring acceleration by outputting a difference from a change in capacitance generated between the fixed electrode and the fixed electrode.
前記第1の変位面は、前記重錘が取り付かない側の可撓板の面であり、かつ第2の変位面が前記重錘の面であることを特徴とする請求項1記載の静電容量形3軸加速度センサ。2. The electrostatic device according to claim 1, wherein the first displacement surface is a surface of a flexible plate on which the weight is not attached, and the second displacement surface is a surface of the weight. Capacitance type 3-axis acceleration sensor. 前記第1の変位面は、前記重錘が取り付かない側の可撓板の面であり、かつ第2の変位面が前記重錘が取り付く側の可撓板の面であることを特徴とする請求項1記載の静電容量形3軸加速度センサ。The first displacement surface is a surface of a flexible plate on a side to which the weight is not attached, and the second displacement surface is a surface of a flexible plate on a side to which the weight is attached. The capacitive three-axis acceleration sensor according to claim 1. 前記分離電極片は、前記可撓板の面と直交しその中心を通る中心線回りの中央電極片と、前記中心線が可撓面と交わる原点を通り前記可撓板面と平行なX軸、Y軸側で中央電極片の外側かつ正負の位置に配される正、負の周辺X軸電極片と、正、負の周辺Y軸電極片との合計5つを含むことを特徴とする請求項1乃至3のいずれか1に記載の静電容量形3軸加速度センサ。The separation electrode piece includes a central electrode piece around a center line orthogonal to the surface of the flexible plate and passing through the center thereof, and an X axis passing through the origin where the center line intersects the flexible surface and parallel to the flexible plate surface. And a total of five positive and negative peripheral X-axis electrode pieces and positive and negative peripheral Y-axis electrode pieces arranged on the Y-axis side outside the central electrode piece and at positive and negative positions. The capacitive three-axis acceleration sensor according to any one of claims 1 to 3. 前記中央電極片はリング状をなすことを特徴とする請求項4記載の静電容量形3軸加速度センサ。5. The capacitance type triaxial acceleration sensor according to claim 4, wherein the central electrode piece has a ring shape. 前記分離電極片が形成されない変位面、又は静止面は、金属材からなることを特徴とする請求項1乃至5のいずれかに記載の静電容量形3軸加速度センサ。6. The capacitance type triaxial acceleration sensor according to claim 1, wherein the displacement surface or the stationary surface where the separation electrode piece is not formed is made of a metal material. 前記第1の電極群の中央電極片による静電容量値をC11、正、負の周辺X軸電極片の静電容量値をC12、C14、正、負の周辺Y軸電極片の静電容量値をC13、C15、第2の電極群の中央電極片による静電容量値をC21、正、負の周辺X軸電極片の静電容量値をC22、C24、正、負の周辺Y軸電極片の静電容量値をC23、C25としたとき、各XYZ軸方向の加速度に対応する静電容量値をCX、CY、CZを次式により算出して、前記重錘に作用した加速度を検出することを特徴とする請求項4記載の静電容量形3軸加速度センサ。
CX=(C12−C14)−(C22−C24)
CY=(C13−C15)−(C23−C25)
CZ=(C11)−(C21)
The capacitance value of the central electrode piece of the first electrode group is C11, and the capacitance values of the positive and negative peripheral X-axis electrode pieces are C12 and C14. The capacitances of the positive and negative peripheral Y-axis electrode pieces. The values are C13 and C15, the capacitance value by the central electrode piece of the second electrode group is C21, the capacitance values of the positive and negative peripheral X-axis electrode pieces are C22 and C24, and the positive and negative peripheral Y-axis electrodes When the capacitance values of the pieces are C23 and C25, the capacitance values corresponding to the accelerations in the XYZ axis directions are calculated by the following equations to detect the acceleration acting on the weight. 5. The capacitive three-axis acceleration sensor according to claim 4, wherein
CX = (C12-C14)-(C22-C24)
CY = (C13-C15)-(C23-C25)
CZ = (C11)-(C21)
JP29260197A 1997-10-24 1997-10-24 Capacitance type 3-axis acceleration sensor Expired - Lifetime JP3766190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29260197A JP3766190B2 (en) 1997-10-24 1997-10-24 Capacitance type 3-axis acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29260197A JP3766190B2 (en) 1997-10-24 1997-10-24 Capacitance type 3-axis acceleration sensor

Publications (2)

Publication Number Publication Date
JPH11133055A JPH11133055A (en) 1999-05-21
JP3766190B2 true JP3766190B2 (en) 2006-04-12

Family

ID=17783908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29260197A Expired - Lifetime JP3766190B2 (en) 1997-10-24 1997-10-24 Capacitance type 3-axis acceleration sensor

Country Status (1)

Country Link
JP (1) JP3766190B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085203A (en) * 2002-08-22 2004-03-18 Star Micronics Co Ltd Capacitance-type acceleration sensor and its manufacturing method
JP4831650B2 (en) * 2004-04-07 2011-12-07 株式会社山武 Servo type sensor diagnosis method and servo type sensor
WO2008146624A1 (en) * 2007-05-30 2008-12-04 Rohm Co., Ltd. Acceleration sensor and method for manufacturing the same
CN101865933A (en) * 2010-06-07 2010-10-20 瑞声声学科技(深圳)有限公司 Differential capacitance type acceleration sensor
JP2017203683A (en) * 2016-05-11 2017-11-16 内外ゴム株式会社 Capacitance type triaxial acceleration sensor
JP6751539B2 (en) * 2016-09-05 2020-09-09 株式会社フジクラ Load detection sensor, load detection sensor unit
CN116007821A (en) * 2021-10-22 2023-04-25 华为技术有限公司 Measuring method for external force born by capacitive force sensor and detection equipment

Also Published As

Publication number Publication date
JPH11133055A (en) 1999-05-21

Similar Documents

Publication Publication Date Title
US11808574B2 (en) Micromechanical detection structure of a MEMS multi-axis gyroscope, with reduced drifts of corresponding electrical parameters
JP3027457B2 (en) Force, acceleration, and magnetism detectors for multi-dimensional directions
US5365799A (en) Sensor for force/acceleration/magnetism using piezoelectric element
JP2765316B2 (en) Capacitive three-axis acceleration sensor
JP3327595B2 (en) 3-axis accelerometer
US6910379B2 (en) Out-of-plane compensation suspension for an accelerometer
CN108450010B (en) Improved micro-electromechanical accelerometer device
EP1451538A2 (en) Sealed load cell
EP3598146B1 (en) Microelectromechanical device for out-of-plane motion detection
US11377346B2 (en) Low-noise multi axis MEMS accelerometer
JP2018531377A6 (en) Improved microelectromechanical accelerometer
JP3766190B2 (en) Capacitance type 3-axis acceleration sensor
CN111071982B (en) Micromechanical inertial sensor
RU2692122C1 (en) Solid-state linear acceleration sensor
JP3368744B2 (en) Vibration acceleration sensor
JP7438569B2 (en) force sensor
JPH1138038A (en) Acceleration sensor
RU204922U1 (en) SENSING ELEMENT OF A THREE-AXIS MICROMECHANICAL ACCELEROMETER
JP3036675B2 (en) Method for correcting nonlinearity of capacitance type acceleration sensor
JP2538068Y2 (en) Acceleration detector
JP3036679B2 (en) Correction method of other axis interference output of acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term