JPH02265241A - Method and apparatus for surface treatment - Google Patents

Method and apparatus for surface treatment

Info

Publication number
JPH02265241A
JPH02265241A JP8585089A JP8585089A JPH02265241A JP H02265241 A JPH02265241 A JP H02265241A JP 8585089 A JP8585089 A JP 8585089A JP 8585089 A JP8585089 A JP 8585089A JP H02265241 A JPH02265241 A JP H02265241A
Authority
JP
Japan
Prior art keywords
sample
gas
thin film
specimen
halogen element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8585089A
Other languages
Japanese (ja)
Inventor
Hirotake Nishino
弘剛 西野
Nobuo Hayasaka
伸夫 早坂
Haruo Okano
晴雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8585089A priority Critical patent/JPH02265241A/en
Publication of JPH02265241A publication Critical patent/JPH02265241A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To uniformly remove an oxide by a method wherein a counter member which has been installed so as to face a specimen is held at a temperature lower than that of the specimen, a thin film by a gas of a salt containing a halogen element is deposited, the specimen is then held at a temperature lower than that of the counter member, the thin film is sublimated and a thin film is deposited again on the surface of the specimen. CONSTITUTION:The following are provided: a vacuum container 11 which can be evacuated to produce a vacuum; a discharge tube 14 which is coupled to a microwave power supply 17 and which is for exciting a gas of a salt containing a halogen element from a gas introduction part 12a. In addition, a counter member 16 which faces a specimen stage 15 and the whole of a specimen 18 and whose area is larger than the area of the specimen 18 is installed. Before an oxide on the surface of the specimen 18 is etched, a temperature of the counter member 16 is held to be lower than the temperature of the specimen 18; the counter member 16 is exposed to the gas containing the halogen element; a thin film produced by the gas is deposited on the surface. After that, the temperature of the specimen 18 is held to be lower than that of the counter member 16; the thin film which has been deposited on the counter member 16 is deposited again on the whole surface of the specimen 18; after that, a heating operation is executed; the oxide of the specimen 18 is removed. Thereby, the oxide can be removed uniformly and efficiently.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、半導体の製造工程における表面処理装置及び
表面処理方法に係わり、特に半導体や金属表面の酸化物
をドライにエツチング除去する表面処理方法、及び表面
処理装置に係わる。
[Detailed Description of the Invention] [Purpose of the Invention (Industrial Field of Application) The present invention relates to a surface treatment apparatus and a surface treatment method in the manufacturing process of semiconductors, and in particular to dry etching of oxides on the surfaces of semiconductors and metals. It relates to a surface treatment method for removing and a surface treatment device.

(従来の技術) 半導体の製造工程において、微細な素子を形成する際に
は特定の材料を他の材料に対して選択的にエツチングす
る選択エツチングや、特定の材料表面上にのみ選択的に
薄膜を形成する選択堆積等の技術が重要である。そのよ
うな選択エツチング、選択堆積は、例えば半導体や金属
と、それらの酸化物の間で行われることが多い。選択堆
積の一例としては、WF6とンラン系のガスを用いて基
板温度を適度に保つことにより、W(タングステン)を
シリコン酸化膜上には堆積させず、シリコンやAJ2.
上にのみ堆積させることかできるというものがある。と
ころが通常、半導体や金属の表面には大気にさらされる
ことなどにより、容易に自然酸化膜が形成され、これを
除去しないと前記エツチングや堆積の選択性は実質的に
低下してしまう。自然酸化膜はこの他にもプロセス上の
問題として結晶成長、熱酸化により形成する結晶膜、酸
化膜の膜質を劣化させたり、不純物拡散を阻害したりす
る、あるいはゴミの発生源になったりするのでこのよう
な場合には除去するのが望しい。
(Prior art) In the semiconductor manufacturing process, when forming microscopic elements, selective etching is used to selectively etch a specific material relative to other materials, and selective etching is used to selectively etch a thin film only on the surface of a specific material. Techniques such as selective deposition are important to form . Such selective etching and selective deposition are often performed, for example, between semiconductors or metals and their oxides. As an example of selective deposition, W (tungsten) is not deposited on the silicon oxide film by keeping the substrate temperature at an appropriate level using WF6 and a nitrogen-based gas.
There are some that can be deposited only on top. However, natural oxide films are usually easily formed on the surfaces of semiconductors and metals due to exposure to the atmosphere, and unless this is removed, the etching and deposition selectivity will be substantially reduced. Natural oxide films also have process problems such as deteriorating the film quality of crystal films and oxide films formed by crystal growth and thermal oxidation, inhibiting impurity diffusion, and becoming a source of dust. Therefore, it is desirable to remove it in such cases.

このように半導体の製造プロセス等で問題となる半導体
や金属の酸化物を試料に対してダメージを与えることな
くドライプロセスにより除去する方法及び装置として本
発明者らはハロゲン元素を含む塩の薄膜を試料表面に形
成した後、加熱して前記酸化物を除去する技術を先に提
案している(特願昭63−327594号) しかしながら、この技術も例えば8インチウェハー等の
大面積の試料に対しては前記酸化物を均一に除去するこ
とは困難であった。
The present inventors developed a thin film of salt containing a halogen element as a method and apparatus for removing semiconductor and metal oxides, which are problematic in semiconductor manufacturing processes, without damaging the sample. We have previously proposed a technique in which the oxide is removed by heating after forming it on the sample surface (Japanese Patent Application No. 63-327594). However, this technique also cannot be applied to large-area samples such as 8-inch wafers. Therefore, it was difficult to uniformly remove the oxide.

