JPH02266333A - Waveguide type optical switch - Google Patents

Waveguide type optical switch

Info

Publication number
JPH02266333A
JPH02266333A JP8899389A JP8899389A JPH02266333A JP H02266333 A JPH02266333 A JP H02266333A JP 8899389 A JP8899389 A JP 8899389A JP 8899389 A JP8899389 A JP 8899389A JP H02266333 A JPH02266333 A JP H02266333A
Authority
JP
Japan
Prior art keywords
axis
waveguide
waveguides
substrate
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8899389A
Other languages
Japanese (ja)
Inventor
Hideaki Okayama
秀彰 岡山
Kiyoshi Nagai
長井 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP8899389A priority Critical patent/JPH02266333A/en
Publication of JPH02266333A publication Critical patent/JPH02266333A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate polarization dependency and to decrease the arrangement number of control electrodes by providing 1st and 2nd waveguides almost along the Z axis of the crystal axis of a substrate and using the control electrodes as electrodes which produce electric fields in the 1st and 2nd waveguides almost along the X axis of the crystal axis of the substrate. CONSTITUTION:The 1st and 2nd waveguides 26 and 28 are provided extending almost along the Z axis of the crystal axis of the substrate 24 and the control electrodes 30 product the electric fields in the 1st and 2nd waveguides 26 and 28 almost along the X axis of the crystal axis of the substrate 24. Axes of polarization of polarized light I and II are different in direction from each other, but the both slant almost at 45 deg. from the X axis of the substrate crystal axis, so the refractive indexes of the 1st waveguide 26 and 2nd waveguide 28 to the polarized light I and II are controlled electrically to control the phase difference between the polarized light I and II or perform switching control so that the polarization dependency is eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は偏光依存性をなくすようにした光スィッチに
関し、例えば分岐干渉器型或は方向性結合器型の光スィ
ッチに適用して好適である。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an optical switch that eliminates polarization dependence, and is suitable for application to, for example, a branching interferometer type or directional coupler type optical switch. be.

(従来の技術) 従来より偏光依存性をなくすようにした導波型光スイッ
チの研究及び開発が進められており、この種の光スィッ
チとして例えば文献1 ’5princ+erSeri
es in Electronics and Pho
tonics 26Guided−Wave 0pto
electronics  (ガイデイラド−ウェーブ
 オプトエレクトロニクス)  1988年1月 p1
98〜199Jに説明されているものがある。
(Prior Art) Research and development of waveguide type optical switches that eliminate polarization dependence have been progressing for some time.
es in Electronics and Pho
tonics 26Guided-Wave 0pto
electronics (Guideirado-Wave Optoelectronics) January 1988 p1
98-199J.

以下、第5図%9照しこの文献工に示されている従来の
光スィッチにつき簡単に説明する。
The conventional optical switch shown in this document will be briefly explained below with reference to FIG.

第5図は従来の光スィッチの構成を概略的に示す図であ
る。同図において10は基板、12及び14は導波路、
ざらに16及び18はY分岐を示す。
FIG. 5 is a diagram schematically showing the configuration of a conventional optical switch. In the figure, 10 is a substrate, 12 and 14 are waveguides,
Roughly 16 and 18 indicate Y branches.

同図に示す光スィッチにおいては、導波路12.14及
びY分岐16.18をTi拡散によって基板10に形成
し、Y分岐16の一方及び他方の分岐をそれぞれ導波路
12の一方の端部及び導波路14の一方の端部と結合し
、同様にY分岐18の一方及び他方の分岐をそれぞれ導
波路12の他方の端部及び導波路14の他方の端部と結
合する。基板10としてはZカットL iNb○3基板
を用い、導波路12及び14%i板10の結晶軸のX軸
にほぼ沿う方向に設ける。
In the optical switch shown in the figure, a waveguide 12.14 and a Y branch 16.18 are formed on the substrate 10 by Ti diffusion, and one end of the Y branch 16 and the other branch are connected to one end of the waveguide 12 and the other branch of the Y branch 16, respectively. It is coupled to one end of the waveguide 14, and similarly, one and the other branch of the Y branch 18 are coupled to the other end of the waveguide 12 and the other end of the waveguide 14, respectively. A Z-cut LiNb○3 substrate is used as the substrate 10, and the waveguide 12 and the 14% i plate 10 are provided in a direction substantially along the X axis of the crystal axis.

また20.22は光の伝搬経路を制御するための制御電
極を示す、制御電極20は基板10の結晶軸のY軸にほ
ぼ沿う方向の電界を導波路10J2中に形成できるよう
に設けた電極部材20a、20b、20cから成り、制
御電極22は基板10の結晶軸のY軸にほぼ沿う方向の
電界を導波路12.14中に形成できるように設けた電
極部材22a、22b、22c、22dから成る。
Reference numeral 20.22 indicates a control electrode for controlling the propagation path of light, and the control electrode 20 is an electrode provided to form an electric field in the waveguide 10J2 in a direction substantially along the Y axis of the crystal axis of the substrate 10. The control electrode 22 is composed of electrode members 22a, 22b, 22c, and 22d, which are provided so as to form an electric field in the waveguide 12.14 in a direction substantially along the Y-axis of the crystal axis of the substrate 10. Consists of.

このような構成の従来スイッチでは、導波路12J4を
伝搬する一方の偏光(TE波)の伝搬経路を制御電極2
0によって、及び他方の偏光(TM波)の伝搬経路を制
御電極22によって制御できる。
In the conventional switch having such a configuration, the propagation path of one polarized light (TE wave) propagating through the waveguide 12J4 is connected to the control electrode 2.
0 and the propagation path of the other polarized light (TM wave) can be controlled by the control electrode 22.

(発明が解決しようとする課題) しかしながら上述した従来スイッチでは、二組の制御電
極を設け、導波路中を伝搬するTE波の伝搬経路を一方
の組の制御電極で及びTM波の伝搬経路を他方の組の制
御電極で制御する。
(Problems to be Solved by the Invention) However, in the conventional switch described above, two sets of control electrodes are provided, and one set of control electrodes controls the propagation path of the TE wave propagating in the waveguide, and the propagation path of the TM wave propagates in the waveguide. Control is performed by the other set of control electrodes.

