JPH02266272A - Measurement of faulty point on aerial transmission line - Google Patents

Measurement of faulty point on aerial transmission line

Info

Publication number
JPH02266272A
JPH02266272A JP1086725A JP8672589A JPH02266272A JP H02266272 A JPH02266272 A JP H02266272A JP 1086725 A JP1086725 A JP 1086725A JP 8672589 A JP8672589 A JP 8672589A JP H02266272 A JPH02266272 A JP H02266272A
Authority
JP
Japan
Prior art keywords
optical fiber
temperature distribution
overhead ground
distribution
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1086725A
Other languages
Japanese (ja)
Other versions
JPH0758310B2 (en
Inventor
Satoshi Kitamura
敏 北村
Yasuo Ozawa
保夫 小沢
Teruaki Tsutsui
筒井 輝明
Satoru Yamamoto
哲 山本
Hiroshi Kawakami
川神 裕志
Koichi Sugiyama
耕一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP8672589A priority Critical patent/JPH0758310B2/en
Publication of JPH02266272A publication Critical patent/JPH02266272A/en
Publication of JPH0758310B2 publication Critical patent/JPH0758310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Locating Faults (AREA)
  • Electric Cable Installation (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To detect an accident occurred in any point throughout the overall length of an aerial transmission line by measuring a temperature distribution in the lengthwise direction of an overhead ground line from a backward scattered beam distribution of an optical fiber on the conjugated overhead ground line of optical fiber. CONSTITUTION:A measuring device 15 for temperature distribution is connected to one end of the conjugated overhead ground line 3 of optical fiber through the optical fiber 8, and a Raman scattering beam pulse generated in the optical fiber of the overhead ground line 3 by a laser pulse beam which is entered from the device 15 is detected by a time division. Since this pulse size depends on the temperature, the temperature distribution corresponding to a current distribution throughout the overall length of overhead ground line 3 can be obtained in the device 15. Temperature distribution signals measured in the device 15 are accumulated in a signal processing device 17. When a trip signal corresponding to the fault is generated, the value of the difference between the temperature distribution signal measured one time before the time receiving a trigger signal which is generated in a trigger signal generator 16 and the temperature distribution signal at the time immediately after receiving the trigger signal is calculated by the device 17 to obtain a distribution of the temperature rise values, thereby a point showing highest temperature rise is decided as the faulty point.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は架空送電線の故障点検知方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting a fault point in an overhead power transmission line.

[従来の技術] 従来、光ファイバ複合架空地線を使用して架空送電線の
故障点を検知する方法としては、第3図に示すように、
鉄塔ごとに検出器1と各鉄塔特有の波長をもった事故情
報信号の発光源2を設置し、その光信号を光ファイバ架
空地線3に設けた光合分波器4により、他の鉄塔からの
光信号と金波し、これを中央識別装置へ伝送する方式が
知られている。
[Prior Art] Conventionally, as shown in Fig. 3, a method for detecting a fault point in an overhead power transmission line using an optical fiber composite overhead ground wire is as follows.
A detector 1 and a light source 2 for accident information signals with a wavelength unique to each tower are installed in each tower, and the optical signal is transmitted from other towers by an optical multiplexer/demultiplexer 4 installed in an optical fiber overhead ground wire 3. A method is known in which the optical signal is sent to a central identification device using a gold wave.

しかしながら、光ファイバ複合架空地線に収納し得る光
フィイバの心線数には制限がある一方、情報を収集すべ
き鉄塔が多いことや、光分波器による損失が大きいこと
等の理由から、これを改善することが試みられ、第4図
及び第5図に示すような検知方法が考えられている(特
開昭60−141121号公報)。
However, there is a limit to the number of optical fibers that can be housed in an optical fiber composite overhead ground wire, and there are many towers from which information must be collected, and losses due to optical demultiplexers are large. Attempts have been made to improve this problem, and a detection method as shown in FIGS. 4 and 5 has been considered (Japanese Patent Application Laid-open No. 141121/1983).