これは真空容器内に導入されるガスのa度がガス導入口
からの距離に依存するため、試料表面にlじ成される薄
膜はガス導入口に近い項域では厚く、遠い領域では薄く
試料表面の場所により不均一に形成されてしまうためで
ある。
This is because the a degree of the gas introduced into the vacuum container depends on the distance from the gas inlet, so the thin film formed on the sample surface is thicker in the region near the gas inlet and thinner in the far region. This is because they are formed non-uniformly depending on the location on the surface.

また前記薄膜の形成自体は、特に、気相中にあるイオン
性結晶の試料表面における結晶成長の仕方に依存する。
Furthermore, the formation of the thin film itself particularly depends on the manner in which the ionic crystal in the gas phase grows on the surface of the sample.

すなわち、前記気相は通常の状態では試料表面に対して
希薄であり、従って試料の表面状態を反映して前記薄膜
が均一にならず島状の堆積物となってしまい、結果的に
酸化物の除去が均一に行なえないという問題があった。
That is, under normal conditions, the gas phase is dilute with respect to the sample surface, and therefore, reflecting the surface condition of the sample, the thin film is not uniform and becomes an island-like deposit, resulting in oxide There was a problem that the removal could not be carried out uniformly.

(発明が解決しようとする課題) 前述したように半導体や金属の酸化物を、ハロゲン塩か
らなる薄膜の形成、加熱除去する方法においては、薄膜
を試料全面に渡って一様に形成することは難しく、また
条件によっては薄膜が均一な膜とならず、島状になるこ
とがあり、酸化物を均一に除去することができないとい
う問題を生じていた。
(Problems to be Solved by the Invention) As mentioned above, in the method of forming a thin film made of a halide salt and removing it by heating, it is difficult to uniformly form a thin film over the entire surface of the sample. This is difficult, and depending on the conditions, the thin film may not be uniform and may form islands, resulting in the problem that the oxide cannot be removed uniformly.

本発明は上記事情を考慮してなされたもので、その目的
とするところは、前記薄膜を試料全面に均一に形成せし
めるようにして試料表面内で全体的に均一性よく酸化物
を除去したり、薄膜が島状にならないようにして均一に
酸化物を除去し、その後の工程を良好に行なえる表面処
理装置、及び表面処理方法を提供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to form the thin film uniformly over the entire surface of the sample, thereby removing oxides with good uniformity throughout the surface of the sample. Another object of the present invention is to provide a surface treatment apparatus and a surface treatment method that can uniformly remove oxides without forming a thin film into islands, and can perform subsequent steps favorably.

[発明の構成] (課題を解決するための手段) 本発明は前記目的を達成するために、酸化物が表面に露
出した試料をハロゲン元素を含む塩のガスにさらした後
、前記試料を加熱することにより前記酸化物をエツチン
グ除去する表面処理方法であって、前記試料表面の酸化
物をエツチング除去する前に前記試料表面全体に対向し
て設けられた対向部材の温度を前記試料の温度に対して
相対的に低く保持するとともに前記対向部材をハロゲン
元素を含むガスにさらして表面に前記ガスにより生成さ
れる薄膜を堆積せしめる第1の工程と、その後、前記試
料の温度を対向部材に対して相対的に低く保持するよう
にして、前記第1の工程で対向部材に堆積された薄膜を
前記試料表面全体に再堆積させた後、試料を加熱して前
記試料の酸化物を除するようにしたことを特徴とする表
面処理方法(第1の発明)、酸化物が表面に露出した試
料を第1のガスとしてハロゲン元素を含む塩のガスと、
前記試料上で液化して前記第1のガスを溶解する第2の
ガスにさらす工程と、その後、前記試料を加熱して前記
試料の酸化物を除去する工程を備えたとを特徴とする表
面処理方法(第2の発明)、酸化物が表面に露出した試
料が載置される加熱及び冷却が可能な試料台と前記試料
表面全体に対向して設けられる加熱及び冷却が可能な対
向部材を内部に備えた真空排気可能な真空容器と、前記
真空容器内にハロゲン元素を含む塩のガスを導入する手
段とを備えたことを特徴とする表面処理装置(第3の発
明)、及び酸化物が表面に露出した試料が内部に収納さ
れる真空排気可能な真空容器と、前記真空容器内にハロ
ゲン元素を含む塩のガスを導入する第1のガス導入手段
及び前記試料上で液化して前記ハロゲン元素を含む塩の
ガスを溶解する第2のガスを導入する第2のガス導入手
段と、前記第1及び第2のガス導入手段により導入され
たガスを排気する排気手段とを備えたことを特徴とする
表面処理装置(第4の発明)を提供する。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention exposes a sample on which an oxide is exposed on the surface to a salt gas containing a halogen element, and then heats the sample. A surface treatment method for etching away the oxide by etching away the oxide on the sample surface, the temperature of a facing member provided facing the entire sample surface being adjusted to the temperature of the sample. a first step of holding the sample at a relatively low temperature relative to the sample and exposing the opposing member to a gas containing a halogen element to deposit a thin film generated by the gas on the surface; After redepositing the thin film deposited on the opposing member in the first step over the entire surface of the sample by keeping the temperature relatively low, the sample is heated to remove oxides from the sample. A surface treatment method (first invention) characterized in that a sample having an oxide exposed on the surface is used as a first gas and a salt gas containing a halogen element;
A surface treatment characterized by comprising a step of exposing the sample to a second gas that liquefies and dissolves the first gas, and then a step of heating the sample to remove oxides from the sample. The method (second invention) includes a sample stage capable of heating and cooling on which a sample with an oxide exposed on the surface is placed, and an opposing member capable of heating and cooling provided facing the entire surface of the sample. A surface treatment apparatus (third invention) characterized by comprising: a vacuum container capable of being evacuated and equipped with a means for introducing a salt gas containing a halogen element into the vacuum container; a vacuum container that can be evacuated into which a sample exposed on the surface is stored; a first gas introducing means for introducing a salt gas containing a halogen element into the vacuum container; A second gas introduction means for introducing a second gas that dissolves a salt gas containing an element, and an exhaust means for exhausting the gas introduced by the first and second gas introduction means. A characteristic surface treatment apparatus (fourth invention) is provided.