従ってそれぞれの組の制御電極(こ対して駆動回路を設
けねばならず、これがため駆動回路の規模が大きくなる
という問題点があった。
Therefore, a drive circuit must be provided for each set of control electrodes, which poses a problem in that the scale of the drive circuit becomes large.

この発明の目的は上述した従来の問題点を解決するため
、偏光依存性をなくすようにした光スィッチであって制
御電極の配設個数を従来より低減できる光スィッチを提
供することにある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, it is an object of the present invention to provide an optical switch that eliminates polarization dependence and can reduce the number of control electrodes provided compared to the conventional optical switch.

(課題を解決するための手段) この目的の達成を図るため、この発明の導波型光スイッ
チは、 L I X T a +−x N b 03基板に並置
した第一及び第二導波路と、屈折率を制御するための制
御電極とを備えて成る導波型光スイッチにおいて、第一
及び第二導波路を、基板の結晶軸のY軸にほぼ沿う方向
に延在させで設け、 制御電極を、基板の結晶軸のX軸にほぼ沿う方向の電界
を第一及び第二導波路中に形成する電極としたことを特
徴とする。
(Means for Solving the Problems) In order to achieve this object, the waveguide type optical switch of the present invention includes first and second waveguides juxtaposed on a LIXTA+-xNb03 substrate. , and a control electrode for controlling the refractive index, the first and second waveguides are provided to extend in a direction substantially along the Y axis of the crystal axis of the substrate, and the control electrode is provided to control the refractive index. The present invention is characterized in that the electrode is used to form an electric field in the first and second waveguides in a direction substantially along the X-axis of the crystal axis of the substrate.

この発明の実施に当っては、制御電極を基板の結晶軸の
2軸にほぼ沿う方向に離間配画した複数個の電極部材か
ら構成するのが好適である。
In carrying out the present invention, it is preferable that the control electrode be composed of a plurality of electrode members spaced apart in directions substantially along two crystal axes of the substrate.

(作用) このような構成の導波型光スイッチによれば、第一及び
第二導波路を基板の結晶軸の2軸にほぼ沿う方向に延在
させて設け、制御電極によって、基板の結晶軸のX軸に
ほぼ治う方向の電界を第及び第二導波路中に形成する。
(Function) According to the waveguide optical switch having such a configuration, the first and second waveguides are provided to extend in directions substantially along two crystal axes of the substrate, and the control electrode is used to control the crystallization of the substrate. An electric field is formed in the second and second waveguides in a direction substantially aligned with the X axis.

従って、第一及び第二導波路中にX軸にほぼ沿う方向の
電界を形成するとき、X軸から時計方向にほぼ45° 
(+45°)傾いた偏光軸を何する一方の偏光工と、X
軸から反時計方向にほぼ45° (−45°)傾いた偏
光軸を有する他方の偏光■とを、第一及び第二導波路に
おいて励起させることができる。
Therefore, when forming an electric field in the direction approximately along the X-axis in the first and second waveguides, approximately 45° clockwise from the X-axis.
(+45°) What to do with the tilted polarization axis and one polarizer and
The other polarized light (1), which has a polarization axis tilted approximately 45 degrees (-45 degrees) counterclockwise from the axis, can be excited in the first and second waveguides.

偏光I及びHの偏光軸は互いに方向は異なるが、双方共
に基板結晶軸のX軸からほぼ45°傾いているので、こ
れら偏光I及びHに対する第−導波路及び第二導波路の
屈折率をそれぞれ電気的に制御して、偏光依存性をなく
すように、偏光I及びHの位相差制御を行なったり或は
スイッチング制御を行なったりすることができる。
Although the polarization axes of the polarized lights I and H are different from each other, they are both tilted approximately 45 degrees from the X axis of the substrate crystal axis, so the refractive index of the first waveguide and the second waveguide for these polarized lights I and H is Each can be electrically controlled to control the phase difference between the polarized lights I and H, or to perform switching control so as to eliminate polarization dependence.

(実施例) 以下、図面を参照しこの発明の実施例につき説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

尚、図面はこの発明が理解できる程度に概略的に示され
ているにすぎず、従って各構成成分の形状、寸法及び配
設値1を図示例に限定するものではない。
Note that the drawings are merely shown schematically to the extent that the present invention can be understood, and therefore the shapes, dimensions, and arrangement values 1 of each component are not limited to the illustrated examples.

策f刊 第1図はこの発明の実施例の第一実施例の構成を概略的
に示す斜視図である。
FIG. 1 is a perspective view schematically showing the structure of a first embodiment of the present invention.

第一実施例の光スィッチは、LiNt)03基板24に
設けた第一導波路26及び第二導波路28と、屈折率を
制御するための制御電極30とを備える。そして導波路
26.28を、基板結晶軸のY軸にほぼ沿う方向に延在
させて設け、制御電極30を、基板結晶軸のX軸にほぼ
沿う方向の電界を導波路26.2日中に形成する電極と
した構成を有する。
The optical switch of the first embodiment includes a first waveguide 26 and a second waveguide 28 provided on a LiNt)03 substrate 24, and a control electrode 30 for controlling the refractive index. The waveguides 26.28 are provided extending in a direction substantially along the Y axis of the substrate crystal axis, and the control electrode 30 applies an electric field in a direction substantially along the X axis of the substrate crystal axis to the waveguide 26.2. It has a configuration in which the electrodes are formed in the same manner.

以下、図面を参照しこの実施例につきより詳細に説明す
る。
This embodiment will be described in more detail below with reference to the drawings.

第一実施例の光スィッチは、分岐干渉器を用いて1人力
1出力の光スィッチを構成した例である。
The optical switch of the first embodiment is an example in which a one-manpower one-output optical switch is constructed using a branching interferometer.