即ち、第4図の如く鉄塔5ごとに設ける判別袋7!1.
6を、第5図の如く、光ファイバ架空地線3から引き出
した光ファイバ8を棒9の周りに緩く巻いた巻曲げ部1
0と、事故電流検出部13と、そして上記巻曲げ部10
にアーム11を介して連結されその巻き曲げ度合いを変
化する方向に力を与える駆動部7とを有する構成とする
。そして、この駆動部7を上記事故電流検出部13の出
力により駆動させて光ファイバ8に曲げを加え、光伝送
損失を変化させる。0TDR(Optical Tin
eDonain Reflectonetry)12か
ら光を送り、光伝送損失の生じている場所(第6図のA
点)を事故点として検出するものである。
That is, as shown in FIG. 4, a discrimination bag 7!1 is provided for each steel tower 5.
6, as shown in FIG.
0, the fault current detection section 13, and the winding and bending section 10.
The drive unit 7 is connected to the drive unit 7 via an arm 11 and applies a force in a direction to change the degree of winding and bending. The drive unit 7 is driven by the output of the fault current detection unit 13 to bend the optical fiber 8 and change the optical transmission loss. 0TDR (Optical Tin
eDonaine Reflectonetry) 12, and transmit light from the location where optical transmission loss occurs (A in Figure 6).
points) are detected as accident points.

[発明が解決しようとする課題] しかし、先の従来技術では以下の問題点が存在する。[Problem to be solved by the invention] However, the prior art described above has the following problems.

(1)鉄塔ごとに事故を判別するため、鉄塔間の架空送
電線で起った事故点の位置を検出できない。
(1) Because accidents are determined for each tower, it is not possible to detect the location of the accident point on the overhead power transmission line between the towers.

(2)鉄塔ごとに検出器を取り付ける必要があることか
ら、長’IBMになるほど高価なものとなる。
(2) Since it is necessary to install a detector on each tower, the longer the IBM, the more expensive it becomes.

(3)光ファイバに曲げを加える等の損失変化によって
事故点検知を行う場合、光ファイバの繰り返・し曲げに
より、光ファイバ強度が劣化しくtli線に至る危険性
を含む。
(3) When detecting a fault point based on loss changes such as bending an optical fiber, there is a risk that repeated bending of the optical fiber may cause the strength of the optical fiber to deteriorate and lead to TLI lines.

本発明の目的は、前記した従来技術の欠点を解消し、架
空送電線全長に亘るいずれの点で生じた事故でも検出で
きる、安価で簡単な事故点検知方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide an inexpensive and simple fault point detection method that can detect faults occurring at any point along the entire length of an overhead power transmission line.

[課題を解決するための手段] 本発明の架空送電線の故障点検知方法は、光ファイバを
架空地線に内蔵させてなる光ファイバ複合架空地線にお
いて、光ファイバの後方散乱光分布から該架空地線の長
手方向温度分布を計測し、その温度分布の変化点から故
障点を検知するものである。
[Means for Solving the Problems] The method for detecting a fault point in an overhead power transmission line of the present invention is based on the backscattered light distribution of an optical fiber in an optical fiber composite overhead ground wire in which an optical fiber is built into the overhead ground wire. The temperature distribution in the longitudinal direction of the overhead ground wire is measured, and the point of failure is detected from the point of change in the temperature distribution.

好ましくは、架空送電線系統トリップ信号を受信後、こ
れをトリガ信号として直ちに上記光ファイバ長手方向の
温度分布を計測し、トリップ信号の受信前後での温度分
布の差分値を求め、この差分値の変化点から故障点を検
知する。
Preferably, after receiving an overhead transmission line system trip signal, the temperature distribution in the longitudinal direction of the optical fiber is immediately measured using this as a trigger signal, the difference value of the temperature distribution before and after receiving the trip signal is determined, and this difference value is calculated. Detect failure points from change points.

[作用] 温度上昇値の分布は、光ファイバ複合架空地線を流れる
故障電流の分布に略比例したものとなる。
[Operation] The distribution of temperature rise values is approximately proportional to the distribution of fault current flowing through the optical fiber composite overhead ground wire.

光ファイバ複合架空地線の連続した温度分布変化から事
故点が求められるなめ、鉄塔部、鉄塔間中央部を問わず
、任意の点で生ずる故障を全て検出できる。従って検出
確度が大幅に向上する。
Since the fault point is determined from continuous changes in temperature distribution of the optical fiber composite overhead ground wire, all faults that occur at any point can be detected, regardless of whether it is at the tower or in the center between the towers. Therefore, detection accuracy is greatly improved.

トリガ信号を受信してから温度分布の31測を開始する
形態では、故障が生じたことを検知してから故障点の標
定を行うことになり、測定確度が高いものとなる。
In the configuration in which 31 measurements of the temperature distribution are started after receiving a trigger signal, the failure point is located after detecting the occurrence of a failure, resulting in high measurement accuracy.

[実施例] 第1図は本発明の事故点検知方法の実施例を示す構成図
である。
[Embodiment] FIG. 1 is a block diagram showing an embodiment of the accident point detection method of the present invention.

