JPH02267103A - Production of superconducting thin film - Google Patents

Production of superconducting thin film

Info

Publication number
JPH02267103A
JPH02267103A JP1088980A JP8898089A JPH02267103A JP H02267103 A JPH02267103 A JP H02267103A JP 1088980 A JP1088980 A JP 1088980A JP 8898089 A JP8898089 A JP 8898089A JP H02267103 A JPH02267103 A JP H02267103A
Authority
JP
Japan
Prior art keywords
thin film
superconducting
superconducting thin
fluoride
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1088980A
Other languages
Japanese (ja)
Inventor
Eiji Natori
栄治 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1088980A priority Critical patent/JPH02267103A/en
Publication of JPH02267103A publication Critical patent/JPH02267103A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain at low cost the title thin film capable of accomplishing large aperture and high critical current density and of suppressing grain boundary barrier by exposing the surface of a fluoride to a plasma atmosphere to effect activation followed by forming a superconducting thin film on the resultant activated surface. CONSTITUTION:The surface of a fluoride such as a CaF2 film formed on a silicon wafer substrate is exposed to a plasma atmosphere to effect activation. This atmosphere can be formed by introducing, after vacuuming. Ar or O2 followed by conversion into a plasma by microwave. Thence, a superconducting thin film such as of Bi2Sr2CaCu2Odelta base is formed on the resulting activated surface, This thin film can be fixed at a proper position in good wettability on the fluoride surface. Thereby, large aperture. high critical current density and the suppression of grain boundary barrier can be accomplished, thus obtaining the objective superconducting thin film suitable for e.g. superconducting devices in favorable mass productivity at low cost.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は5QUID、ジョセフソン素子、超伝導トラン
ジスタ、電磁波センサー 素子配線、電極、アンテナ等
に用いる超伝導薄膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a superconducting thin film used for 5QUID, Josephson device, superconducting transistor, electromagnetic wave sensor, device wiring, electrode, antenna, etc.

[従来の技術] 現在話題の酸化物超伝導物質を薄膜デバイスに応用する
場合高臨界電流密度を必要としたり粒界のようなポテン
シャル障壁を抑制する必要があるため超伝導物質をエピ
タキシャル成長させることは必要不可欠といえる。エピ
タキシャル成長をさせるには基板と超伝導物質の格子を
マツチングさせる必要があり一般的にはPHYSICA
L  REVIEW B  VOL、38  No、 
 1  (1988)765−767、APPLIED
  FHYSIC8LETTER3VOL、53  N
o、17  (1988)  1654−1656に述
べられているようにMgOを初めとした酸化物単結晶基
板が用いられていた。
[Prior art] When applying oxide superconducting materials, which are currently a hot topic, to thin film devices, it is difficult to epitaxially grow superconducting materials because a high critical current density is required and it is necessary to suppress potential barriers such as grain boundaries. It can be said to be essential. For epitaxial growth, it is necessary to match the lattices of the substrate and superconducting material, and generally PHYSICA
L REVIEW B VOL, 38 No.
1 (1988) 765-767, APPLIED
FHYSIC8LETTER3VOL, 53N
O, 17 (1988) 1654-1656, oxide single crystal substrates including MgO were used.

また最近ではシリコンウェハーやガラヒソウェハー上に
格子定数の近いCaF2膜等バッファー層を形成した後
その上に酸化物超伝導薄膜を形成する方法が検討されて
いる。
Recently, a method has been studied in which a buffer layer such as a CaF2 film having a similar lattice constant is formed on a silicon wafer or a Garahiso wafer, and then an oxide superconducting thin film is formed thereon.

[発明が解決しようとする課題] しかしながら単結晶基板を用いる場合は大口径化が出来
ないため半導体の様に効率の良い生産が出来ない、素子
の形状が限定される、製造コスト(特に基板の値段)が
高い等の問題を有していた。
[Problems to be solved by the invention] However, when using a single crystal substrate, it is not possible to increase the diameter, so efficient production is not possible as with semiconductors, the shape of the element is limited, and the manufacturing cost (especially of the substrate) There were problems such as high price.

また大口径化の可能な単結晶シリコンウェハー(ちなみ
に約20cmφまでに得られる)やガリヒソウエハーを
用いバッファー層CaF2膜を形成する方法は直接ウェ
ハー上に酸化物超伝導薄膜を付ける場合より顕著に良い
超伝導特性を示すがまだ単結晶基板を用いた特性までに
は至っていない。
Furthermore, the method of forming a buffer layer CaF2 film using a single-crystal silicon wafer (which can be obtained up to about 20 cm in diameter) or a Garihiso wafer, which can have a large diameter, has a significantly better superconductivity than the method of directly depositing an oxide superconducting thin film on the wafer. Although it exhibits conductive properties, it has not yet reached the level of properties that can be achieved using a single crystal substrate.

