JPH02267127A - Method for forming optical element and device therefor - Google Patents
Method for forming optical element and device thereforInfo
- Publication number
- JPH02267127A JPH02267127A JP8774789A JP8774789A JPH02267127A JP H02267127 A JPH02267127 A JP H02267127A JP 8774789 A JP8774789 A JP 8774789A JP 8774789 A JP8774789 A JP 8774789A JP H02267127 A JPH02267127 A JP H02267127A
- Authority
- JP
- Japan
- Prior art keywords
- molding
- temperature
- glass material
- mold
- optical element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000000465 moulding Methods 0.000 claims abstract description 137
- 239000011521 glass Substances 0.000 claims abstract description 73
- 238000010438 heat treatment Methods 0.000 claims abstract description 33
- 230000007704 transition Effects 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims description 68
- 238000009826 distribution Methods 0.000 abstract description 20
- 239000002994 raw material Substances 0.000 abstract 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 229910001873 dinitrogen Inorganic materials 0.000 description 16
- 238000003825 pressing Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/12—Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明は、ガラス素材を加熱軟化し、一対の成形用型に
より押圧成形する光学素子成形方法および装置に関する
。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical element molding method and apparatus in which a glass material is softened by heating and press-molded using a pair of molds.
従来、加熱炉内で加熱軟化したガラス素材を一対の成形
用型間に搬送して成形用型により光学素子を押圧成形す
る場合、成形用型の酸化を防止するとともにガラス素材
と成形用型との融着を防止するために、非酸化性ガス雰
囲気中で押圧成形が行われ、例えば特開昭61−132
525号公報にかかる技術が記載されている。Conventionally, when a glass material that has been heated and softened in a heating furnace is transferred between a pair of molds and an optical element is press-molded by the mold, it is necessary to prevent oxidation of the mold and to prevent the glass material and mold from oxidizing. In order to prevent fusion of
A technique related to Japanese Patent No. 525 is described.
しかしながら、上記従来の押圧成形にあっては、加熱炉
内で加熱軟化したガラス素材を成形用型間に搬送し押圧
成形するまでの工程で、ガラス素材の外周、表面部分が
非酸化性ガス雰囲気中で急冷されこととなり、ガラス素
材の表面部分と内部に温度分布が生じて成形の転写性に
悪影響を与えていた。また、成形用型にあっても非酸化
性ガス雰囲気中で冷却されつつ所定温度に加熱制御され
ているため、表面部分(成形面)に温度分布が生し成形
面の中心部と周辺部の温度差により成形の転与件に悪影
響を与えていた。However, in the above-mentioned conventional press molding, the outer periphery and surface of the glass material are exposed to a non-oxidizing gas atmosphere during the process of conveying the glass material heated and softened in a heating furnace between molds and press forming it. This caused a temperature distribution between the surface and interior of the glass material, which adversely affected the transferability of the molding. In addition, since the mold is cooled in a non-oxidizing gas atmosphere and heated to a predetermined temperature, there is a temperature distribution on the surface (molding surface), and there is a difference between the center and the periphery of the molding surface. The temperature difference had an adverse effect on the molding process.
そのため、良好な転写性を得るために、成形用型の温度
および成形押圧力をより高温および増加させる必要が生
じる等、成形条件が成形用型に対する負荷が高くなると
いう問題が生していた。特に、外径の大きなレンズ、偏
肉(中肉厚と外周肉厚との差)の大きなレンズにあって
は、形状の転写性に対する悪影響が顕著であった。Therefore, in order to obtain good transferability, it is necessary to increase the temperature of the mold and the molding pressure to a higher temperature, resulting in a problem that the molding conditions place a higher load on the mold. In particular, for lenses with a large outer diameter or lenses with a large uneven thickness (difference between the middle thickness and the outer peripheral thickness), the adverse effect on shape transferability was significant.
本発明は、上記従来技術の問題点に鑑みてなされたもの
であって、ガラス素材および成形用型に温度分布が生ず
るのを防止するとともに成形条件(温度、押圧力)をよ
り低下した状態で成形の転写性が良好で、外径の大きな
レンズ、偏肉の大きなレンズにあっても高精度に転写し
得る光学素子成形方法および成形装置を提供することを
目的とする。The present invention has been made in view of the problems of the prior art described above, and it is possible to prevent temperature distribution from occurring in the glass material and molding die, and to reduce molding conditions (temperature, pressing force). It is an object of the present invention to provide an optical element molding method and a molding apparatus that have good molding transferability and can perform high-precision transcription even for lenses with a large outer diameter or large uneven thickness.
上記目的を達成するために、本発明の光学素子成形方法
は、ガラス素材を加熱軟化し、一対の成形用型間に搬送
して押圧成形する光学素子成形方法において、前記成形
用型を配置した成形室内の雰囲気温度を成形するガラス
素材の転移点付近の温度に加熱制御しつつ押圧成形する
こととしたものである。In order to achieve the above object, the optical element molding method of the present invention is an optical element molding method in which a glass material is heated and softened, and the glass material is conveyed between a pair of molding molds and press-molded. Pressure molding is performed while controlling the atmospheric temperature in the molding chamber to a temperature near the transition point of the glass material to be molded.