(作 用) 本願第1及び第3の発明によれば試料に対向して設けら
れた対向部材を試料に比べて低温に保持することにより
ハロゲン元素を含む塩のガスにより生成された薄膜を堆
積でき、次いで前記試料を対向部材に比べて低温に保持
することにより前記薄膜を昇華せしめて試料表面に均一
かつ効率よく薄膜を再堆積できるのでその後の試料の酸
化物の除去を均一に行なえる。
(Function) According to the first and third inventions of the present application, a thin film generated by a salt gas containing a halogen element is deposited by keeping the opposing member provided facing the sample at a lower temperature than the sample. Then, by keeping the sample at a lower temperature than the opposing member, the thin film can be sublimated and re-deposited uniformly and efficiently on the sample surface, so that subsequent oxides from the sample can be removed uniformly.

本願第2及び第4の発明によれは、ハロゲン元素を含む
塩のガス(第1のガス)は試料上で液化する第2のガス
により、試料表面で一様に溶解されるので形成される薄
膜は不均一とならず、従って試料の酸化物の除去も均一
に行なえる。
According to the second and fourth inventions of the present application, the salt gas (first gas) containing a halogen element is uniformly dissolved on the sample surface by the second gas that liquefies on the sample. The thin film is not non-uniform, so oxides from the sample can be removed uniformly.

(実施例) 本発明による表面処理装置および表面処理方法の実施例
を図面を用いて詳細に説明する。
(Example) Examples of the surface treatment apparatus and surface treatment method according to the present invention will be described in detail with reference to the drawings.

第1図は本願第3.の発明による表面処理装置の一実施
例を説明するための概略図である。
Figure 1 is part 3 of the present application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram for explaining an embodiment of a surface treatment apparatus according to the invention.

この装置は真空排気可能な真空容器(11)と、この真
空容器(11)にマイクロ波電源(17)にカップリン
グされ、ガス導入口(12a)から導入されるハロゲン
元素を含む塩のガス(第1のガス)を励起する放電管(
14)を備え、さらに前記真空容器(ii)内には、ウ
ェハ等の試料(18)を載置する試料台(15)及び前
記試料全体に対して対向するように試料面積より大なる
面積を有するステンレス鋼の板を対向部材(16)とし
て設けたものとなっている。ここで、前記対向部材(1
6)はガスに腐食されない材料か望しく、Cu、AJ2
等の材料でもよい。また、薄膜が吸着し易い材料として
シリコン等でもよく、また、前記腐食されない材料との
積層としてもよい。
This device includes a vacuum container (11) that can be evacuated, and a salt gas containing a halogen element (11) coupled to a microwave power source (17) and introduced from a gas inlet (12a). a discharge tube (first gas) that excites a discharge tube (first gas)
14), and further inside the vacuum container (ii) is a sample stage (15) on which a sample (18) such as a wafer is placed, and an area larger than the sample area so as to face the entire sample. A stainless steel plate having the same structure is provided as a facing member (16). Here, the facing member (1
6) is preferably a material that is not corroded by gas, such as Cu, AJ2
Materials such as Further, silicon or the like may be used as the material to which the thin film is easily adsorbed, or it may be laminated with the above-mentioned non-corrosive material.

また、対向部材は実質的に試料に近づける構造であれば
容器(11)の壁を、対向部材とするようにしてもよい
。(13)は導入されたガスを排気する排気手段(図示
せず)に接続される排気口(13)である。また、前記
試料台(J5)と対向部材(16)は、例えば冷媒によ
って冷却あるいはヒーターで加熱できるようになってお
り、その温度を例えば−100℃から200℃の間で自
由に変えることが可能となるように構成されている。
Furthermore, the wall of the container (11) may be used as the opposing member, as long as the opposing member has a structure that allows it to be substantially close to the sample. (13) is an exhaust port (13) connected to exhaust means (not shown) for exhausting the introduced gas. In addition, the sample stage (J5) and the opposing member (16) can be cooled, for example, with a refrigerant or heated with a heater, and the temperature can be freely changed, for example, between -100°C and 200°C. It is configured so that

また、前記表面処理装置は、酸化物を除去した後、試料
が次の工程に移行する前に大気にさらされないように前
記真空容器と次工程の処理装置を搬送機構(図示せず)
を介して搬送できるようにすればなおよい。また、真空
容器には、酸化物の除去を行なう前に試料を蓄わえてお
くための真空予備室(図示せず)を設けたものとなって
いる。
The surface treatment device also includes a transport mechanism (not shown) for transporting the vacuum container and the treatment device for the next step after removing oxides so that the sample is not exposed to the atmosphere before moving to the next step.
It would be even better if it could be transported via. Further, the vacuum container is provided with a vacuum preliminary chamber (not shown) for storing a sample before removing oxides.