この実施例では、L i N b O3基板24!&X
板とし、この基板24に導波路26.28と、これら導
波路26.28の一方の端部に結合するY分岐32及び
他方の端部(こ結合するY分岐34とを設ける。これら
導波路26.28及びY分岐32.34とが分岐干渉器
を構成する。Y分岐32の2つの分岐のうち一方の分岐
を導波路26の一方の端部と結合し及び他方の分岐を導
波路28の一方の端部と結合し、同様にY分岐34の一
方及び他方の分岐を導波路26の他方の端部及び導波路
28の他方の端部と結合する。Y分岐32.34の一方
の分岐と導波路26とが分岐干渉器の一方のアーム(A
rm)Atを、及びY分岐32.34の他方の分岐と導
波路28とが分岐干渉器の他方のアームA2を構成する
In this example, the L i N b O3 substrate 24! &X
The substrate 24 is provided with waveguides 26.28, a Y branch 32 coupled to one end of these waveguides 26.28, and a Y branch 34 coupled to the other end. 26.28 and the Y branch 32.34 constitute a branching interferometer.One branch of the two branches of the Y branch 32 is coupled to one end of the waveguide 26, and the other branch is coupled to the waveguide 28. Similarly, one and the other branch of Y-branch 34 are coupled to the other end of waveguide 26 and the other end of waveguide 28. One end of Y-branch 32. The branch and the waveguide 26 form one arm (A
rm) At and the other branch of the Y branch 32, 34 and the waveguide 28 constitute the other arm A2 of the branch interferometer.

そしてY分岐32.34を対称7分岐とし、これら分岐
32.34の合流部分(図中ハツチングを付して示す)
を基板結晶軸の2軸にほぼ沿う方向に延在させて設ける
。ざらにY分岐32の合流部分の端部に入力ボート36
を及びY分岐34の合流部分の端部に出力ボート38を
設ける6例えば基板24にTi7&拡散することによっ
て、導波路26.28及びY分岐32.34を形成する
The Y branch 32.34 is made into 7 symmetrical branches, and the confluence of these branches 32.34 (shown with hatching in the figure)
are provided so as to extend in directions substantially along two axes of the substrate crystal axes. The input boat 36 is located at the end of the confluence of the Y-branch 32.
An output boat 38 is provided at the end of the confluence of the Y-branch 34 and the waveguide 26.28 and the Y-branch 32.34 are formed, for example, by diffusing Ti7 onto the substrate 24.

さらにこの実施例では、制御電極30を、第一導波路2
6上に設けた電極部材30aと第二導波路28上に設け
た電極部材30bとから構成する。電極部材30aに正
(又は負)及び電極部材30bに貢(又は正)の電圧を
印加することによって、基板結晶軸のX軸にほぼ沿う方
向の電場を導波路26.28中に形成できる。
Furthermore, in this embodiment, the control electrode 30 is connected to the first waveguide 2.
6 and an electrode member 30b provided on the second waveguide 28. By applying a positive (or negative) voltage to the electrode member 30a and a positive (or positive) voltage to the electrode member 30b, an electric field in a direction substantially along the X-axis of the substrate crystal axis can be created in the waveguide 26.28.

次にこの実施例の動作につき説明する。Next, the operation of this embodiment will be explained.

入力ボート28から入力した光はY分岐32の分岐点P
で分岐する0分岐した光はそれぞれ導波路26.28を
伝搬したのちY分岐34に入力し、Y分岐34の分岐点
Qで合流する。
The light input from the input boat 28 enters the branch point P of the Y branch 32.
After propagating through the waveguides 26 and 28, the zero-branched lights enter the Y branch 34 and merge at the branch point Q of the Y branch 34.

分岐点Qで合流する光の位相差が、2nπであれば合流
した光は出力ボート3日から出力しくON状態)及び(
2n+1)ttであれば合流した光は互いに弱めあって
出力ボート38から出力しないC0FF状態)、但し、
n=o、1.2、・−・−である。
If the phase difference of the lights that merge at the branching point Q is 2nπ, the merged lights will be output from the output boat on the 3rd day and will be in the ON state) and (
2n+1)tt, the combined lights weaken each other and are not output from the output boat 38 (C0FF state), however,
n=o, 1.2, . . .

導波路26.28の屈折率を制御電極30を介して電気
的に変化させると、合流する光の位相差も変化し、従っ
て導波路26.28の屈折率制御によって合流する光の
位相差制御lを行なえる。
When the refractive index of the waveguides 26, 28 is electrically changed via the control electrode 30, the phase difference of the merging lights also changes, and therefore, the phase difference of the merging lights can be controlled by controlling the refractive index of the waveguides 26, 28. I can do l.

第2図は制御電極に電圧を印加したときの第一及び第二
導波路の屈折率楕円体の一例を示す図であり、第1図に
おける■−■線に沿って取った断面図である。
Figure 2 is a diagram showing an example of the index ellipsoids of the first and second waveguides when a voltage is applied to the control electrode, and is a cross-sectional view taken along the line ■-■ in Figure 1. .

電極部材30a、 30bに電圧を印加しない状態では
、導波路26.28の屈折率は変化せず従って第一導波
路26の光に対する屈折率楕円体40及び第二導波路2
8の光に対する屈折率楕円体42は、図示せずも、円形
状を有し等方的となる。このとき導波路26.28に光
を入力するとTE波及びTM波が導波路26.28にお
いて励起する。
When no voltage is applied to the electrode members 30a, 30b, the refractive index of the waveguides 26, 28 does not change, and therefore the refractive index ellipsoid 40 and the second waveguide 2 for the light of the first waveguide 26 do not change.
Although not shown, the refractive index ellipsoid 42 for light No. 8 has a circular shape and is isotropic. At this time, when light is input to the waveguides 26.28, TE waves and TM waves are excited in the waveguides 26.28.

電圧を印加しない状態では、光は分岐点Pで等位相で分
岐し分岐点Qで等位相で合流し、従ってON状態となる
When no voltage is applied, the light branches at the branch point P in equal phase and merges at the branch point Q in the same phase, thus turning on.

一方、制御電極30の電極部材30a、 30bに上述
のように電圧を印加し導波路26.28中に基板結晶軸
のX軸にほぼ沿う方向の電場を形成すると、電気光学効
果によって導波路26.28の屈折率が変化し、その結
果、屈折率楕円体40.42に異方性を生じる。この屈
折率の変化量は電気光学係数γ6.及び電場の強さに応
じた変化量となる。
On the other hand, when a voltage is applied to the electrode members 30a and 30b of the control electrode 30 as described above to form an electric field in the direction substantially along the X-axis of the substrate crystal axis in the waveguide 26, 28, the electro-optic effect causes the waveguide 26. The refractive index of .28 changes, resulting in anisotropy in the index ellipsoid 40.42. The amount of change in this refractive index is the electro-optic coefficient γ6. and the amount of change depending on the strength of the electric field.