また、本発明の光学素子成形装置は、ガラス素材を加熱
軟化し、一対の成形用金型により押圧成形する光学素子
成形装置において、前記成形用型を配置した成形室内の
雰囲気気温度を成形するガラス素材の転移点付近の温度
に加熱制御する手段を設けて構成したものである。Further, the optical element molding apparatus of the present invention is an optical element molding apparatus that heats and softens a glass material and press-molds it with a pair of molding molds. It is constructed by providing means for controlling heating to a temperature near the transition point of the glass material.
上記構成の光学素子成形方法においては、成形用型を配
置した成形室内がガラス素材の転移点イ」近の温度に加
熱制御される。したがって、ガラス軟化点以上に加熱さ
れたガラス素材が成形室で冷却されにくくなり、冷却に
よるガラス表面部と内部および中心部と外周部とで温度
差が生じにくくなる。また、成形用型から奪われる熱量
が少なくなるため、成形型に温度分布が生しにくくなる
。In the optical element molding method having the above configuration, the inside of the molding chamber in which the molding die is arranged is heated to a temperature close to the transition point of the glass material. Therefore, the glass material heated above the glass softening point is less likely to be cooled in the molding chamber, and temperature differences are less likely to occur between the glass surface and the interior, and between the center and the outer periphery due to cooling. Furthermore, since the amount of heat taken away from the mold is reduced, temperature distribution is less likely to occur in the mold.
よって、押圧成形直前のガラス素材の温度分布および成
形用型の表面温度分布が極めて小さくなり、転写性の良
好な成形が可能となる。Therefore, the temperature distribution of the glass material immediately before press molding and the surface temperature distribution of the molding die become extremely small, making it possible to perform molding with good transferability.
また、上記光学素子成形装置においては、加熱制御手段
により成形室内がガラス素材の転移点付近の温度に加熱
される。したがって、上記作用を有した成形方法を実施
できる。Further, in the optical element molding apparatus described above, the inside of the molding chamber is heated to a temperature near the transition point of the glass material by the heating control means. Therefore, a molding method having the above effects can be implemented.
以下、図面を用いて本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.
(第1実施例)
第1図は、本発明に係る光学素子成形装置の第1実施例
を示す縦断面図である。(First Embodiment) FIG. 1 is a longitudinal sectional view showing a first embodiment of an optical element molding apparatus according to the present invention.
図において1で示すのは成形室で、成形室1内には、成
形用型である上型2と下型3が収納されている。上型2
は、成形室1の上板1aの下面に固着され、下型3は、
下型設置台4の上面に固着されている。そして、上型2
.下型3は対をなして同軸的に対向配置され、その対向
面には所望の光学素子に対応した高い面形状と面粗度を
有する成形面2a、3aが形成されている。即ち、成形
面2a、3aは、」二型2.下型3の温度測定を行う上
型温度モニタ一部6.下型温度モニタ一部7の先端に形
成されている。In the figure, 1 indicates a molding chamber, and within the molding chamber 1, an upper mold 2 and a lower mold 3, which are molds for molding, are housed. Upper mold 2
is fixed to the lower surface of the upper plate 1a of the molding chamber 1, and the lower mold 3 is
It is fixed to the upper surface of the lower mold installation stand 4. And upper mold 2
.. The lower molds 3 are arranged coaxially in a pair and facing each other, and molding surfaces 2a and 3a having a high surface shape and surface roughness corresponding to a desired optical element are formed on the opposing surfaces. That is, the molding surfaces 2a and 3a are formed by "2 molds 2. Part of the upper mold temperature monitor that measures the temperature of the lower mold 3 6. It is formed at the tip of the lower mold temperature monitor part 7.
一方、下型3は、成形室lの下板1bに穿設された孔8
を貫通して設けられた駆動軸9の先端に下型設置台4を
介して固着されるとともに、駆動軸9の他端に連結され
た駆動部10の作動により上型2に対して接近離反自在
に設けられている。On the other hand, the lower mold 3 has holes 8 drilled in the lower plate 1b of the molding chamber l.
The drive shaft 9 is fixed to the tip of the drive shaft 9 provided through the lower mold installation stand 4, and is moved toward and away from the upper mold 2 by the operation of the drive section 10 connected to the other end of the drive shaft 9. It is set freely.
下型設置台4と駆動軸9とは、断熱材11を介して固着
されている。The lower die installation stand 4 and the drive shaft 9 are fixed to each other via a heat insulating material 11.
成形室1の側壁1cには、ガラス素材12および押圧成
形後の光学素子(図示省略)を成形室1に対して搬入お
よび搬出するための窓13が設げられている。そして、
側壁ICには、窓13と対応する位置にガラス素材12
を所定温度に加熱軟化するためのガラス素材加熱ヒータ
14aを設けた加熱炉14が連結されている。この窓1
3と加熱炉14間には、断熱シャッタ15が設けられて
いる。断熱シャック15は、駆動部16に連結されてお
り、駆動16の作動により−1−下動されて窓13を開
放、閉塞し得るようになっている。The side wall 1c of the molding chamber 1 is provided with a window 13 through which the glass material 12 and press-molded optical elements (not shown) are carried into and out of the molding chamber 1. and,
A glass material 12 is placed on the side wall IC at a position corresponding to the window 13.