その原因はCaF2と超伝導物質元素との濡れ性が悪い
ため膜成長過程で適切な位置に元素が固着されないため
と考えられる。
The reason for this is thought to be that the wettability between CaF2 and the superconducting material elements is poor, so that the elements are not fixed at appropriate positions during the film growth process.

本発明はこの様な問題を解決するものであり、その目的
とするところは大口径化、高臨界電流密度化、粒界の障
壁の抑制を可能にし用途の限定が無く量産性に優れた超
伝導薄膜を低コストで得んとするものである。
The present invention is intended to solve these problems, and its purpose is to create an ultra-high-performance fabric that enables large diameters, high critical current densities, and suppression of grain boundary barriers, and has no limitations on applications and is excellent in mass production. The purpose is to obtain a conductive thin film at low cost.

[課題を解決するための手段] 上記の問題を解決するため本発明の超伝導薄膜の製造方
法はフッ化物上への超伝導薄膜の形成に於てフッ化物表
面をプラズマ雰囲気中に晒し活性化した後超伝導薄膜を
形成する事を特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the method for producing a superconducting thin film of the present invention involves exposing and activating the fluoride surface in a plasma atmosphere when forming a superconducting thin film on a fluoride. After that, a superconducting thin film is formed.

[実施例] 以下実施例に従い本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to Examples.

先ず最初に単結晶シリコンウェハー基板上にCaF2膜
を反応蒸着法により400〜500nm形成する。
First, a CaF2 film with a thickness of 400 to 500 nm is formed on a single crystal silicon wafer substrate by a reactive vapor deposition method.

成膜条件は蒸発源にCa金属を用い基板温度480°C
1初期真空度2*1O−6Torr、  成膜速度17
〜20 n m / m i nである。膜へのフッ素
の供給はプラズマ化したC F aガスを成膜中に基板
部に照射して行う。尚成膜後必要に応じてCaF2膜の
結晶性を良くし且安定化させるためアニール処理を行う
The film formation conditions were: Ca metal was used as the evaporation source, and the substrate temperature was 480°C.
1 Initial vacuum degree 2*1O-6Torr, film formation rate 17
~20 nm/min. Fluorine is supplied to the film by irradiating the substrate with CFa gas turned into plasma during film formation. After film formation, an annealing treatment is performed as necessary to improve and stabilize the crystallinity of the CaF2 film.

次にMBE (分子線エピタキシ)装置に前記CaF2
を形成した基板をセットし真空引きしだ後CaF2膜表
面にチャンバー外でマイクロ波によりプラズマ化したア
ルゴンや酸素等を基板近傍に導入照射しCaF2膜表面
を活性化する。照射時間は20〜120秒である。適正
照射時間は使用ガスにより異なり長すぎると表面を荒す
ため注意が必要である。次にその活性表面上にB i2
s r2Calcu20δ系超伝導膜を150nm形成
した。成膜条件は蒸発源にBi、Sr、Ca、Cuの金
属を用い(蒸発はKnudsenセルにより行なった)
、真空度3〜6*1O−5Torr、基板温度6800
C2成膜速度20〜35nm/minであり、酸素の供
給はマイクロ波で活性化した酸素プラズマを成膜中に照
射して行う。
Next, the CaF2
After setting the substrate on which has been formed and evacuation, the surface of the CaF2 film is activated by introducing and irradiating the surface of the CaF2 film with argon, oxygen, etc., which have been turned into plasma by microwaves outside the chamber, near the substrate. The irradiation time is 20 to 120 seconds. The appropriate irradiation time varies depending on the gas used, and care must be taken as too long will roughen the surface. Then on the active surface B i2
A s r2Calcu20δ superconducting film was formed to a thickness of 150 nm. The film formation conditions were as follows: Bi, Sr, Ca, and Cu metals were used as evaporation sources (evaporation was performed using a Knudsen cell).
, vacuum degree 3-6*1O-5Torr, substrate temperature 6800
The C2 film formation rate is 20 to 35 nm/min, and oxygen is supplied by irradiating oxygen plasma activated by microwaves during film formation.