電極部材30a、30bの印加電圧の大きざを任意好適
に設定することによって、屈折率楕円体401v長軸4
0a及び短軸40bがX軸からほぼ45°傾いた楕円に
変化古せ、同様に屈折率楕円体42を長軸42a及び短
軸42bがX軸からほぼ45°傾いた楕円に変化させる
ことができる。長軸40a、 42bはX軸からは(K
 + 45°又は−45°傾き、短軸40b、42b 
1(tX軸からほぼ一45°又は+45゛傾く、第2図
に一例として、長軸40aiX軸からほぼ+45°傾は
及び長軸42aをほぼ−45°傾けて示した。
By arbitrarily setting the magnitude of the voltage applied to the electrode members 30a and 30b, the long axis 4 of the refractive index ellipsoid 401v
It is possible to change the refractive index ellipsoid 42 into an ellipse with the major axis 42a and minor axis 42b tilted approximately 45 degrees from the X axis. can. The long axes 40a and 42b are (K
+45° or -45° tilt, short axis 40b, 42b
In FIG. 2, as an example, the major axis 40ai is shown tilted approximately +45 degrees from the X axis, and the major axis 42a is tilted approximately -45 degrees from the X axis.

屈折率楕円体40が上述のような楕円のとき導波路26
に光を入力すると、長軸40aを偏光軸とする偏光及び
短軸40b 8偏光軸とする偏光とが励起し従ってX軸
からほぼ+45゛傾いた偏光軸を有する偏光I211と
X軸から一45゛傾いた偏光軸を有する偏光112Bと
が導波路26において励起する。同様に、屈折率楕円体
42が上述のような楕円のとき導波路28に光を入力す
ると偏光I2aと偏光11zaとが導波路28において
励起する。
When the refractive index ellipsoid 40 is an ellipse as described above, the waveguide 26
When light is input to , the polarized light with the long axis 40a as the polarization axis and the polarized light with the short axis 40b as the polarization axis are excited, so that the polarized light I211 has the polarization axis tilted approximately +45 degrees from the X axis and the polarized light I211 has the polarization axis tilted approximately +45 degrees from the X axis. Polarized light 112B having a tilted polarization axis is excited in the waveguide 26. Similarly, when the refractive index ellipsoid 42 is an ellipse as described above, when light is input to the waveguide 28, polarized light I2a and polarized light 11za are excited in the waveguide 28.

導波路26の偏光I211に対する屈折率と導波路28
の偏光1zaに対する屈折率との屈折率差、及び、導波
路26の偏光112JIに対する屈折率と導波路28の
偏光112Bに対する屈折率との屈折率差は次式(1)
の△nで表せる。
Refractive index of waveguide 26 for polarized light I211 and waveguide 28
The refractive index difference between the refractive index of the waveguide 26 for the polarized light 1za and the refractive index of the waveguide 26 for the polarized light 112JI and the refractive index of the waveguide 28 for the polarized light 112B is expressed by the following equation (1).
It can be expressed as △n.

△n = 2−2”・7g、’r’Ex  −−−−−
−(1)但し、noは常光に対する導波路2δ、28の
屈折率、「は補正係数及びExは導波路26.28にお
けるX軸に沿う方向の電界強度である。
△n = 2-2"・7g,'r'Ex ------
-(1) However, no is the refractive index of the waveguide 2δ, 28 with respect to ordinary light, `` is the correction coefficient, and Ex is the electric field intensity in the direction along the X axis in the waveguide 26.28.

ここで基板結晶軸のY軸方向における電極部材30a、
 30bの始端位′IIS及び終端位冨TのM面距離を
Lとする。Y分岐32は対称分岐であるので、分岐した
光の始端位Itsにおける位相は等位相となる。従って
終端値1[Tにおける偏光I211及びI2aの位相差
、及び、偏光Hze及びl12aの位相差はる)。
Here, the electrode member 30a in the Y-axis direction of the substrate crystal axis,
Let L be the M plane distance between the starting point 'IIS and the ending point T of 30b. Since the Y branch 32 is a symmetrical branch, the phases of the branched lights at the starting point Its are equal in phase. Therefore, the terminal value is 1 [the phase difference between the polarizations I211 and I2a at T, and the phase difference between the polarizations Hze and I12a].

Y分岐34は対称分岐であるので、分岐した光は終端値
MTにおける位相差のまま分岐点Qに達し合流する。
Since the Y branch 34 is a symmetrical branch, the branched lights reach the branch point Q and merge while maintaining the phase difference at the terminal value MT.

電界強度Exを設定すれば光出力のON状態、に電界強
度Exを設定すれば光出力のOFF状態が得られる。
If the electric field strength Ex is set, the light output is turned ON, and if the electric field strength Ex is set, the light output is turned OFF.

次に結合方程式を用いてこの実施例の光スィッチを解析
する。この実施例の光スィッチの結合方程式として次式
(2)が得られる。
Next, the optical switch of this example will be analyzed using the coupling equation. The following equation (2) is obtained as a coupling equation of the optical switch of this embodiment.

但し、εi  (1=1.2)はX軸に沿う方向の偏光
(TM波)の始端位MSでの振幅及びε1°はY軸に沿
う方向の偏光(TE波)の始端位MSでの振幅であり、
ε五、ε童゛はi=1であれば導波路26で励起する偏
光の振幅を表し及びi=2であれば導波路28で励起す
る偏光の振幅を表す、ざらにγは電気光学効果の非対角
成分によるTM:TEモート変換項、また6はTM波に
対する導波路26.28の等価屈折率とTE波に対する
導波路26.28の等価屈折率の差fこよる位相項であ
る。このTE波及びTM波の等価屈折率差は、導波路2
6.28のX軸方向における光学的構造とY軸方向にお
ける光学的構造とに差があるために生じるものである。
However, εi (1=1.2) is the amplitude at the starting point MS of polarized light (TM wave) in the direction along the X axis, and ε1° is the amplitude at the starting point MS of polarized light (TE wave) in the direction along the Y axis. is the amplitude,
ε5 and εD represent the amplitude of polarized light excited in the waveguide 26 if i=1, and the amplitude of polarized light excited in the waveguide 28 if i=2.Roughly speaking, γ is the electro-optic effect. TM:TE moat conversion term due to the off-diagonal component of . The equivalent refractive index difference between this TE wave and TM wave is
This occurs because there is a difference between the optical structure in the X-axis direction and the optical structure in the Y-axis direction of 6.28.