A heating furnace 14 equipped with a glass material heater 14a for heating and softening the glass material to a predetermined temperature is connected thereto. This window 1
A heat insulating shutter 15 is provided between the heating furnace 3 and the heating furnace 14 . The heat insulating shack 15 is connected to a drive unit 16, and is moved downward by -1 by the operation of the drive 16, so that the window 13 can be opened or closed.
17は、ガラス素材12を加熱炉14および成形室1内
の上下両型2.3間の成形ポイントに搬入し、押圧成形
後の光学素子を成形室1内から搬出するための搬送アー
ムで、搬送アーム17の先端部には、ガラス素材12お
よび光学素子を保持する搬送具18を載置するための載
置部19が形成されている。17 is a transport arm for carrying the glass material 12 into the heating furnace 14 and a forming point between the upper and lower molds 2.3 in the molding chamber 1, and carrying out the optical element after press molding from the molding chamber 1; A mounting portion 19 is formed at the tip of the transport arm 17 on which a transport tool 18 for holding the glass material 12 and the optical element is placed.
上記成形室1の内壁全面には、断熱板20が設けられる
とともに、下板1bの上面にも断熱板21が設けられ、
成形室1内の熱が外部に放出されないようになっている
。断熱板21の内壁全面には、成形室1内を所定温度に
加熱するための成形室加熱ヒータ22が設置されている
。更に、加熱炉14の反対側における成形室1の側壁1
dには、成形室1内の温度を測定し、成形室加熱ヒータ
22による加熱状態を制御するための成形室温モニタ2
3が設置されている。成形室温モニタ23は、石英管2
4内に収納されて設置され、下型3の上昇、下降および
搬送アーム17の搬出入の際に成形室1内に外気が流入
して変動した成形室温度を成形室温モニタ23により直
接測定して制御した場合、流入した外気の温度に影響さ
れて大きくオーバシュート、即ち設定温度を超えた温度
にまで成形室1内が加熱される状態となるのを防止し得
るようになっている。A heat insulating board 20 is provided on the entire inner wall of the molding chamber 1, and a heat insulating board 21 is also provided on the upper surface of the lower plate 1b,
Heat within the molding chamber 1 is prevented from being released to the outside. A molding chamber heater 22 for heating the inside of the molding chamber 1 to a predetermined temperature is installed on the entire inner wall of the heat insulating plate 21 . Furthermore, the side wall 1 of the molding chamber 1 on the opposite side of the heating furnace 14
d, a molding room temperature monitor 2 for measuring the temperature inside the molding chamber 1 and controlling the heating state by the molding chamber heater 22;
3 is installed. The molded room temperature monitor 23 is a quartz tube 2
The molding room temperature monitor 23 directly measures the temperature of the molding chamber 1 which fluctuates due to outside air flowing into the molding chamber 1 when the lower mold 3 is raised and lowered and the transfer arm 17 is carried in and out. When controlled, it is possible to prevent a large overshoot, that is, a state in which the inside of the molding chamber 1 is heated to a temperature exceeding the set temperature due to the influence of the temperature of the outside air flowing in.
一方、成形室1の下板1bには、断熱材にて覆われたス
テンレスパイプ25を介して成形室1内と連通ずる窒素
ガス加熱炉26が連結されている。On the other hand, a nitrogen gas heating furnace 26 communicating with the inside of the molding chamber 1 is connected to the lower plate 1b of the molding chamber 1 through a stainless steel pipe 25 covered with a heat insulating material.
窒素ガス加熱炉26は、窒素ガス加熱ヒータ27を備え
た管状に構成され、一端には窒素ガス補給装置(例えば
窒素ガスタンク)28が接続されるとともに、他端には
上記ステンレスパイプ25と接続した窒素ガス温度モニ
タ部29が設けられている。The nitrogen gas heating furnace 26 is configured in a tubular shape with a nitrogen gas heater 27, and one end is connected to a nitrogen gas supply device (for example, a nitrogen gas tank) 28, and the other end is connected to the stainless steel pipe 25. A nitrogen gas temperature monitor section 29 is provided.
窒素ガス温度モニタ部29は、成形室1内に送り込まれ
る窒素ガスの温度測定を行うもので、窒素ガス加熱ヒー
タ27を制御して、送り込まれる窒素ガスが成形室1の
温度に影響を与えないように成形室1の温度とほぼ同じ
温度に設定し得るようになでいる。そして、上記温度制
御された窒素ガスは、ステンレスパイプ25を通じて下
型設置台4の下から成形室1内温度および成形用型温度
等に影響を与えないように、はとんど流速が生しない状
態にて成形室1内に送り込まれる。The nitrogen gas temperature monitor unit 29 measures the temperature of the nitrogen gas fed into the molding chamber 1 and controls the nitrogen gas heater 27 so that the nitrogen gas fed does not affect the temperature of the molding chamber 1. The temperature is set to be approximately the same as the temperature of the molding chamber 1. The temperature-controlled nitrogen gas flows from below the lower mold installation table 4 through the stainless steel pipe 25 so as not to affect the temperature inside the molding chamber 1 and the temperature of the molding mold. It is sent into the molding chamber 1 in this state.