次に膜形成前のプラズマ照射の有無による結晶性の差を
RHEED、X線回折、電子顕微鏡等により調べた。結
果はプラズマ照射後の膜の方が良いエピタキシャル成長
を示していた。
Next, the difference in crystallinity due to the presence or absence of plasma irradiation before film formation was investigated using RHEED, X-ray diffraction, electron microscopy, etc. The results showed that the film after plasma irradiation showed better epitaxial growth.

次にこの酸化物超伝導薄膜の臨界温度と臨界電流密度を
4端子法により測定した。測定温度は60K、測定雰囲
気はへリニウムガス中である。尚冷却にはダイキン工業
製極低温冷凍機UV204SRを使用した。
Next, the critical temperature and critical current density of this oxide superconducting thin film were measured using a four-probe method. The measurement temperature was 60K, and the measurement atmosphere was helinium gas. For cooling, a cryogenic refrigerator UV204SR manufactured by Daikin Industries was used.

結果を第1表に比較例と共に示した。比較例は成膜前に
プラズマに晒してない場合、単結晶基板(MgO)を用
いた場合、シリコンウェハー上に直接酸化物超伝導膜を
形成した場合である。
The results are shown in Table 1 together with comparative examples. Comparative examples include cases in which no plasma exposure was performed before film formation, cases in which a single crystal substrate (MgO) was used, and cases in which an oxide superconducting film was directly formed on a silicon wafer.

表より判るように本発明より成る超伝導薄膜は臨界電流
密度の顕著な向上が見られMgO単結晶基板を用いた時
と同等かそれ以上となっている。
As can be seen from the table, the superconducting thin film of the present invention shows a remarkable improvement in critical current density, which is equal to or higher than that using an MgO single crystal substrate.

MgO単結晶基板を用いたものより臨界電流密度が高い
のはCaF2の格子定数はMgOの格子定数より超伝導
物質の格子定数に近くもともとマツチングは良いためで
ある。
The reason why the critical current density is higher than that using an MgO single crystal substrate is because the lattice constant of CaF2 is closer to the lattice constant of the superconducting material than that of MgO, and the matching is originally better.

第1表 つまりエピタキシャル成長を阻害していたCaF2と蒸
着物質との濡れ性を改善したことにより下地にCaF2
を用いた起転導膜本来の特性を引出したと言える。
Table 1 In other words, by improving the wettability between CaF2 and the deposited material, which inhibited epitaxial growth, CaF2 was added to the base layer.
It can be said that the original characteristics of the rolling conductive film using this method have been brought out.

尚本実施例ではマイクロ波によりプラズマ化しているが
RFによりプラズマ化してもよく、チャンバー外でプラ
ズマ化しその後内部に導入し照射しているがチャンバー
内でプラズマ化しても良い更に実施例は酸化物超伝導材
料で説明しているがこれは酸化物超伝導材料は異方性が
強く最も本発明が本領を発揮する材料のためであり従来
の合金系、3元化合物系超伝導材料を用いても結晶性は
改善できるため何等差し支えない。
In this example, plasma is generated using microwaves, but plasma may also be generated using RF.Although plasma is generated outside the chamber and then introduced into the chamber for irradiation, plasma may be generated within the chamber. This is explained in terms of superconducting materials, but this is because oxide superconducting materials have strong anisotropy and are the materials in which the present invention is most effective. However, since the crystallinity can be improved, there is no problem.

第2表 第2表は単結晶基板1枚の値段を示したものである。単
結晶シリコンウェハー基板はMgO単結晶基板の約2倍
と大口径であるにも関わらず値段は約1/20となって
いる。この様に単結晶シリコンウェハー基板を用いるこ
とが可能となると大口径化だけでなく大幅な低コスト化
が可能となる。
Table 2 Table 2 shows the price of one single crystal substrate. Although the single crystal silicon wafer substrate has a large diameter, about twice that of the MgO single crystal substrate, the price is about 1/20th that of the MgO single crystal substrate. If it becomes possible to use a single-crystal silicon wafer substrate in this way, it becomes possible not only to increase the diameter but also to significantly reduce costs.

[発明の効果] 以上述べたように本発明によればCaF2の持つ本来の
超伝導物質とのマツチング性を引き出せ良いエピタキシ
ャル成長膜が得られる。そのため高臨界電流密度化、粒
界の障壁の抑制を可能にし超伝導デバイス等に適した超
伝導膜となる。シリコンウェハーやガリヒソウエハーを
基板に用いることも出来るため形状の制限が少なくなる
、■産性が良くなる、基板の値段が格段に安く低コスト
化が可能等の効果も生まれる。
[Effects of the Invention] As described above, according to the present invention, an epitaxially grown film can be obtained that can bring out the inherent matching property of CaF2 with a superconducting substance. Therefore, it becomes possible to increase the critical current density and suppress the barrier of grain boundaries, making it a superconducting film suitable for superconducting devices and the like. Since silicon wafers or wafers can be used as substrates, there are fewer restrictions on the shape, ⑤ productivity is improved, and the price of the substrate is much lower, making it possible to reduce costs.