図において、3は光ファイバ複合架空地線、8はこの光
ファイバ複合架空地線3から引き出された光ファイバ、
15はこの光ファイバによるラマン散乱光の分布波形か
ら温度分布を求める温度分布測定装置、14は光ファイ
バ複合架空地線に設けた3変流器、16はトリガ信号発
生器、17は信号処理装置である。
In the figure, 3 is an optical fiber composite overhead ground wire, 8 is an optical fiber drawn out from this optical fiber composite overhead ground wire 3,
15 is a temperature distribution measuring device for determining temperature distribution from the distribution waveform of Raman scattered light by this optical fiber, 14 is a three-current transformer installed in the optical fiber composite overhead ground wire, 16 is a trigger signal generator, and 17 is a signal processing device. It is.

送電線で地絡事故等の故障が起こると、光ファイバ複合
架空地線3に通常時より大きな電流が流れ、送電線長手
方向の電流分布に従い、光ファイバ複合架空地線3の温
度が上昇する。
When a failure such as a ground fault occurs in a power transmission line, a larger current than normal flows through the optical fiber composite overhead ground wire 3, and the temperature of the optical fiber composite overhead ground wire 3 rises according to the current distribution in the longitudinal direction of the power transmission line. .

従って、光ファイバ複合架空地線3の片端に光ファイバ
8を介して温度分布測定装置15を接続し、この温度分
布測定装置15から光ファイバ8を介してレーザパルス
光を入射し、光ファイバ複合架空地線3内の光ファイバ
中で生ずるラマン散乱光パルスを時分割で検出すること
によって、ラマン散乱光の長手方向分布が得られる。こ
のラマン散乱光パルスの大きさは温度に依存することか
ら、これを検出する温度分布測定装置15では、光ファ
イバ複合地線3全長に亘って電流分布と対応した温度分
布を求めることができる。
Therefore, a temperature distribution measuring device 15 is connected to one end of the optical fiber composite overhead ground wire 3 via an optical fiber 8, and a laser pulse beam is input from this temperature distribution measuring device 15 via the optical fiber 8, and the optical fiber composite By time-divisionally detecting the Raman scattered light pulses generated in the optical fiber in the overhead ground wire 3, the longitudinal distribution of the Raman scattered light can be obtained. Since the magnitude of this Raman scattered light pulse depends on the temperature, the temperature distribution measuring device 15 that detects it can determine the temperature distribution corresponding to the current distribution over the entire length of the optical fiber composite ground wire 3.

ここで、故障を判定する温度分布情報の測定は、光ファ
イバ複合架空地線3に取り付けた変流器14で検出した
電流値をトリガ信号発生器16に入力して監視し、故障
に対応する架空送電線のトリップ信号を受信した場合に
は、トリガ信号発生器16で温度分布測定装置15の計
測を開始させるトリガ信号に変換し、そのトリガ信号を
温度分布測定装置15に伝達することで行われる。
Here, the temperature distribution information for determining failure is measured by inputting the current value detected by the current transformer 14 attached to the optical fiber composite overhead ground wire 3 to the trigger signal generator 16 and monitoring it, and responding to the failure. When a trip signal from an overhead power transmission line is received, the trigger signal generator 16 converts it into a trigger signal that causes the temperature distribution measuring device 15 to start measurement, and transmits the trigger signal to the temperature distribution measuring device 15. be exposed.

温度分布測定装置15で測定された温度分布信号は、常
に信号処理装置17のメモリに蓄積されており、故障に
対応したトリップ信号が発生した場合には、信号処理装
置17は、トリガ信号発生器16に発生されるトリガ信
号受信時点より、1時刻前に測定された温度分布信号と
、トリガ信号受信直後の温度分布信号の差分値を演算し
、温度上昇値の分布を求め、最も温度上昇の大きな点を
故障点と判定する。
The temperature distribution signal measured by the temperature distribution measurement device 15 is always stored in the memory of the signal processing device 17, and when a trip signal corresponding to a failure occurs, the signal processing device 17 outputs a trigger signal generator. The difference value between the temperature distribution signal measured one time before the trigger signal generated on 16th and the temperature distribution signal immediately after the trigger signal is received is calculated, and the distribution of temperature rise values is calculated. A large point is determined to be a failure point.

従って、トリガ信号を受信し、故障が生じたことを検知
してから故障点の標定を行うことになり、測定確度は高
いものとなる。
Therefore, the fault point is located after receiving the trigger signal and detecting the occurrence of a fault, resulting in high measurement accuracy.