次に、本願第1の発明による前記実施例装置を用いた本
願第1の発明による表面処理の一実施例方法について図
面を用いて詳細に説明する。
Next, an embodiment of the surface treatment method according to the first invention of the present application using the apparatus according to the embodiment according to the first invention of the present application will be described in detail with reference to the drawings.

第2図は、前記実施例として半導体基板にコンタクトホ
ールを形成する場合の工程断面図を示すものである。
FIG. 2 shows a cross-sectional view of the process in the case of forming a contact hole in a semiconductor substrate as the above embodiment.

まず第2図(a)に示すように、P型シリコン基板(2
1)上に絶縁膜として厚さ1.3μmの酸化膜(22)
をCVD法により堆積した後、レジスト膜(23)を塗
布した。次に第2図(b)に示すように通常のフォトリ
ソグラフィー工程により、前記レジスト膜(23)を露
光、現像してバターニングした後、CF、とH2の混合
ガスを用いた反応性イオンエツチングにより前記レジス
ト膜(23)のパターンをマスクとして、酸化膜(22
)にコンタクトホール(24)を形成した。次に第2図
(C)に示すようレジスト(23)を除去した後、PO
CJ3ガスを用いた拡散工程により拡散層(25〉を形
成した。この時コンタクト部には自然酸化膜(2B)が
形成されていた。以上のような工程を経た試料を第1図
に示した表面処理装置の予備室に入れ、内部を真空排気
した。
First, as shown in FIG. 2(a), a P-type silicon substrate (2
1) An oxide film (22) with a thickness of 1.3 μm as an insulating film on top
was deposited by the CVD method, and then a resist film (23) was applied. Next, as shown in FIG. 2(b), the resist film (23) is exposed, developed and patterned by a normal photolithography process, and then subjected to reactive ion etching using a mixed gas of CF and H2. Using the pattern of the resist film (23) as a mask, the oxide film (22
) was formed with a contact hole (24). Next, as shown in FIG. 2(C), after removing the resist (23), the PO
A diffusion layer (25) was formed by a diffusion process using CJ3 gas.At this time, a natural oxide film (2B) was formed in the contact area.The sample that underwent the above process is shown in Figure 1. It was placed in the preliminary chamber of the surface treatment equipment, and the inside was evacuated.

次に、前記装置の対向部材(16)を−50℃に冷却し
た後、ガス導入口(12a)からNNF3105C。
Next, after cooling the opposing member (16) of the device to -50°C, NNF3105C is introduced from the gas inlet (12a).

NH3100ScMを導入し、放電管(14)に2.4
5GHzのマイクロ波を印加して導入したハロゲン元素
を含む塩のガスを放電分解した。この処理を10分間行
った所、対向部材(16)の表面に厚いNH,Fの膜が
全面に形成された。その後、前記試料を予備室から真空
容器内へ搬送し、真空容器(11)の試料台(15)上
に載置し、対向部材(16)の温度を試料よりも相対的
に高く、前記NH4F膜が昇華する温度である120℃
まで上げた所、前記対向部材の表面に形成していた薄膜
の一部が昇華し、試料(18)上に約40人の膜厚で再
堆積して、試料表面に薄膜が均一に形成された。
NH3100ScM was introduced into the discharge tube (14) at 2.4
A 5 GHz microwave was applied to discharge and decompose the introduced salt gas containing a halogen element. When this treatment was carried out for 10 minutes, a thick NH, F film was formed on the entire surface of the opposing member (16). Thereafter, the sample is transferred from the preliminary chamber into the vacuum container, placed on the sample stage (15) of the vacuum container (11), and the temperature of the opposing member (16) is set to be relatively higher than that of the sample, and the NH4F 120℃, the temperature at which the film sublimates
When the temperature was raised to 100, a part of the thin film that had been formed on the surface of the opposing member sublimated and redeposited on the sample (18) to a thickness of about 40 mm, so that a thin film was uniformly formed on the sample surface. Ta.

これは、前記対向部材に堆積した薄膜は高濃度であるた
め加熱により昇華した前記薄膜は試料表面上で高濃度の
雰囲気となり、前記試料表面の状態によらず前記対向部
材よりも低温の試料表面に均一に再堆積する。この時、
本願の実施例装置のように、対向部材が実質的に前記試
料表面全体に対向するようにより大きな面積であること
が試料に対して均一に薄膜を形成する上で重要である。
This is because the thin film deposited on the opposing member has a high concentration, so the thin film sublimated by heating becomes a highly concentrated atmosphere on the sample surface, and the sample surface is at a lower temperature than the opposing member regardless of the state of the sample surface. redeposit evenly. At this time,
In order to uniformly form a thin film on the sample, it is important that the opposing member has a larger area so as to face substantially the entire surface of the sample, as in the apparatus of the embodiment of the present application.

また、前記対向部材に堆積している膜の膜厚が場所によ
り不均一であっても昇華の際には前記膜は全体的に均一
に昇華するのである。さらにまた、対向部材と試料間の
距離は、試料上に薄膜を堆積させる時の条件にもよるが
、より近づけてお(ことが効率よく堆積させるために重
要である。
Further, even if the thickness of the film deposited on the opposing member is uneven depending on the location, the film sublimates uniformly throughout during sublimation. Furthermore, although the distance between the facing member and the sample depends on the conditions when depositing the thin film on the sample, it is important to keep the distance closer (for efficient deposition).