次に、上記構成の成形装置を用いて、光学素子を押圧成
形する方法について説明する。本実施例にあッテは、硝
種LLF6(軟化点637°C1屈伏点501°C1転
移点453°C)をガラス素材12に用いて両凸形状の
レンズを成形した。Next, a method of press molding an optical element using the molding apparatus having the above configuration will be described. In this example, Atte used glass type LLF6 (softening point: 637 degrees Celsius, yield point: 501 degrees Celsius, transition point: 453 degrees Celsius) as the glass material 12 to mold a biconvex lens.
まず、研削研磨により鏡面加工したガラス素材12を搬
送具18に保持しつつ搬送アーム17の載置部19に載
置する。次に、図示を省略した駆動装置により搬送アー
ム17を移動させ、ガラス素材12を成形時の温度であ
る6 50 ’Cに設定した加熱炉14に移送し、2分
間加熱処理して640°C付近に加熱する。First, a glass material 12 that has been mirror-finished by grinding and polishing is placed on the mounting portion 19 of the transport arm 17 while being held by the transport tool 18 . Next, the transport arm 17 is moved by a drive device (not shown), and the glass material 12 is transferred to the heating furnace 14 set at 650'C, which is the temperature during molding, and heated for 2 minutes to 640°C. Heat nearby.
その後、搬送アーム17をさらに前進させ、ガラス素材
12を上下両型2.3間の成形ポイントまで移送する。Thereafter, the transport arm 17 is further advanced to transport the glass material 12 to the molding point between the upper and lower molds 2.3.
そして、下型3を駆動部1oの駆動により上昇し、上型
2との協働作業により成形面3a、2aでガラス素材1
2を押圧して所望の光学素子を成形する。Then, the lower mold 3 is raised by the drive of the drive unit 1o, and in cooperation with the upper mold 2, the glass material 1 is formed on the molding surfaces 3a, 2a.
2 to form a desired optical element.
かかる押圧成形過程中、成形室1内は、成形室加熱ヒー
タ22により400°C付近(ガラス素材の転移点−5
0’C)の窒素ガス雰囲気に保持される。また、搬送ア
ーム17および下型3の移動に伴い外気が成形室1内に
流入するため窒素ガス供給装置28から窒素ガス加熱炉
26により400°C付近に加熱された窒素ガス成形室
1内に供給されている。なお、上型2.下型3はガラス
素材12の転移点付近の温度に保持されている。During the press molding process, the inside of the molding chamber 1 is heated to around 400°C (the transition point of the glass material -5) by the molding chamber heater 22.
It is maintained in a nitrogen gas atmosphere at 0'C). In addition, as outside air flows into the molding chamber 1 as the transfer arm 17 and the lower die 3 move, the nitrogen gas supplied from the nitrogen gas supply device 28 flows into the molding chamber 1 heated to around 400°C by the nitrogen gas heating furnace 26. Supplied. In addition, upper mold 2. The lower mold 3 is maintained at a temperature near the transition point of the glass material 12.
本実施例では、加熱炉14内で640°C付近に加熱さ
れたガラス素材12は搬送アーム17で上下両型2.3
間に搬送される過程で成形室1内の雰囲気により熱を奪
われて冷却されるが、成形室1内が400°C付近に加
熱されているため、ガラス素材12の冷却度合が小さく
、ガラス素材の内部と表面の温度分布が生しにくくなる
。さらに、上下両型2.3は、内部を型加熱用ヒータ(
図示省略)により加熱されているが、成形面2a、3a
の温度は、成形室1内の雰囲気により左右される。しか
し、上下両型2,3は転移点付近に保持されているため
、400°C付近に制御された成形室1内においては熱
放出が抑えられ、成形面2a3aには温度分布が生じに
くくなり、はぼ均一な状態に保持される。In this embodiment, the glass material 12 heated to around 640°C in the heating furnace 14 is transferred to both the upper and lower molds 2.3 by the transfer arm 17.
During the process of conveyance, heat is removed by the atmosphere inside the molding chamber 1 and the glass material 12 is cooled. However, since the inside of the molding chamber 1 is heated to around 400°C, the degree of cooling of the glass material 12 is small, and the glass material 12 is cooled. Temperature distribution between the inside and surface of the material becomes difficult to achieve. Furthermore, both the upper and lower molds 2.3 are equipped with mold heaters (
(not shown), the molding surfaces 2a and 3a
The temperature depends on the atmosphere inside the molding chamber 1. However, since both the upper and lower dies 2 and 3 are held near the transition point, heat release is suppressed in the molding chamber 1 controlled at around 400°C, making it difficult for temperature distribution to occur on the molding surface 2a3a. , is maintained in a nearly uniform state.
本実施例の成形方法により成形した光学素子の形状を第
2図に示す。図から明らかなように、成形された光学素
子は、ヒケが発生せず、はぼ良好な転写性を得ることが
できた。FIG. 2 shows the shape of the optical element molded by the molding method of this example. As is clear from the figure, the molded optical element did not have any sink marks and had very good transferability.