2は基板結晶軸のY軸方向の距離及びjは虚数を表す。2 represents the distance in the Y-axis direction of the substrate crystal axis, and j represents an imaginary number.

結合方程式(2)の解は、次頁の式(3)となる、但し
、i=1.2及びB=γ2+62 ε1゜はTM波の終
端値i1Tでの振幅、ε10’はTE波の終端値MTの
振幅である。また(3)式においてi=1のとき復号は
−及びi=2のとき復号は十となる。
The solution to coupling equation (2) is equation (3) on the next page, where i = 1.2 and B = γ2 + 62 ε1° is the amplitude at the terminal value i1T of the TM wave, and ε10' is the terminal end of the TE wave. is the amplitude of the value MT. Further, in equation (3), when i=1, the decoding is -, and when i=2, the decoding is 10.

入力ボート36から入力した光はY分岐32において等
パワーで分岐し及びY分岐34において等パワーで合流
するので、出力パワーは次頁の式(4)で表せる。但し
、ε(=ε1+ε2)及びε°(=ε、°ε1°十ε2
分岐点Qでの光の振幅、またε。(=ε、。+ε20)
及びε。′にε1o°十ε2゜°)は分岐点Pでの光の
振幅である。
Since the light input from the input boat 36 is split at the Y branch 32 with equal power and merged at the Y branch 34 with equal power, the output power can be expressed by equation (4) on the next page. However, ε(=ε1+ε2) and ε°(=ε, °ε1°10ε2
The amplitude of the light at the bifurcation point Q, also ε. (=ε, .+ε20)
and ε. ', ε1o°1ε2°) is the amplitude of the light at the branch point P.

FF状態を得ることができることがわかる。It can be seen that the FF state can be obtained.

導波路26.28の光軸方向12軸方向がらずらすのよ
うに導波路26.28の光軸方向をずらすことによって
、制御電極30に電圧を印加しないとき導波路のTM波
に対する等価屈折率と導波路のTE波に対する等価屈折
率との差が小さくなり、その結この実施例では、基板2
4としてX板を用いたので、次に述べるような利点1)
〜3)を得ることができる。
By shifting the optical axes of the waveguides 26, 28 in the same manner as in the case where the optical axes of the waveguides 26, 28 are shifted in the 12-axis direction, the equivalent refractive index of the waveguides for TM waves when no voltage is applied to the control electrode 30 can be changed. The difference between the equivalent refractive index of the waveguide for the TE wave becomes smaller, and as a result, in this embodiment, the substrate 2
Since the X plate was used as 4, it has the following advantages 1)
~3) can be obtained.

1)光の伝搬路を構成する導波路26.28やY分岐3
2.34の形成のためにTi拡散を行なった場合、導波
路幅方向におけるTiの拡散幅が設計条件よりも広くな
るのをY板やZ板の場合に比較して少なくでき、従って
光の伝搬路の曲り部分での曲り0スを低減できる。
1) Waveguides 26, 28 and Y branch 3 that constitute the optical propagation path
When Ti is diffused to form 2.34, the diffusion width of Ti in the waveguide width direction becomes wider than the design conditions compared to the case of Y plate or Z plate, and therefore the light It is possible to reduce the number of bends at curved portions of the propagation path.

2)光スィッチの光損Iiヲ低減できる。2) Optical loss Ii of the optical switch can be reduced.

3)焦電効果による光スィッチの光出力特性の劣化を低
減できる。
3) Deterioration of the optical output characteristics of the optical switch due to the pyroelectric effect can be reduced.

上述した実施例では、光出力のON及びOFF状態を形
成できる特定の条件で導波路26.28、制御電極30
及びY分岐32.34そのほかの構成成分を作成した例
につき説明したが、ON及びOFF状態を形成できる範
囲で各構成成分の作成条件を任意好適に変更してよい。
In the embodiment described above, the waveguides 26 and 28 and the control electrode 30 are operated under specific conditions that allow ON and OFF states of optical output to be formed.
, Y-branch 32, 34, and other constituent components have been described, however, the production conditions for each constituent component may be arbitrarily and suitably changed as long as ON and OFF states can be formed.

またこの実施例では、導波路26.28の光軸方向うず
らしたが、光出力のON及び0FFilJ御を行なえる
のであれば導波路26.28の光軸方向を基板結晶軸の
2軸方向と一致させてもよい、また制御電極によって導
波路26.28中に形成する電場の方向を基板結晶軸の
X軸方向に一致させるのが好ましいが、分岐した光の位
相差を制御できるのであれば電場の方向をX軸方向に厳
密に一致させなくともよく電場の方向がX軸方向からず
れていてもよい。
In this embodiment, the optical axis directions of the waveguides 26 and 28 are shifted, but if the optical output can be controlled to ON and 0FFilJ, the optical axis directions of the waveguides 26 and 28 can be changed to the biaxial directions of the substrate crystal axes. It is also preferable to match the direction of the electric field formed in the waveguides 26 and 28 by the control electrode with the X-axis direction of the substrate crystal axis, but if the phase difference of the branched light can be controlled. The direction of the electric field does not have to be exactly aligned with the X-axis direction, and the direction of the electric field may be shifted from the X-axis direction.

第U倒 第3図はこの発明の第二実施例の構成を概略的に示す斜
視図である。尚、上述した実施例において説明した構成
成分と対応する構成成分については同一の符号を付しで
説明し、その詳細な説明を省略する。
FIG. 3 is a perspective view schematically showing the structure of a second embodiment of the present invention. Note that constituent components corresponding to those explained in the above-mentioned embodiments will be described with the same reference numerals, and detailed explanation thereof will be omitted.