尚本発明により得られた酸化物超伝導薄膜はそのままで
用いたり微細加工、保護膜形成、他物質の積層等を施し
た後5QUID、ジョセフソン素子、超伝導トランジス
タ、電磁波センサー 磁気センサー 素子配線、電流制
御素子、磁束量子メモリ、光スイツチ素子、磁気シール
ド、アンテナ等に応用することが出来る。
The oxide superconducting thin film obtained according to the present invention may be used as it is, or after being subjected to microfabrication, formation of a protective film, lamination of other materials, etc., to 5QUID, Josephson device, superconducting transistor, electromagnetic wave sensor, magnetic sensor, element wiring, It can be applied to current control elements, magnetic flux quantum memories, optical switch elements, magnetic shields, antennas, etc.

以上 出願人 セイコーエプソン株式会社 代理人弁理士 鈴木喜三部 他1名that's all Applicant: Seiko Epson Corporation Representative Patent Attorney Kizobe Suzuki and 1 other person

Claims (1)

【特許請求の範囲】[Claims] フッ化物上への超伝導薄膜の形成に於てフッ化物表面を
プラズマ雰囲気中に晒し活性化した後超伝導薄膜を形成
する事を特徴とする超伝導薄膜の製造方法。
A method for producing a superconducting thin film, which comprises forming a superconducting thin film on a fluoride after activating the surface of the fluoride by exposing it to a plasma atmosphere.
JP1088980A 1989-04-07 1989-04-07 Production of superconducting thin film Pending JPH02267103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1088980A JPH02267103A (en) 1989-04-07 1989-04-07 Production of superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1088980A JPH02267103A (en) 1989-04-07 1989-04-07 Production of superconducting thin film

Publications (1)

Publication Number Publication Date
JPH02267103A true JPH02267103A (en) 1990-10-31

Family

ID=13957948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1088980A Pending JPH02267103A (en) 1989-04-07 1989-04-07 Production of superconducting thin film

Country Status (1)

Country Link
JP (1) JPH02267103A (en)

Similar Documents

Publication Publication Date Title
US4912087A (en) Rapid thermal annealing of superconducting oxide precursor films on Si and SiO2 substrates
JPH03150218A (en) Production of superconductive thin film
CN112831768B (en) Preparation method and application of hafnium nitride film with high crystallization quality
CA1322514C (en) Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same
Moriwaki et al. Epitaxial HgBa2Ca2Cu3O y films on SrTiO3 substrates prepared by spray pyrolysis technique
JPH01161881A (en) Josephson element and its manufacture
JPH02267103A (en) Production of superconducting thin film
US5362711A (en) Method for producing single crystal superconducting LnA2 Cu3 O7-x films
JPH02267102A (en) Production of superconducting thin film
JP2639544B2 (en) Single crystal thin film of LaA Lower 2 Cu 3 Lower O 7 Lower 3 x with three-layer perovskite structure and LaA Lower 2 Cu Lower 3 O Lower 7 Lower 7 x thin film manufacturing method
JP2561303B2 (en) Method for producing single crystal oxide superconducting thin film
JP2704625B2 (en) Method for producing LnA lower 2 Cu lower 3 O-low 7-x single crystal thin film and LnA lower 2 Cu lower 3 O lower 7-x thin film having three-layer perovskite structure
KR970009739B1 (en) Method of manufacture for superconductor thin film
Choi et al. Dependence of superconductivity on the crystallinity of Nb films on Si wafers
US3988178A (en) Method for preparing superconductors
JPH03275504A (en) Oxide superconductor thin film and its production
JPH02212303A (en) Oxide superconducting thin film
JPH02212304A (en) Oxide superconducting thin film
JPH02267104A (en) Oxide superconducting thin film
JP3230329B2 (en) Method for cleaning surface of substrate for superconducting device
JPH02267121A (en) Superconducting thin film of oxide
JPH01112614A (en) Manufacture of super conductive film
JPH02267119A (en) Superconducting thin film of oxide
JPH02239194A (en) Thin oxide superconducting film
JPH02212307A (en) Oxide superconducting thin film