JPH02264876A - Measuring method for current separation in wire shield cable - Google Patents

Measuring method for current separation in wire shield cable

Info

Publication number
JPH02264876A
JPH02264876A JP8642089A JP8642089A JPH02264876A JP H02264876 A JPH02264876 A JP H02264876A JP 8642089 A JP8642089 A JP 8642089A JP 8642089 A JP8642089 A JP 8642089A JP H02264876 A JPH02264876 A JP H02264876A
Authority
JP
Japan
Prior art keywords
current
shield
cable
wire
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8642089A
Other languages
Japanese (ja)
Other versions
JPH0789137B2 (en
Inventor
Tadayoshi Ikeda
池田 忠禧
Hirosuke Saito
斉藤 宏資
Hideo Sato
英男 佐藤
Makoto Hara
原 信
Takeshi Endo
遠藤 桓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP8642089A priority Critical patent/JPH0789137B2/en
Publication of JPH02264876A publication Critical patent/JPH02264876A/en
Publication of JPH0789137B2 publication Critical patent/JPH0789137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To enable separate measurement of a necessary shield current by detecting one/both of the composite component of axial-direction components of a conductor current and a shield current and a circumferential component of the shield current. CONSTITUTION:In a wire shield cable, a shield circuit current flows along wires 4 which are wound round at a winding angle theta on a cable core 3 comprising a conductor 1 and an insulator 2 as main elements and form a prescribed shield layer. Accordingly, a wire shield current Io flows in a different direction, in inclination of theta, from a conductor current Ie which has only an axial component. Its circumferential component IoSin theta of the cable is generated only by the shield current, and it can be evaluated by measuring this current. Besides, the axial-direction component Io(1 - Cos theta) is detected as a composite component, and the current Io can be determined by multiplying an axial current detected from outside of the cable by 1/(1 - Cos theta).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ワイヤシールドケーブルの芯線電流とシール
ド電流とを、ケーブル外部からの検出手段で測定可能と
する、全く新しい電流分離測定方法を提供せんとするも
のである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a completely new current separation measurement method that makes it possible to measure the core current and shield current of a wire shielded cable using detection means from outside the cable. This is what I am trying to do.

(従来の技術〕 ワイヤーシルトケーブルでは、ケーブルの芯線に流れる
電流つまり芯線電流とワイヤシールドに流れる電流つま
りシールド電流とを分離して測定する技術は、特に地絡
事故時の地絡電流分布から地絡事故区間の標定を行う手
法において必須のものである。
(Conventional technology) For wire silt cables, the technology that separates and measures the current flowing through the core wire of the cable, that is, the core current, and the current flowing through the wire shield, that is, the shield current, is particularly useful for measuring the ground fault current distribution in the event of a ground fault accident. This is essential in the method of locating the accident section.

即ち、地絡事故点は、ケーブル芯線またはシールドを流
れる零相電流の分布から推定が可能であるが、現実には
芯線に流れる地絡電流はその大部分がシールドを帰路と
して流れるため、ケーブル外周からCT(変流器)や磁
界センサー等で測定しても、芯線電流とシールド電流と
が合成され相殺された電流成分を検出することとなって
、有効な測定が不可能であると考えられていた。
In other words, the ground fault point can be estimated from the distribution of zero-sequence current flowing through the cable core wire or shield, but in reality, most of the ground fault current flowing through the core wire flows through the shield as a return path, so Even if measurements are taken using a CT (current transformer), magnetic field sensor, etc., the core current and shield current will be combined and canceled, resulting in a current component being detected, making it impossible to make effective measurements. was.

そのため、一般には、シールド回路がケーブル長さ方向
で遮断されボンド線で外部に取り出させる絶縁接続部(
IJ)において、ボンド線に流れるシールド電流を変流
器(CT)等で測定することによりシールド回路の零相
電流を求め、事故区間の判定を行う手法が取り入れられ
ていた。
Therefore, in general, the shield circuit is interrupted in the length direction of the cable and taken out to the outside with a bond wire (insulated connection part).
In IJ), a method was adopted in which the zero-sequence current of the shield circuit was determined by measuring the shield current flowing through the bond wire with a current transformer (CT), etc., and the fault section was determined.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしかかる方法においては、測定点が絶縁接続部に限
定されてしまい、事故点の標定は絶縁接続部−絶縁接続
部の区間に限定されていた。
However, in this method, the measurement point is limited to the insulated connection part, and the fault point location is limited to the section between the insulated connection part and the insulated connection part.