ここで、前記対向部材(16)に数2000人程度0膜
厚の薄膜を形成する。のに要した時間は約5分であり、
こうして形成された薄膜が昇華せしめられてなくなるま
で、30枚の前記試料を良好に処理することができた。
Here, a thin film having a thickness of about 2,000 layers is formed on the facing member (16). It took about 5 minutes,
Thirty samples could be successfully processed until the thin film thus formed was sublimated and disappeared.

前記試料上に薄膜が形成された後は、前記試料を例えば
120℃程度に昇温させることにより、前記薄膜が蒸発
するとともに試料のコンタクトホールに形成されていた
自然酸化膜は容易に除去された。
After the thin film was formed on the sample, by raising the temperature of the sample to, for example, about 120° C., the thin film evaporated and the natural oxide film formed in the contact hole of the sample was easily removed. .

次に、本発明の実施例のように対向部材を用いて試料に
薄膜を形成した場合(A)の効果を従来のように対向部
材を用いずに直接試料に薄膜を形成した場合(B)との
比較により以下説明する。
Next, the effect of forming a thin film on the sample using a facing member as in the embodiment of the present invention (A) will be compared to the effect of forming a thin film directly on the sample without using a facing member as in the conventional case (B). This will be explained below by comparison with .

第3図は、本発明の実施例(A)と従来例(B)につい
て、それぞれ第1図のガスの吹き出し口(0)からの距
離(X)に対する試料に形成される薄膜の厚さ(人)を
示したものである。
FIG. 3 shows the thickness ( person).

同図からもわかるように従来例(B)ではガスの吹き出
し口からの距離が離れているほど薄膜の厚さは薄く、不
均一であることがわかる。また十分な膜厚の薄膜を形成
するのに約10分を要した。
As can be seen from the figure, in the conventional example (B), the thickness of the thin film becomes thinner and more uneven as the distance from the gas outlet increases. Further, it took about 10 minutes to form a thin film of sufficient thickness.

一方、本発明の実施例(A)によればガスの吹き出し口
からの距離によらず、薄膜が均一の厚みであることがわ
かり、従って、その後の加熱によって前記試料の酸化物
が均一に除去される。
On the other hand, according to Example (A) of the present invention, it was found that the thin film had a uniform thickness regardless of the distance from the gas outlet, and therefore, the oxides of the sample were uniformly removed by subsequent heating. be done.

すなわち、第1図の装置において試料台の温度を昇温し
、約120℃、2分前記試料を加熱した所、前記薄膜は
台2図(d)に示すようにコンタクトホール(24)の
基板表面の形成されていた自然酸化膜とともに昇華し、
均一に除去されていた。
That is, in the apparatus shown in FIG. 1, when the temperature of the sample stage was raised and the sample was heated at approximately 120° C. for 2 minutes, the thin film formed on the substrate of the contact hole (24) as shown in FIG. 2 (d) of the stage. It sublimates together with the natural oxide film that was formed on the surface.
It was removed evenly.

次に、自然酸化膜を除去した試料を大気にさらすことな
くスパッタ装置内へ搬送し、第2図(e)に示すように
コンタクトホール(24)内に例えばAJ−8t合金膜
(27)を埋め込んだ。
Next, the sample from which the natural oxide film has been removed is transported into a sputtering device without being exposed to the atmosphere, and an AJ-8t alloy film (27), for example, is placed in the contact hole (24) as shown in FIG. 2(e). Embedded.

前記実施例により形成した試料のコンタクト抵抗を測定
した所、コンタクトホール全体に渡って約80Ω/口の
低いコンタクト抵抗であった。これに対し、対向部材に
一旦、薄膜を形成しないで試料に直接薄膜を形成した場
合、第3図に示した薄膜の分布を反映して高い所では約
300J2/口のコンタクト抵抗を示し、場所によりコ
ンタクト抵抗は不均一であった。
When the contact resistance of the sample formed according to the above example was measured, it was found that the contact resistance was as low as about 80Ω/hole over the entire contact hole. On the other hand, when a thin film is directly formed on the sample without forming a thin film on the opposing member, the contact resistance at high places is about 300 J2/hole, reflecting the thin film distribution shown in Figure 3. Therefore, the contact resistance was non-uniform.

従って、この実施例によれば、試料全体にわたってコン
タクトホールの自然酸化膜を除去するととができた。ま
た、対向部材表面全体に一旦、高濃度の薄膜を堆積して
おいて、それを対向部材に対向する試料上で昇、華せし
め前記試料表面に再堆積せしめるので、効率がよく、所
定の膜厚に堆積する時間は、直接試料表面に形成する場
合と比較して約1/10に短縮できた。
Therefore, according to this example, it was possible to remove the natural oxide film of the contact hole over the entire sample. In addition, since a highly concentrated thin film is once deposited on the entire surface of the opposing member, it is lifted up and bloomed on the sample facing the opposing member, and redeposited on the sample surface, which is efficient and allows for the formation of a predetermined film. The time required for thick deposition could be reduced to about 1/10 compared to the case where it was formed directly on the sample surface.