第二実施例の光スィッチは、L i N b 03基板
24に設けた第一導波路40及び第二導波路42と、屈
折率を制御するための制御電極44とを備える。そして
導波路40.42を、基板結晶軸のZ軸にほぼ沿う方向
に延在させて設け、制御電極44を、基板結晶軸のX軸
にほぼ;8う方向の電界を導波路40.42中に形成す
る電極とした構成を有する。
The optical switch of the second embodiment includes a first waveguide 40 and a second waveguide 42 provided on a L i N b 03 substrate 24, and a control electrode 44 for controlling the refractive index. A waveguide 40.42 is provided extending in a direction substantially along the Z axis of the substrate crystal axis, and a control electrode 44 applies an electric field in a direction substantially parallel to the X axis of the substrate crystal axis to the waveguide 40.42. It has a configuration with electrodes formed inside.

以下、図面lFr参照しこの実施例につきより詳細に説
明する。
This embodiment will be explained in more detail below with reference to the drawing IFr.

第二実施例の光スィッチは、方向性結合器型の光スィッ
チにこの発明を適用した例である。この実施例では、導
波路40.42の一部を光の相互作用そ生じるように近
接させて配置する。第3図中、この導波路40の近接部
分を符号aを付して示し及び導波路42の近接部分を符
号bv付して示した。少なくとも近接部分a及びbを、
基板結晶軸の2軸にほぼ沿う方向に延在させて設ける。
The optical switch of the second embodiment is an example in which the present invention is applied to a directional coupler type optical switch. In this embodiment, portions of the waveguides 40, 42 are placed in close proximity to allow optical interaction. In FIG. 3, a portion adjacent to the waveguide 40 is designated by the symbol a, and a portion adjacent to the waveguide 42 is designated by the symbol bv. At least the adjacent parts a and b,
It is provided so as to extend in a direction substantially along two axes of the substrate crystal axes.

導波路40及び42の一方の端部に入力ボート46及び
48を、導波路40及び42の他方の端部に出力ボート
50及び52を設ける。
Input boats 46 and 48 are provided at one end of waveguides 40 and 42, and output boats 50 and 52 are provided at the other end of waveguides 40 and 42.

そしてこの実施例では、制御電極44を、近接部分a上
に設けた電極部材44aと近接部分す上に設けた電極部
材44bとから構成し、従ってこの実施例では近接部分
a及びb中に基板結晶軸のX軸にほぼ治う方向の電場を
制御電極44によって形成することができる。
In this embodiment, the control electrode 44 is composed of an electrode member 44a provided on the adjacent portion a and an electrode member 44b provided on the adjacent portion. An electric field can be generated by the control electrode 44 in a direction substantially aligned with the X axis of the crystal axis.

この実施例では、結合方程式における位相項6を消去す
るため、近接部分a及びbの光軸方向を、近接部分a、
bにおいてTE波及びTM波の分散が実質的になくなる
ように、Z軸方向からずらして一致させないようにする
のが好ましい0部分a、bの光軸方向v!2軸方向から
例えば2°程度ずらせばよい。
In this embodiment, in order to eliminate the phase term 6 in the coupling equation, the optical axis directions of adjacent parts a and b are changed to
The optical axis direction v of the 0 portions a and b is preferably shifted from the Z-axis direction so that they do not coincide so that the dispersion of the TE wave and the TM wave is substantially eliminated in b! For example, it may be shifted by about 2 degrees from the two axial directions.

位相項6を無視した場合のこの実施例の結合方程式は次
式(5)となる。
The coupling equation of this embodiment when the phase term 6 is ignored is the following equation (5).

但し、ei  (i=1.2)はTM波の振幅及びe1
゛はTE波の振幅であり、これらel、el’はi=1
であれば近接部分aT:vJ起した偏光の振幅を表し及
びi=2であれば近接部分すで励起した偏光の振幅を表
す、またkは結合係数、(e+士e、′)及び(e2±
e2゛)はZ軸方向における電極部材44a、44bの
終端位置での光の振幅及び(e+±eIす。及び(e2
±82’)oはZ軸方向における電極部材44a、44
bの始端位置での光の振幅を表す。
However, ei (i=1.2) is the amplitude of the TM wave and e1
゛ is the amplitude of the TE wave, and these el and el' are i=1
If i = 2, it represents the amplitude of the polarized light excited by the adjacent part aT:vJ, and k is the coupling coefficient, (e + e,') and (e2 ±
e2゛) is the amplitude of light at the terminal position of the electrode members 44a, 44b in the Z-axis direction and (e+±eI.
±82')o is the electrode member 44a, 44 in the Z-axis direction
It represents the amplitude of light at the starting position of b.

結合方程式(5)から次頁の式(6)(復号同順)が得
られる。
From the coupling equation (5), equation (6) on the next page (decoded in the same order) is obtained.

式(6)から明らかなように(e+±e、°)と(e2
±e2°)とは完全に独立し、従って近接部分a及びb
で励起した偏光工と偏光■とを独立に制御でき、従って
偏光依存性のないスイッチング制御を行なえる。
As is clear from equation (6), (e+±e, °) and (e2
±e2°) and therefore adjacent parts a and b
The polarizer excited by the polarizer and the polarizer (1) can be controlled independently, so switching control without polarization dependence can be performed.

結合方程式(5)の解は次頁の式(7)(復号同IIN
)となる。
The solution to the coupling equation (5) is the equation (7) on the next page (decoding same IIN
).

第二実施例でも、基板24をX板とするので第一実施例
と同様、上述の1)〜3)の効果を得ることができる。
In the second embodiment as well, since the substrate 24 is an X-plate, the effects 1) to 3) described above can be obtained as in the first embodiment.

(変形例) 第4図は第二実施例の変形例の構成を概略的に示す斜視
図である。
(Modification) FIG. 4 is a perspective view schematically showing the configuration of a modification of the second embodiment.