第2図に故障時の温度上昇値の分布測定例を示す。温度
上昇値の分布は、架空地線を流れる故障電流の分布に略
比例したものとなる。第2図では温度上昇値の高い距M
rの点が故障点として検出される。
Figure 2 shows an example of measuring the distribution of temperature rise values at the time of failure. The distribution of temperature rise values is approximately proportional to the distribution of fault current flowing through the overhead ground wire. In Figure 2, the distance M where the temperature rise value is high
Point r is detected as a failure point.

送電線の故障を検出しトリガ信号を発生させる方法は、
前記実施例では架空地線に取り付けた変流器によって故
障時の電流値をトリップ信号として検出する方法によっ
たが、その他、架空送電線本体の電圧、電流変動をPC
,CTで検出した値を用いる方法であってもよく、特に
制約を受けるものではない。
The method of detecting a fault in a power transmission line and generating a trigger signal is as follows:
In the above embodiment, the current value at the time of a fault is detected as a trip signal using a current transformer attached to the overhead ground wire.
, CT may be used, and there are no particular restrictions.

[発明の効果] 以上のように、本発明によれば、次のような優れた効果
が得られる。
[Effects of the Invention] As described above, according to the present invention, the following excellent effects can be obtained.

(1)送電線、鉄塔部分では、光ファイバ複合架空地線
以外のものを必要とせず経済性に優れている。
(1) The power transmission lines and towers do not require anything other than optical fiber composite overhead ground wires, making it highly economical.

(2)光ファイバ複合架空地線の連続した温度分布情報
から故障点を判定するため、鉄塔部、鉄塔間中央部を問
わず、任意の点で生ずる故障を全て検出できる。
(2) Since the failure point is determined from continuous temperature distribution information of the optical fiber composite overhead ground wire, all failures that occur at any point can be detected, regardless of whether it is in the tower or in the center between the towers.

(3)光ファイバ架空地線端末部に装置を置くだけで故
障点を標定できることから、新たな工事の必要がなく、
既存線路でも容易に適用することができる。
(3) Since the failure point can be located simply by placing a device at the end of the optical fiber overhead ground wire, there is no need for new construction.
It can be easily applied to existing railway lines.

(4)運転中の架空送電線を常時監視できる。(4) Overhead power transmission lines in operation can be constantly monitored.

(5)架空地線全長の温度分布から、故障点を判定する
なめ信頼性、精度が高い。
(5) High reliability and accuracy as fault points can be determined from the temperature distribution over the entire length of the overhead ground wire.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る故障点検知方法による装置のブロ
ック図、第2図はその実験結果のグラフ図、第3図、第
4図は従来の故障点検知方法を示す概略図、第5図は従
来の判別装置の構成図、第6図は従来の故障点検知方法
の実験結果のグラフ図である。 図中、3は光ファイバ複合架空地線、8は光ファイバ 
14は変流器、15は温度分布測定装置、16はトリガ
信号発生器、17は信号処理装置を示す。 第1図 74:支流春 特許出願人  東京電力株式会社 日立電線株式会社 代理人弁理士  絹 谷 信 雄 第2図
FIG. 1 is a block diagram of a device using the fault point detection method according to the present invention, FIG. 2 is a graph of the experimental results, FIGS. 3 and 4 are schematic diagrams showing the conventional fault point detection method, and FIG. The figure is a block diagram of a conventional discrimination device, and FIG. 6 is a graph diagram of experimental results of a conventional failure point detection method. In the figure, 3 is an optical fiber composite overhead ground wire, and 8 is an optical fiber
14 is a current transformer, 15 is a temperature distribution measuring device, 16 is a trigger signal generator, and 17 is a signal processing device. Figure 1 74: Tributary Spring Patent Applicant Tokyo Electric Power Co., Hitachi Cable Co., Ltd. Representative Patent Attorney Nobuo Kinutani Figure 2

Claims (1)

【特許請求の範囲】 1、光ファイバを架空地線に内蔵させてなる光ファイバ
複合架空地線において、光ファイバの後方散乱光分布か
ら該架空地線の長手方向温度分布を計測し、その温度分
布の変化点から故障点を検知することを特徴とする架空
送電線の故障点検知方法。 2、架空送電線系統のトリップ信号を受信後、これをト
リガ信号として直ちに上記光ファイバ長手方向の温度分
布を計測し、トリップ信号の受信前後での温度分布の差
分値を求め、この差分値の変化点から故障点を検知する
ことを特徴とする請求項1記載の架空送電線の故障点検
知方法。
[Claims] 1. In an optical fiber composite overhead ground wire in which an optical fiber is built into the overhead ground wire, the temperature distribution in the longitudinal direction of the overhead ground wire is measured from the backscattered light distribution of the optical fiber, and the temperature is determined. A method for detecting fault points in overhead power transmission lines, characterized by detecting fault points from distribution change points. 2. After receiving a trip signal from the overhead power transmission line system, use this as a trigger signal to immediately measure the temperature distribution in the longitudinal direction of the optical fiber, find the difference value of the temperature distribution before and after receiving the trip signal, and calculate this difference value. 2. The method for detecting a fault point in an overhead power transmission line according to claim 1, wherein the fault point is detected from a change point.
JP8672589A 1989-04-07 1989-04-07 Fault detection method for overhead power lines Expired - Lifetime JPH0758310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8672589A JPH0758310B2 (en) 1989-04-07 1989-04-07 Fault detection method for overhead power lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8672589A JPH0758310B2 (en) 1989-04-07 1989-04-07 Fault detection method for overhead power lines