この実施例ではコンタクトホール(24)に埋め込む金
属はAJ2−Si合金であったが、他の金属でもよく、
また、形成する方法も選択CVD法であってもよい。例
えば、Aβ−Si合金の代わりにタングステン膜を選択
CVD法により形成してもよく、この場合、コンタクト
ホールの自然酸化膜(26)は除去されているので、酸
化膜(22)とコンタクトとの選択性は良好にとれる。
In this example, the metal buried in the contact hole (24) was AJ2-Si alloy, but other metals may also be used.
Further, the forming method may also be a selective CVD method. For example, instead of the Aβ-Si alloy, a tungsten film may be formed by selective CVD. In this case, since the natural oxide film (26) in the contact hole has been removed, the oxide film (22) and the contact Good selectivity can be obtained.

次に、本願第4の発明による一実施例装置を第1図を用
いて説明する。基本的には、前述した第1の発明の実施
例装置と同様であるが、大きく異なる点は対向部材(i
e)を用いないで、第1のガスを溶解し得る第2のガス
を真空容器内に導入する第2のガス導入口(12a)を
備えた点にある。
Next, an embodiment of the apparatus according to the fourth invention of the present application will be described with reference to FIG. Basically, it is the same as the apparatus according to the first embodiment of the invention described above, but the major difference is that the opposing member (i
e), but instead includes a second gas inlet (12a) for introducing a second gas capable of dissolving the first gas into the vacuum container.

この実施例装置を用いた本願第2の発明による一実施例
方法について述べる。この実施例ではシリコンのエピタ
キシャル成長を行なう例について説明する。
An example method according to the second invention of the present application using this example apparatus will be described. In this embodiment, an example of epitaxial growth of silicon will be described.

まず、第1図に示した表面処理装置の試料台(15)上
にあらかじめウェット洗浄により有機物汚染や金属汚染
を除去したシリコン基板(試料) (18)を載置し、
容器内を真空排気した後、ガス導入口(12a)から第
1のガスとしてNF3を208CCM、 N H3を1
003CCM導入し、放電管(14)にマイクロ波を印
加して、10分間の処理を行なう。それとともにガス導
入口(L2b)からは、第1のガスを溶解する第2のガ
スとして例えばC2H50H等有機化合物ガスを導入し
、真空容器内を300 Torrに保ったまま、前記試
料台の温度を下げ、前記試料(18)の温度が一50℃
になるように保持した。この時、前記試料表面には薄膜
化したNH4FがC2H,OHにより溶解しているのが
観察された。
First, a silicon substrate (sample) (18), which has been wet-cleaned to remove organic contamination and metal contamination, is placed on the sample stage (15) of the surface treatment apparatus shown in FIG.
After evacuating the inside of the container, 208 CCM of NF3 and 1 mL of N H3 were added as the first gas from the gas inlet (12a).
003CCM is introduced, microwaves are applied to the discharge tube (14), and treatment is performed for 10 minutes. At the same time, an organic compound gas such as C2H50H is introduced from the gas inlet (L2b) as a second gas to dissolve the first gas, and the temperature of the sample stage is lowered while maintaining the inside of the vacuum container at 300 Torr. Lower the temperature of the sample (18) to 150°C.
It was held so that At this time, it was observed that a thin film of NH4F was dissolved on the surface of the sample by C2H and OH.

次いで、第1及び第2のガスの導入をやめ、容器(1工
)の内部を真空排気した後、試料を昇温し、150℃、
10分保持した。これにより、前記試料表面上に形成さ
れた薄膜は液化したC2 Hs OHとともに除去され
、試料表面は自然酸化膜の形成されていないまっく清浄
な面となった。
Next, after stopping the introduction of the first and second gases and evacuating the inside of the container (1st stage), the sample was heated to 150°C.
It was held for 10 minutes. As a result, the thin film formed on the sample surface was removed together with the liquefied C2HsOH, and the sample surface became a completely clean surface with no natural oxide film formed thereon.

その後、前記試料を大気にさらさないように予備室等を
介してエピタキシャル装置内へ搬送、し、前記試料温度
を900℃まで上昇させるとともに5iH2CJ22ガ
ス等のエビタギシャル用ガスを前記装置内に導入して前
記試料のシリコン基板表面にエピタキシャル成長させた
シリコン層を形成した。以上のようにして形成したエピ
タキシャル層をTEMで観察した所、試料全体にわたり
、均一なシリコンの単結晶層が形成された。
Thereafter, the sample is transported into an epitaxial apparatus via a preliminary chamber or the like so as not to be exposed to the atmosphere, and the sample temperature is raised to 900°C, and an epitaxial gas such as 5iH2CJ22 gas is introduced into the apparatus. A silicon layer was epitaxially grown on the surface of the silicon substrate of the sample. When the epitaxial layer formed as described above was observed using a TEM, it was found that a uniform single crystal layer of silicon was formed over the entire sample.

ここで、比較のために第2のガスを導入しないで自然酸
化膜を除去した後、シリコンのエピタキシャル成長を行
った場合、局部的に結晶欠陥がみられた。これは、自然
酸化膜の除去の際に試料表面に形成した薄膜が、島状と
なり、自然酸化膜が局部的に残存していることが原因で
あった。
Here, for comparison, when epitaxial growth of silicon was performed after removing the native oxide film without introducing the second gas, crystal defects were observed locally. This was because the thin film formed on the sample surface during the removal of the native oxide film became island-like, and the native oxide film remained locally.