第3図は、本実施例により成形した光学素子の形状と比
較するために、成形室内の温度を制御せず、他の条件を
本実施例と同等な条件で成形した光学素子の形状を示す
ものである。かかる場合、成形室内は、成形用加熱ヒー
タ、加熱炉等の影響により、230°Cの雰囲気温度で
あった。Figure 3 shows the shape of an optical element molded under the same conditions as this example without controlling the temperature inside the molding chamber, in order to compare with the shape of the optical element molded according to this example. It is something. In this case, the ambient temperature inside the molding chamber was 230° C. due to the effects of the molding heater, heating furnace, and the like.
図から明らかなように、中心部にヒケが発生していた。As is clear from the figure, a sink mark had occurred in the center.
かかる状態で成形されるのは、ガラス素材の加熱軟化温
度がガラス素材の搬送路の雰囲気温度および成形用型よ
りかなり高く、搬送過程でガラス素材に冷却作用により
温度分布が生しること、また成形用型が成形室雰囲気温
度よりかなり高く、成形面に径方向の温度分布が生しる
ことに起因している。The reason why the glass material is molded under such conditions is that the heating softening temperature of the glass material is considerably higher than the ambient temperature of the conveyance path of the glass material and the molding mold, and that a temperature distribution occurs in the glass material due to the cooling effect during the conveyance process. This is due to the fact that the temperature of the molding die is considerably higher than the ambient temperature of the molding chamber, resulting in a radial temperature distribution on the molding surface.
即ち、ガラス素材の温度分布は、ガラス素材の内部と外
表面に生しるとともに、本実施例で成形する両凸レンズ
にあっては中心部と外周部の厚さが異なるため中心部と
外周部にも生しることとなり、極端な場合には外表面お
よび外周面が押圧成形前に固化する場合がある。一方、
成形用型の温度分布は、成形面の光軸を中心に径方向に
生し、外周工ンヂ部の温度低下が大きくなる。よって、
上記ガラス素材および成形用型の状態で押圧成形した場
合、ガラス素材の外周部が中心部の固化に対して速く、
外周部が先に固化するので成形用型の押圧力は全て外周
部に作用し、光学素子面に均一な押圧力が作用しなくな
る。そして、その後中心部の固化が進行してガラス素材
の収縮が行われるが押圧力は作用しないので、良好な転
写性を有する光学素子面を形成するのは困難となる。In other words, the temperature distribution of the glass material occurs on the inside and outside of the glass material, and in the case of the biconvex lens molded in this example, since the thickness of the center and the outer periphery are different, In extreme cases, the outer surface and peripheral surface may solidify before press molding. on the other hand,
The temperature distribution of the molding die occurs in the radial direction around the optical axis of the molding surface, and the temperature drop in the outer circumference is large. Therefore,
When press-molding the above glass material and mold, the outer periphery of the glass material solidifies faster than the center.
Since the outer periphery solidifies first, the entire pressing force of the mold acts on the outer periphery, and a uniform pressing force no longer acts on the surface of the optical element. Thereafter, solidification of the central portion progresses and the glass material contracts, but no pressing force is applied, making it difficult to form an optical element surface with good transferability.
したがって、成形室内の雰囲気温度を制御せずに良好な
転写性を得るためには、成形用型温度の上昇、押圧力の
増加および加熱炉温度の上昇を必要とするため、成形用
型に対する負荷が大きくなり、成形面の劣化により成形
型耐久性が著しく低下する。そして、押圧に要する時間
は、離型後に変形を生じないように、ガラス素材が完全
に物理的に冷却固化(例えば転移点以下に冷却)してか
ら離型するまでの時間となるが、成形室内の雰囲気温度
を制御しない場合、成形用型温度、加熱炉温度の上昇等
で冷却に時間を要し押圧時間が長くなり、サイクルタイ
ムの延長となる。特に、両凸形状が著しい(偏肉が大き
い)レンズ、外径がより大きなレンズの場合によっては
、ガラス素材の温度分布が大きくなるため、成形室温を
制御しなければ、光学素子の押圧成形が困難な場合が生
じる。Therefore, in order to obtain good transferability without controlling the ambient temperature inside the molding chamber, it is necessary to increase the mold temperature, increase the pressing force, and increase the heating furnace temperature, which causes a load on the mold. becomes large, and the durability of the mold is significantly reduced due to deterioration of the molding surface. The time required for pressing is the time from when the glass material is completely physically cooled and solidified (e.g., cooled to below the transition point) to when it is released from the mold, in order to prevent deformation after mold release. If the ambient temperature in the room is not controlled, it takes time to cool down due to increases in mold temperature, heating furnace temperature, etc., and the pressing time becomes longer, resulting in an extension of the cycle time. In particular, in the case of lenses with a pronounced biconvex shape (large uneven thickness) or lenses with a large outer diameter, the temperature distribution of the glass material becomes large, so if the molding room temperature is not controlled, the press molding of the optical element will be difficult. Difficult cases arise.