Publications (2)

Publication Number Publication Date
JPH02266272A true JPH02266272A (en) 1990-10-31
JPH0758310B2 JPH0758310B2 (en) 1995-06-21

Family

ID=13894839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8672589A Expired - Lifetime JPH0758310B2 (en) 1989-04-07 1989-04-07 Fault detection method for overhead power lines

Country Status (1)

Country Link
JP (1) JPH0758310B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286873A (en) * 1991-03-14 1992-10-12 Ngk Insulators Ltd Detection of failed cell
CN109217917A (en) * 2017-06-30 2019-01-15 中兴通讯股份有限公司 The location determining method and device of failure optical fiber, storage medium, processor
CN115102089A (en) * 2022-06-24 2022-09-23 国网江苏省电力有限公司南京供电分公司 Method for calibrating aerial movement area of operating personnel without power outage

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3497989B2 (en) * 1998-04-16 2004-02-16 財団法人河川情報センター Wetness distribution measurement method
CN103837797B (en) * 2014-03-12 2016-04-20 国家电网公司 A kind of Optical Fiber composite overhead Ground Wire thunderbolt distinguishes and localization method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066139A (en) * 1983-09-21 1985-04-16 Fujikura Ltd Ground-fault detecting method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066139A (en) * 1983-09-21 1985-04-16 Fujikura Ltd Ground-fault detecting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286873A (en) * 1991-03-14 1992-10-12 Ngk Insulators Ltd Detection of failed cell
CN109217917A (en) * 2017-06-30 2019-01-15 中兴通讯股份有限公司 The location determining method and device of failure optical fiber, storage medium, processor
CN115102089A (en) * 2022-06-24 2022-09-23 国网江苏省电力有限公司南京供电分公司 Method for calibrating aerial movement area of operating personnel without power outage
CN115102089B (en) * 2022-06-24 2023-09-15 国网江苏省电力有限公司南京供电分公司 Method for calibrating air movement area of uninterrupted power worker

Also Published As

Publication number Publication date
JPH0758310B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
CN111024283B (en) Multi-parameter optical fiber sensing detection method and system for down-leading optical cable
EP4160165A1 (en) Abnormality detection program, abnormality detection device and abnormality detection method
JPH02266272A (en) Measurement of faulty point on aerial transmission line
JP2839809B2 (en) Optical fiber composite power cable
CN116495429A (en) All-fiber pull-cord switch and transmission equipment fault positioning and early warning system
JPH05126895A (en) Method for detecting fault point of overhead transmission line
CN100397034C (en) Monitor device for anchorage cable long term working state and its method
JP2771625B2 (en) Fault Detection Method for Optical Fiber Composite Overhead Ground Wire and Overhead Transmission Line
JP2642841B2 (en) Optical fiber composite power cable
KR101883359B1 (en) System for diagnosing deterioration of underground power cable
JP2514536B2 (en) Terrain displacement detection device
JP2989228B2 (en) Power cable abnormal point detector
JP3431762B2 (en) Fault location system
JP4303188B2 (en) Fiber optic cable flood detection system and method
CN205912058U (en) Optic fibre on -line monitoring system
JPH04236111A (en) Device for monitoring accretion of snow on aerial power line
JP3465733B2 (en) Optical pulse test method
JPH0340280B2 (en)
JP4553820B2 (en) Optical fiber transmission loss display apparatus and method
JPH03257381A (en) Method and equipment for location of fault of high-tension transmission line
JP2540918B2 (en) Insulation deterioration monitoring device for cable lines
CN117073825A (en) High-speed railway protection line monitoring system based on optical fiber comprehensive sensing technology
JPH0435798Y2 (en)
JPH04351973A (en) Detection method for failure point in underground electric wire
JPS5928851B2 (en) Optical fiber cable failure monitoring method