このように、この実施例によれば試料表面に形成される
薄膜は、C2Hs OHにより溶解され、試料表面上に
均一化されて堆積する。従って、自然酸化膜の除去は均
一に行なわれ、その後の工程も良好に行なうことができ
る。
In this way, according to this example, the thin film formed on the sample surface is dissolved by C2HsOH, and is uniformly deposited on the sample surface. Therefore, the natural oxide film can be removed uniformly, and the subsequent steps can be performed satisfactorily.

また、この実施例では第1のガスと第2のガスの導入を
同時に行ったが、第1のガスを導入した後、第2のガス
を導入するようにしてもよい。この場合、第1のガスの
導入によって試料表面には島状の薄膜が形成されるが、
その後の第2のガスの導入により前記薄膜は溶解し、均
一化されるので、前記実施例とほぼ同様の効果が得られ
る。
Further, in this embodiment, the first gas and the second gas were introduced at the same time, but the second gas may be introduced after the first gas is introduced. In this case, an island-like thin film is formed on the sample surface by introducing the first gas;
By subsequently introducing the second gas, the thin film is dissolved and made uniform, so that substantially the same effect as in the embodiment described above can be obtained.

なお本発明は上述の実施例に限定されるものではない。Note that the present invention is not limited to the above-described embodiments.

すなわち上述の実施例では薄膜を放電したガスを用いて
形成したが、自発的にハロゲンの活性種を生じるガスと
塩基性のガスとを反応させたり、ハロゲン塩の蒸気を用
いて形成してもよい。
That is, in the above embodiments, the thin film was formed using discharged gas, but it could also be formed by reacting a gas that spontaneously generates active halogen species with a basic gas, or by using vapor of a halogen salt. good.

また、液化して薄膜を溶解するガスとしては、C2H5
0Hの他に、水、有機化合物などの極性分子を用いても
い。また、自然酸化膜を除去した後に行なう工程は上述
のコンタクト形成、エピタキシャル成長に限らず、半導
体や金属の酸化物を均一に除去する必要が場合の全てに
適用することができる。
In addition, the gas that liquefies and dissolves the thin film is C2H5
In addition to 0H, polar molecules such as water and organic compounds may also be used. Further, the process performed after removing the native oxide film is not limited to the above-mentioned contact formation and epitaxial growth, but can be applied to all cases where it is necessary to uniformly remove semiconductor or metal oxides.

また、ハロゲン元素を含む塩のガスとは、ハロゲン単体
ガス、インターハロゲンガスのいずれかとアンモニア、
ヒドラジン、アミン、ホスフィン。
In addition, salt gas containing halogen elements includes either halogen gas, interhalogen gas, ammonia,
hydrazine, amine, phosphine.

アルミンから選ばれた少なくとも1つ以上のガスとの組
み合わせよりなる混合ガスや、フッ素、塩素、臭素、ヨ
ウ素を含む塩の化合物ガスであってもよい。また、除去
するのは自然酸化膜に限らず、通常の酸化膜でもよい。
It may be a mixed gas formed by a combination with at least one gas selected from aluminium, or a compound gas of a salt containing fluorine, chlorine, bromine, or iodine. Furthermore, what is removed is not limited to the natural oxide film, but may be a normal oxide film.

その他、本発明の要旨を逸脱しない範囲で種々変形して
用いることができる。
In addition, various modifications can be made without departing from the gist of the present invention.

[発明の効果] 以上、述べたように本発明によれば酸化物を表面に有す
る大きな面積の試料に対しても、前記酸化膜を均一かつ
効率的に除去することができ、半導体素子製造の歩留り
を向上することが可能となる。
[Effects of the Invention] As described above, according to the present invention, the oxide film can be uniformly and efficiently removed even from a large-area sample having an oxide on the surface, which improves semiconductor device manufacturing. It becomes possible to improve the yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による実施例装置を説明するための概
略図、第2図は本発明による実施例方法を説明するため
の工程断面図、第3図は本発明による実施例の効果を説
明するための特性図である。 11・・・真空容器、   12a 、 1.2b・・
・ガス導入口、13・・・ガス排気口、  14・・・
放電管、15・・試料台、 18・・試料。 16・・・対向部材、
FIG. 1 is a schematic diagram for explaining an embodiment of the apparatus according to the present invention, FIG. 2 is a process sectional view for explaining the embodiment method according to the present invention, and FIG. 3 is a schematic diagram for explaining the embodiment of the present invention. It is a characteristic diagram for explanation. 11... Vacuum container, 12a, 1.2b...
・Gas inlet, 13...Gas exhaust port, 14...
Discharge tube, 15...sample stage, 18...sample. 16... Opposing member,

Claims (5)