この変形例では、制御電極44を基板結晶軸の2軸にほ
ぼ沿う方向に11間配置した複数個の電極部+l+1 材から構成している他は、上述の第二実施例と同様の構
成を有する。
This modification has the same structure as the second embodiment described above, except that the control electrode 44 is composed of a plurality of electrode parts +l+1 materials arranged at 11 intervals in a direction substantially along two axes of the substrate crystal axes. have

この変形例では、制御電極44を反転ΔB電極型の電極
とし、電極部材44a lt例えば2個の電極部材44
a1及び44a2に分割し、及び電極部材44bを例え
ば2個の電極部材44b1及び44b2に分割する。
In this modification, the control electrode 44 is an inverted ΔB electrode type electrode, and the electrode members 44a and lt, for example, two electrode members 44
a1 and 44a2, and the electrode member 44b is divided into, for example, two electrode members 44b1 and 44b2.

制御電極44を反転ΔB電極型の電極とすることによっ
て光スイ・シチの作成が容易になるという利点がある0
反転へ〇電極型の制御電極44によって近接部分a、b
中に、電界方向がほぼ+X軸方向となる電界及びほぼ−
X軸方向となる電界とを形成すると、+X軸方向の電界
を形成した近接部分a、bと−X軸方向の電界を形成し
た近接部分a、bとにおいでTM:TEモード変換項γ
の符号が逆符号となる。
By making the control electrode 44 an inverted ΔB electrode type electrode, there is an advantage that it is easy to create a light switch.
To inversion 〇 Electrode-type control electrode 44 closes adjacent parts a and b
Inside, there is an electric field whose electric field direction is approximately +X-axis direction, and an electric field whose direction is approximately -
When an electric field is formed in the X-axis direction, the TM:TE mode conversion term γ is generated between the adjacent parts a and b that form the electric field in the +X-axis direction and the adjacent parts a and b that form the electric field in the -X-axis direction.
has the opposite sign.

このようにTM:TEモード変換項γの符号が逆符号と
なり、しかも解(7)が得られることから制御電極44
を反転Δβ電極型の電極とした場合でも偏光依存性のな
いスイッチング制御を行なえる。
In this way, the sign of the TM:TE mode conversion term γ becomes the opposite sign, and since solution (7) is obtained, the control electrode 44
Even when the electrode is an inverted Δβ electrode type, switching control without polarization dependence can be performed.

この発明は上述した実施例にのみ限定されるものではな
く、従って各構成成分の寸法、形状、配設位置、形成材
料及びそのほかの条件を任意好適に変更できる。
The present invention is not limited to the embodiments described above, and therefore, the dimensions, shapes, locations, forming materials, and other conditions of each component can be changed as desired.

例えば基板材料としでLiNbO2のほが、L IX 
Ta+−x NbO3(但しO≦X≦1)を用いて良い
、また第一及び第二導波路を基板結晶軸の2軸にほぼ沿
う方向に延在させて形成でき、かつこれら第一及び第二
導波路中に基板結晶軸のX軸にほぼ沿う方向に電場を形
成できるのであれば、基板のカット方向及び電極の配設
位MIFr上述した実施例のみに限定せず任意好適に変
更しでよい。
For example, if LiNbO2 is used as a substrate material, LIX
Ta+-x NbO3 (however, O≦X≦1) may be used, and the first and second waveguides can be formed by extending in a direction substantially along two axes of the substrate crystal axes, and the first and second waveguides may be As long as an electric field can be formed in the two waveguides in a direction substantially along the X-axis of the substrate crystal axis, the cutting direction of the substrate and the arrangement position of the electrode MIFr are not limited to the above-mentioned embodiments, but can be changed as desired. good.

るようにするのが好ましく、上述したいずれの実施例で
も第一及び第二導波路の光軸を基板結晶軸うにしたが、
このほか従来公知の任意好適な技術1としなくともよい
It is preferable that the optical axes of the first and second waveguides be aligned with the substrate crystal axis in each of the embodiments described above.
In addition, it is not necessary to use any conventionally known suitable technique 1.

またこの発明の寅施に当っては、制御電極を電気光学効
果の非対角成分を生じるような電極とするのが好ましい
Further, in carrying out the present invention, it is preferable that the control electrode is an electrode that produces a non-diagonal component of the electro-optic effect.

(発明の効果) 上述した説明からも明らかなように、この発明の導波型
光スイッチによれば、基板結晶軸のX軸から時計方向に
ほぼ45° (+45°)傾いた偏光軸を有する一方の
偏光工と、X軸から反時計方向にほぼ45’  (−4
5’)傾いた偏光軸を有する他方の偏光■とを、第一及
び第二導波路において励起させることができる。
(Effects of the Invention) As is clear from the above description, the waveguide optical switch of the present invention has a polarization axis tilted approximately 45° (+45°) clockwise from the X axis of the substrate crystal axis. With one polarizer, approximately 45' (-4
5') The other polarized light (2) having a tilted polarization axis can be excited in the first and second waveguides.

偏光工及びHの偏光軸は互いに方向は異なるが、双方共
に基板結晶軸のX軸からほぼ45°傾いているので、偏
光依存性をなくすことができると共に、これら偏光I及
びH(こ対する第−導波路及び第二導波路の屈折率をそ
れぞれ電気的に制御して偏光I及びHの位相差制御を行
なったり或はスイッチング制御を行なったりすることが
できる。しかも偏光I及びHの位相差制御やスイッチン
グ制御のための制御電極の配設個数を従来よりも、低減
できる。これがため、偏光依存性をなくし、しかも制御
電極の駆動回路の規模を縮小できる光スイ・ンチを提供
できる。
Although the polarization axes of the polarizer and H are different from each other, since they are both tilted approximately 45 degrees from the - It is possible to electrically control the refractive index of the waveguide and the second waveguide, respectively, to control the phase difference between the polarized lights I and H, or to perform switching control.Moreover, the phase difference between the polarized lights I and H can be controlled. The number of control electrodes for control and switching control can be reduced compared to the conventional method.Therefore, it is possible to provide an optical switch that eliminates polarization dependence and can reduce the scale of the drive circuit for the control electrodes.