従って、本実施例によれば、サイクルタイムを短縮し、
成形用型に対する負荷を低減した状態で、第2図に示す
ような良好な光学素子を成形できる。Therefore, according to this embodiment, the cycle time can be shortened and
A good optical element as shown in FIG. 2 can be molded while reducing the load on the mold.
(第2実施例)
本実施例は、第1図に示した成形装置を用いて、硝種5
F11(軟化点568°C1屈伏点503°C転移点4
67°C)をガラス素材12に用いてメニスカス形状の
レンズを成形した。(Second Example) In this example, using the molding apparatus shown in FIG.
F11 (softening point 568°C1 yielding point 503°C transition point 4
67°C) for the glass material 12 to mold a meniscus-shaped lens.
本実施例においては、成形室1の雰囲気を417°C付
近(ガラス素材の転移点−50°C)に制御してレンズ
の押圧成形を行った。その他の成形工程等は上記第1実
施例と同様であるので、その説明を省略する。In this example, the atmosphere in the molding chamber 1 was controlled to around 417°C (the transition point of the glass material -50°C), and the lenses were press-molded. Other molding steps and the like are the same as those in the first embodiment, so their explanation will be omitted.
本実施例では、加熱炉14内で加熱されたガラス素材1
2は、搬送アーム17で上下両型2,3間に搬送される
過程で成形室1内の雰囲気により熱を奪われて冷却され
るが、成形室1内が417°C付近に加熱されているた
め、ガラス素材12の冷却度合が小さく、ガラス素材の
内部と表面の温度分布が生じにくくなる。In this embodiment, a glass material 1 heated in a heating furnace 14 is used.
2 is transferred between the upper and lower molds 2 and 3 by the transfer arm 17, and is cooled by the atmosphere inside the molding chamber 1, but the inside of the molding chamber 1 is heated to around 417°C. Therefore, the degree of cooling of the glass material 12 is small, and temperature distribution between the inside and surface of the glass material is less likely to occur.
本実施例の成形方法により成形した光学素子の形状を第
4図に示す。図から明らかなように、成形された光学素
子は、ヒケが発生せず、はぼ良好な転写性を得ることが
できた。FIG. 4 shows the shape of the optical element molded by the molding method of this example. As is clear from the figure, the molded optical element did not have any sink marks and had very good transferability.
第5図は、本実施例により成形した光学素子の形状と比
較するために、成形室内の温度を制御せず、他の条件を
本実施例と同等な条件で成形した光学素子の形状を示す
ものである。かかる場合、成形室内は、成形用加熱し−
タ、加熱炉等の影響により235°Cの雰囲気温度であ
った。Figure 5 shows the shape of an optical element molded under the same conditions as this example without controlling the temperature inside the molding chamber, in order to compare with the shape of the optical element molded according to this example. It is something. In such a case, the inside of the molding chamber is heated for molding.
The ambient temperature was 235°C due to the influence of the heater, heating furnace, etc.
図から明らかなように、レンズ外周部が良好に転写され
ず成形されている。かかる状態で成形されるのは、上記
第1実施例と同様に、搬送中に生しるガラス素材の温度
分布と、成形用型の成形面に生しる温度分布に起因して
いる。As is clear from the figure, the outer periphery of the lens is not transferred well and is molded. The reason why the glass is molded in such a state is caused by the temperature distribution of the glass material during transportation and the temperature distribution of the molding surface of the mold, as in the first embodiment.
即ち、ガラス素材の温度分布は、ガラス素材の内部と外
表面に生じるとともに、本実施例で成形するメニスカス
レンズにあっては中心部が外周部に対して薄く中心部と
外周部にも生じることとなり、極端な場合には中心部お
よび外表面が押圧成形前に固化する場合がある。よって
、かかるガラス素材の状態で押圧成形した場合、ガラス
素材の中心部が外周部の固化に対して速く、中心部が先
に固化するので成形用型の押圧力は中心部のみに作用し
外周部には作用しないので、成形型のガラス表材に対す
る転写性が悪化する。That is, the temperature distribution of the glass material occurs not only on the inside and the outer surface of the glass material, but also in the center and the outer periphery because the center is thinner than the outer periphery in the meniscus lens molded in this example. In extreme cases, the center and outer surface may solidify before press molding. Therefore, when such a glass material is press-molded, the center of the glass material solidifies faster than the outer periphery, and the center solidifies first, so the pressing force of the mold acts only on the center and does not affect the outer periphery. Since it does not act on the glass surface material of the mold, the transferability to the glass surface material of the mold deteriorates.