【特許請求の範囲】[Claims] (1)酸化物が表面に露出した試料をハロゲン元素を含
む塩のガスにさらした後、前記試料を加熱することによ
り前記酸化物をエッチング除去する表面処理方法であっ
て、前記試料表面の酸化物をエッチング除去する前に前
記試料表面全体に対向して設けられた対向部材の温度を
前記試料の温度に対して相対的に低く保持するとともに
前記対向部材をハロゲン元素を含むガスにさらして表面
に前記ガスにより生成される薄膜を堆積せしめる第1の
工程と、その後、前記試料の温度を対向部材に対して相
対的に低く保持するようにして、前記第1の工程で対向
部材に堆積された薄膜を前記試料表面全体に再堆積させ
た後、試料を加熱して前記試料の酸化物を除するように
したことを特徴とする表面処理方法。
(1) A surface treatment method in which a sample on which an oxide is exposed on the surface is exposed to a salt gas containing a halogen element, and then the sample is heated to remove the oxide by etching, the method comprising: Before removing an object by etching, the temperature of an opposing member provided opposite to the entire surface of the sample is kept relatively low with respect to the temperature of the sample, and the opposing member is exposed to a gas containing a halogen element to dry the surface. a first step of depositing a thin film produced by the gas on the counter member, and then maintaining the temperature of the sample relatively low with respect to the counter member to deposit the thin film on the counter member in the first step; 1. A surface treatment method, comprising redepositing a thin film over the entire surface of the sample, and then heating the sample to remove oxides from the sample.
(2)酸化物が表面に露出した試料を第1のガスとして
ハロゲン元素を含む塩のガスと、前記試料上で液化して
前記第1のガスを溶解する第2のガスにさらす工程と、
その後、前記試料を加熱して前記試料の酸化物を除去す
る工程を備えたとを特徴とする表面処理方法。
(2) exposing the sample with the oxide exposed on the surface to a salt gas containing a halogen element as a first gas, and a second gas that liquefies on the sample and dissolves the first gas;
A surface treatment method comprising the step of: thereafter heating the sample to remove oxides from the sample.
(3)前記第2のガスは、水あるいはアセトン、アルコ
ール等の有機化合物であることを特徴とする請求項2記
載の表面処理方法。
(3) The surface treatment method according to claim 2, wherein the second gas is water or an organic compound such as acetone or alcohol.
(4)酸化物が表面に露出した試料が載置される加熱及
び冷却が可能な試料台と前記試料表面全体に対向して設
けられる加熱及び冷却が可能な対向部材を内部に備えた
真空排気可能な真空容器と、前記真空容器内にハロゲン
元素を含む塩のガスを導入する手段とを備えたことを特
徴とする表面処理装置。
(4) A vacuum exhaust system equipped with a sample stage capable of heating and cooling on which a sample with exposed oxides is placed, and a counter member capable of heating and cooling provided facing the entire surface of the sample. What is claimed is: 1. A surface treatment apparatus comprising: a vacuum container capable of evacuating; and means for introducing a salt gas containing a halogen element into the vacuum container.
(5)酸化物が表面に露出した試料が内部に収納される
真空排気可能な真空容器と、前記真空容器内にハロゲン
元素を含む塩のガスを導入する第1のガス導入手段及び
前記試料上で液化して前記ハロゲン元素を含む塩のガス
を溶解する第2のガスを導入する第2のガス導入手段と
、前記第1及び第2のガス導入手段により導入されたガ
スを排気する排気手段とを備えたことを特徴とする表面
処理装置。
(5) a vacuum container capable of being evacuated into which a sample with an oxide exposed on the surface is housed; a first gas introduction means for introducing a salt gas containing a halogen element into the vacuum container; a second gas introduction means for introducing a second gas which is liquefied by the gas to dissolve the salt gas containing the halogen element; and an exhaust means for exhausting the gas introduced by the first and second gas introduction means. A surface treatment device comprising:
JP8585089A 1989-04-06 1989-04-06 Method and apparatus for surface treatment Pending JPH02265241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8585089A JPH02265241A (en) 1989-04-06 1989-04-06 Method and apparatus for surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8585089A JPH02265241A (en) 1989-04-06 1989-04-06 Method and apparatus for surface treatment

Publications (1)

Publication Number Publication Date
JPH02265241A true JPH02265241A (en) 1990-10-30

Family

ID=13870349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8585089A Pending JPH02265241A (en) 1989-04-06 1989-04-06 Method and apparatus for surface treatment

Country Status (1)

Country Link
JP (1) JPH02265241A (en)

Similar Documents

Publication Publication Date Title
KR0139793B1 (en) Method of forming conductive layer including removal of native oxide
US5030319A (en) Method of oxide etching with condensed plasma reaction product
US4605479A (en) In-situ cleaned ohmic contacts
JP3086719B2 (en) Surface treatment method
KR100256453B1 (en) Improved process for selective deposition of tungsten of semiconductor wafer
US8623765B2 (en) Processed object processing apparatus, processed object processing method, pressure control method, processed object transfer method, and transfer apparatus
JP3676983B2 (en) Semiconductor manufacturing method, substrate processing method, and semiconductor manufacturing apparatus
JPH06181188A (en) Method and system for etching
JPS59123226A (en) Device for manufacturing semiconductor device
JP2007115797A (en) Substrate processing apparatus, substrate processing method, program, and recording medium having program
JP3013446B2 (en) Dry etching method
US11127597B2 (en) Etching method
JPH08274072A (en) Surface treatment device and surface treatment
JPH04100222A (en) Vacuum treatment method
JPH02265241A (en) Method and apparatus for surface treatment
JP2003059861A (en) Method and device for forming film
JPH10116822A (en) Method and device for dry-etching
JPH11354514A (en) Cluster tool device and film formation method
JPS6135510A (en) Molecular beam epitaxy growth method
JP2005064526A (en) Method of manufacturing semiconductor, method of processing substrate, and semiconductor manufacturing apparatus
JP2983244B2 (en) Surface treatment method
JP2544129B2 (en) Plasma processing device
JPS6399533A (en) Method and apparatus for dry etching of silicon nitride film
EP4307346A1 (en) Surface treatment method, dry etching method, cleaning method, semiconductor device manufacturing method, and etching device
EP1076355A2 (en) Method and apparatus for cleaning a chamber configured for copper deposition