またこの発明の導波型光スイッチによれば、第一及び第
二導波路中で励起した偏光に対するこれら導波路の屈折
率を基板結晶軸のX軸方向及びY軸方向においで実質的
にほぼ同じとすることができるので(異方性を少なくで
きるので)、作成が容易である。
Further, according to the waveguide type optical switch of the present invention, the refractive index of the first and second waveguides for polarized light excited in these waveguides is substantially approximately the same in the X-axis direction and the Y-axis direction of the substrate crystal axis. Since they can be made the same (because the anisotropy can be reduced), it is easy to create.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第一実施例の構成を概略的lこ示す
斜視図、 第2I21は制御電極に電圧を印加したときの第一及び
第二導波路の屈折率楕円体の一例を示す図、 第3図はこの発明の第二実施例の構成IFrW1略的に
示す斜視図、 第4図はこの発明の第二実施例の変形例の構成8概略的
に示す斜視図、 第5図は従来の光スィッチの構成を概略的に示す平面図
である。 24・・・基板、     26.40・・・第一導波
路28.42・・・第二導波路、30.44−・・制御
電極。 特許出願人   沖電気工業株式会社 40.42:屈折率楕円体 40a、 42a長軸 40b、42b:短軸 制御電極に電圧を印加したときの屈折率楕円体第2図 24:LiNbO2 26:第一導波路 28・第二導波路 30:制御電極 30a、30b:電極部材 32.34:Y分岐 36:入力ボート 38:出力ポート 基板 第−案施例の斜視図 第1図 40、第一導波路 42:第二導波路 44:制御電極 44a、44b:電極部材 46.48:入力ボート 50.52:出力ポート 第二実施例の斜視図 第3図
FIG. 1 is a perspective view schematically showing the configuration of the first embodiment of the present invention, and FIG. 2I21 shows an example of the index ellipsoid of the first and second waveguides when voltage is applied to the control electrode. 3 is a perspective view schematically showing a configuration IFrW1 of a second embodiment of the present invention, FIG. 4 is a perspective view schematically showing a configuration 8 of a modification of the second embodiment of the present invention, and FIG. 1 is a plan view schematically showing the configuration of a conventional optical switch. 24... Substrate, 26.40... First waveguide 28.42... Second waveguide, 30.44-... Control electrode. Patent applicant: Oki Electric Industry Co., Ltd. 40. 42: Refractive index ellipsoid 40a, 42a Long axis 40b, 42b: Short axis Refractive index ellipsoid when voltage is applied to the control electrode Figure 2 24: LiNbO2 26: First Waveguide 28/Second waveguide 30: Control electrodes 30a, 30b: Electrode members 32, 34: Y branch 36: Input boat 38: Output port board Perspective view of the first embodiment FIG. 1 40, First waveguide 42: Second waveguide 44: Control electrodes 44a, 44b: Electrode members 46. 48: Input boat 50. 52: Output port Perspective view of the second embodiment FIG.

Claims (2)

【特許請求の範囲】[Claims] (1)Li_xTa_1_−_xNbO_3基板に並置
した第一及び第二導波路と、屈折率を制御するための制
御電極とを備えて成る導波型光スイッチにおいて、 前記第一及び第二導波路を、前記基板の結晶軸のZ軸に
ほぼ沿う方向に延在させて設け、 前記制御電極を、前記基板の結晶軸のX軸にほぼ沿う方
向の電界を前記第一及び第二導波路中に形成する電極と
したことを特徴とする導波型光スイッチ。
(1) A waveguide optical switch comprising first and second waveguides juxtaposed on a Li_xTa_1_-_xNbO_3 substrate and a control electrode for controlling the refractive index, wherein the first and second waveguides are The control electrode is provided to extend in a direction substantially along the Z axis of the crystal axis of the substrate, and the control electrode forms an electric field in the first and second waveguides in a direction substantially along the X axis of the crystal axis of the substrate. A waveguide type optical switch characterized by having electrodes that
(2)前記制御電極を前記Z軸にほぼ沿う方向に離間配
置した複数個の電極部材から構成することを特徴とする
請求項1に記載の導波型光スイッチ。
(2) The waveguide optical switch according to claim 1, wherein the control electrode is constituted by a plurality of electrode members spaced apart in a direction substantially along the Z-axis.
JP8899389A 1989-04-07 1989-04-07 Waveguide type optical switch Pending JPH02266333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8899389A JPH02266333A (en) 1989-04-07 1989-04-07 Waveguide type optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8899389A JPH02266333A (en) 1989-04-07 1989-04-07 Waveguide type optical switch

Publications (1)

Publication Number Publication Date
JPH02266333A true JPH02266333A (en) 1990-10-31

Family

ID=13958337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8899389A Pending JPH02266333A (en) 1989-04-07 1989-04-07 Waveguide type optical switch

Country Status (1)

Country Link
JP (1) JPH02266333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2695216A1 (en) * 1992-09-01 1994-03-04 Ericsson Telefon Ab L M Optical switch having a propagation direction close to the Z axis of the electro-optical material.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2695216A1 (en) * 1992-09-01 1994-03-04 Ericsson Telefon Ab L M Optical switch having a propagation direction close to the Z axis of the electro-optical material.

Similar Documents

Publication Publication Date Title
US4070094A (en) Optical waveguide interferometer modulator-switch
Alferness Electrooptic guided-wave device for general polarization transformations
CA2052923C (en) Polarization-independent optical switches/modulators
US4262993A (en) Electrooptically balanced alternating Δβ switch
WO1987006356A1 (en) Optical power splitter and polarization splitter
US4763974A (en) Δβ-Phase reversal coupled waveguide interferometer
JPH04264531A (en) Polarized beam splitter for guided light
US5202941A (en) Four section optical coupler
US8606054B2 (en) Electrically driven optical frequency shifter using coupled waveguides
JPS63244004A (en) Waveguide type grating element
EP0105693B1 (en) Bipolar voltage controlled optical switch using intersecting waveguide
JP3250712B2 (en) Polarization independent light control element
JPH02266333A (en) Waveguide type optical switch
KR100204026B1 (en) Optical signal switching element
JP2006243327A (en) Optical waveguide and optical switch using the same
JPH02262127A (en) Waveguide type optical switch
JP3236426B2 (en) Optical coupler
JPH02210416A (en) Mode optical separator
JPH04311918A (en) Light wave guide passage device
JPS6236608A (en) Waveguide typemode splitter
JPH02135426A (en) Optical matrix switch
JPH02189526A (en) Optical switch
JPH05196903A (en) Branched interference type optical modulator of polarization independent type
JPS60195528A (en) Waveguide type optical switch
JPH0254930B2 (en)