したがって、成形室内の雰囲気温度を制御せずに良好な
転写性を得るためには、成形用型温度の上昇、押圧力の
増加および加熱炉温度の上昇を必要とするため、成形用
型に対する負荷が大きくなり、成形面の劣化により成形
型耐久性が著しく低下する。そして、押圧に要する時間
は、離型後に変形を生しないように、ガラス素材が完全
に物理的に冷却固化(例えば転移点以下に冷却)してか
離型するまでの時間となるが、成形室内の雰囲気温度を
制御しない場合、成形用型温度、加熱炉温度の上昇等で
冷却に時間を要し押圧時間が長くなり、サイクルタイム
の延長となる。Therefore, in order to obtain good transferability without controlling the ambient temperature inside the molding chamber, it is necessary to increase the mold temperature, increase the pressing force, and increase the heating furnace temperature, which causes a load on the mold. becomes large, and the durability of the mold is significantly reduced due to deterioration of the molding surface. The time required for pressing is the time until the glass material is completely physically cooled and solidified (for example, cooled to below the transition point) and released from the mold, in order to prevent deformation after mold release. If the ambient temperature in the room is not controlled, it takes time to cool down due to increases in mold temperature, heating furnace temperature, etc., and the pressing time becomes longer, resulting in an extension of the cycle time.
さらに、加熱炉温度を上昇することにより、加熱による
ガラス素材の変形が大きくなり、予め研削、研磨により
近僚形状に仕上げたガラス素材が大きく変形し押圧によ
る変形量が大きくなるため、成形用型表面の劣化の原因
となる。Furthermore, by increasing the temperature of the heating furnace, the deformation of the glass material due to heating increases, and the glass material, which has been finished into a close-fitting shape by grinding and polishing, is greatly deformed and the amount of deformation due to pressure increases. This may cause surface deterioration.
また、メニスカス形状が著しい(偏肉が大きい)レンズ
、外径がより大きなレンズの場合によっては、ガラス素
材の温度分布が大きくなるため、成形室温を制御しなけ
れば、光学素子の押圧成形が困難な場合が生じる。In addition, in some cases, lenses with a pronounced meniscus shape (large uneven thickness) or lenses with larger outer diameters may have a wide temperature distribution in the glass material, making it difficult to press mold optical elements unless the molding room temperature is controlled. Cases may occur.
従って、本実施例によれば、サイクルタイムを短縮し、
成形用型に対する負荷を低減した状態で、第4図に示す
ような良好な光学素子を成形できる。Therefore, according to this embodiment, the cycle time can be shortened and
A good optical element as shown in FIG. 4 can be molded while reducing the load on the mold.
(第3実施例)
本実施例は、第1図に示した成形装置を用いて、硝種5
F11(軟化点568°C1屈伏点503°C1転移点
467°C)をガラス素材12に用いて両凸形状のレン
ズを成形した。(Third Example) This example uses the molding apparatus shown in FIG.
A biconvex lens was molded using F11 (softening point: 568°C, yield point: 503°C, transition point: 467°C) as the glass material 12.
本実施例においては、成形室1の雰囲気を5゜0°C付
近(ガラス素材の転移点−35°C)に制御してレンズ
の押圧成形を行った。その他の成形工程等は上記第1実
施例と同様であるので、その説明を省略する。In this example, the atmosphere in the molding chamber 1 was controlled to around 5.degree. 0.degree. C. (the transition point of the glass material -35.degree. C.), and the lenses were press-molded. Other molding steps and the like are the same as those in the first embodiment, so their explanation will be omitted.
本実施例にあっても、上記第1実施例と同様に良好な転
写性を有する光学素子を押圧成形できた。In this example as well, an optical element having good transferability could be press-molded as in the first example.
また、成形用型の耐久性の向上、サイクルタイムの短縮
等の効果が確認できた。In addition, effects such as improved durability of the mold and shortened cycle time were confirmed.
一方、成形室の雰囲気温度を制御せず、成形室内の温度
が260“Cの状態で成形を行ったところ、上記第1実
施例で説明した成形室の雰囲気を制御しなかった場合と
同様なレンズが成形された。On the other hand, when molding was performed with the temperature inside the molding chamber at 260"C without controlling the ambient temperature in the molding chamber, the result was similar to the case where the atmosphere in the molding chamber was not controlled as described in the first embodiment. The lens was molded.
また、SKI 1は温度−粘度の曲線の傾きが大きく、
僅かな温度変化で粘度が大きく変化する特性を有してい
るため、本実施例による効果がより大きく、またガラス
素材の温度分布により、表面にワレを生じたり、最悪の
場合は完全にワしてしまったりするが、本実施例のよう
に雰囲気温度を制御することによりワレ等を防止するこ
とができる。In addition, SKI 1 has a large slope of the temperature-viscosity curve,
Since the viscosity changes greatly with a slight temperature change, the effect of this example is even greater, and the temperature distribution of the glass material may cause cracks on the surface or, in the worst case, completely wear out. However, by controlling the ambient temperature as in this embodiment, cracks and the like can be prevented.
以上のように、本発明によれば、成形条件の低減化が可
能になり成形用型の耐久性向上、成形サイクルタイムの
短縮を図ることができる。また、より極端な形状のレン
ズの成形、外径の大きなしンズの成形に対しても良好な
転写性を有して成形できるとともに、成形可能な形状を
増加させることができる。As described above, according to the present invention, it is possible to reduce the molding conditions, improve the durability of the mold, and shorten the molding cycle time. In addition, lenses with more extreme shapes and lenses with large outer diameters can be molded with good transferability, and the number of shapes that can be molded can be increased.
第1図は、本発明に係る成形装置の第1実施例を示す縦
断面図、第2図は、本発明に係る成形方法の第1実施例
により成形した光学素子の形状を示す説明図、第3図は
、従来の方法により成形した光学素子の形状を示す説明
図、第4図は、本発明に係る成形方法の第2実施例によ
り成形した光学素子の形状を示す説明図、第5図は、従
来の方法により成形した光学素子の形状を示す説明図で
ある。
■・・・成形室 2・・・上型
3・・・下型 22・・・成形室加熱ヒータ26
・・・窒素ガス加熱炉FIG. 1 is a longitudinal sectional view showing a first embodiment of a molding apparatus according to the present invention, FIG. 2 is an explanatory diagram showing the shape of an optical element molded by the first embodiment of a molding method according to the present invention, FIG. 3 is an explanatory diagram showing the shape of an optical element molded by a conventional method, FIG. 4 is an explanatory diagram showing the shape of an optical element molded by a second embodiment of the molding method according to the present invention, and FIG. The figure is an explanatory diagram showing the shape of an optical element molded by a conventional method. ■...Molding chamber 2...Upper mold 3...Lower mold 22...Molding chamber heater 26
...Nitrogen gas heating furnace
Claims (2)
送して押圧成形する光学素子成形方法において、前記成
形用型を配置した成形室内の雰囲気温度を成形するガラ
ス素材の転移点付近の温度に加熱制御しつつ押圧成形す
ることを特徴とする光学素子成形方法。(1) In an optical element molding method in which a glass material is softened by heating and then conveyed between a pair of molding molds and press-molded, the ambient temperature in the molding chamber in which the molding molds are arranged is set near the transition point of the glass material to be molded. An optical element molding method characterized by press molding while controlling heating to a temperature of .
り押圧成形する光学素子成形装置において、前記成形用
型を配置した成形室内の雰囲気温度を成形するガラス素
材の転移点付近の温度に加熱制御する手段を設けたこと
を特徴とする光学素子成形装置。(2) In an optical element molding device that heats and softens a glass material and press-forms it using a pair of molding dies, the ambient temperature in the molding chamber in which the molding dies are placed is set to a temperature near the transition point of the glass material to be molded. An optical element molding apparatus characterized by being provided with means for controlling heating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8774789A JPH02267127A (en) | 1989-04-06 | 1989-04-06 | Method for forming optical element and device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8774789A JPH02267127A (en) | 1989-04-06 | 1989-04-06 | Method for forming optical element and device therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02267127A true JPH02267127A (en) | 1990-10-31 |
Family
ID=13923525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8774789A Pending JPH02267127A (en) | 1989-04-06 | 1989-04-06 | Method for forming optical element and device therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02267127A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6291431A (en) * | 1985-10-18 | 1987-04-25 | Olympus Optical Co Ltd | Forming of optical element |
JPS6374926A (en) * | 1986-09-16 | 1988-04-05 | Olympus Optical Co Ltd | Forming of optical glass part |
JPS6456332A (en) * | 1987-08-26 | 1989-03-03 | Matsushita Electric Ind Co Ltd | Production of glass element and device thereof |
-
1989
- 1989-04-06 JP JP8774789A patent/JPH02267127A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6291431A (en) * | 1985-10-18 | 1987-04-25 | Olympus Optical Co Ltd | Forming of optical element |
JPS6374926A (en) * | 1986-09-16 | 1988-04-05 | Olympus Optical Co Ltd | Forming of optical glass part |
JPS6456332A (en) * | 1987-08-26 | 1989-03-03 | Matsushita Electric Ind Co Ltd | Production of glass element and device thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6701750B2 (en) | Method and apparatus for molding a glass product | |
TWI331987B (en) | Press-molding apparatus, press-molding method and method of producing an optical element | |
JP2002293553A (en) | Method for producing optical element, production apparatus and molding raw material of optical element, mold for premolding and lens array of optical element | |
JP2001058837A (en) | Method for molding optical element and device for molding optical element | |
JPH02267127A (en) | Method for forming optical element and device therefor | |
JPH0435427B2 (en) | ||
JP3967146B2 (en) | Optical element molding method | |
JPH07330347A (en) | Method for forming optical element | |
JP2000233934A (en) | Method for press-forming glass product and device therefor | |
JP2718452B2 (en) | Glass optical element molding method | |
JP3068261B2 (en) | Glass optical element molding method | |
JP2007076945A (en) | Method and apparatus for molding glass lens | |
JPH05286728A (en) | Production of glass lens | |
JP3184584B2 (en) | Glass lens molding method | |
JPH0372016B2 (en) | ||
JPH0710567A (en) | Production of optical element | |
JP3585260B2 (en) | Apparatus and method for manufacturing optical element | |
JP3187902B2 (en) | Glass optical element molding method | |
JPH05301724A (en) | Method for forming optical element | |
JPH04338120A (en) | Method for forming glass optical element | |
JP2016124767A (en) | Method for manufacturing optical element | |
JP2718451B2 (en) | Optical glass parts molding method | |
JP6653135B2 (en) | Method and apparatus for manufacturing optical element | |
JPH0672725A (en) | Method for molding optical glass | |
JP2004231477A (en) | Method and apparatus for molding optical element |