換言すれば、絶縁接続部においてのみ芯線電流とシール
ド電流の分離が可能となることから、地絡事故区間の標
定は、絶縁接続部と絶縁接続部のスパンに限定され、普
通接続箱(NJ)を含む区間では、接地された普通接続
箱を境として何方側のスパンで事故が起きているかを判
別するのが困難であった。
In other words, since it is possible to separate the core current and shield current only at the insulated connection, the location of the ground fault area is limited to the insulated connection and the span of the insulated connection, and the normal junction box (NJ) In the section including the grounded junction box, it was difficult to determine on which side of the span the accident occurred, with respect to the grounded ordinary junction box.

このため、スパン毎の標定が必要な場合には、普通接続
箱を絶縁接続箱に変更する必要があり、広汎に利用でき
るものとは言い難かった。
For this reason, when span-by-span orientation is required, it is necessary to change the ordinary junction box to an insulated junction box, and it is difficult to say that it can be used widely.

本発明は、以上の従来技術に鑑みてなされたものであっ
て、殊更絶縁接続部を必要とせずにケーブル外側から真
に必要なシールド電流の分離測定が可能な方法の提供を
目的とするものである。
The present invention has been made in view of the above-mentioned prior art, and it is an object of the present invention to provide a method capable of separating and measuring the truly necessary shield current from the outside of the cable without requiring any special insulated connections. It is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的を達成する手段は、ケーブルコア上に
所定の巻き付け角度をもって巻き付けられたワイヤシー
ルドに着目し、ケーブルコア上に所定の巻き付け角度を
もって巻き付けられたワイヤシールドに流れるシールド
ワイヤの周方向成分、及びケーブルコアの芯線に流れる
芯線電流とワイヤシールドに流れるシールド電流の軸方
向成分の合成成分の何れか一方あるいは両方を検出して
シールド電流または芯線電流を求めることとしたもので
ある。
Means for achieving the above object of the present invention focuses on a wire shield wound on a cable core at a predetermined winding angle, and the shield wire flows in the circumferential direction of the wire shield wound on the cable core at a predetermined winding angle. The shield current or the core current is determined by detecting either or both of the core current flowing through the core wire of the cable core and the composite component of the axial component of the shield current flowing through the wire shield.

本発明における上記の手段は、次の知見に基づいてなさ
れている。
The above-mentioned means in the present invention have been made based on the following findings.

即ち、ワイヤシールドケーブルでは、シールド回路電流
が、シールド層を形成するワイヤに沿って流れるが、そ
のワイヤーは、第1図に示したように、芯vAl及び絶
縁体2を主要素とするケーブルコア3の周りにある巻き
付け角度θをもって4゜4・・のように巻かれて所定の
シールド層5を形成していることから、そこを流れる電
流は必然的にケーブルコア3の軸Xに対してθだけ傾い
た電流となってケーブルコア3の周りを流れて行くこと
となる。これは、ケーブルコア3の芯線1に流れる軸方
向の電流に対してθだけ傾いた電流として検出される。
That is, in a wire-shielded cable, the shield circuit current flows along the wire forming the shield layer, but the wire has a cable core whose main elements are a core vAl and an insulator 2, as shown in FIG. Since the winding angle θ around cable core 3 is 4°4... to form a predetermined shield layer 5, the current flowing through it is necessarily directed against the axis X of cable core 3. The current becomes inclined by θ and flows around the cable core 3. This is detected as a current that is inclined by θ with respect to the axial current flowing through the core wire 1 of the cable core 3.

第2図は、以上のような電流の流れを模式化したもので
あって、Fは地絡事故点を示す。
FIG. 2 schematically shows the flow of current as described above, and F indicates a ground fault point.

同図から明らかなように、ワイヤシールド電流16は芯
線電流!。に対してθだけ傾いて異なる方向に流れ、そ
の場合芯線電流は軸方向成分のみとなり、そしてワイヤ
シールド電流のケーブル周方向成分!。Sinθは、シ
ールド電流のみによって発生することとなり、従って、
その周方向成分のみを測定すればシールド電流の評価が
可能となるのである。一方、軸方向成分については、1
o(1−Cosθ)が合成電流として検出されるので、
ケーブル外部から検出した軸方向電流を1/(1−Co
sθ)倍することにより、■。を求めることができる。
As is clear from the figure, the wire shield current 16 is the core wire current! . In this case, the core wire current has only an axial component, and the cable circumferential component of the wire shield current! . Sinθ is generated only by the shield current, and therefore,
By measuring only the circumferential component, it is possible to evaluate the shield current. On the other hand, for the axial component, 1
Since o(1-Cosθ) is detected as a composite current,
The axial current detected from outside the cable is 1/(1-Co
sθ) by multiplying ■. can be found.

〔実施例〕〔Example〕

第3図は、本発明にかかるシールド電流の周方向成分の
検出手法例を示したもので、ピックアップコイルPCが
ケーブルコアの軸Xに対して直角に交差巻回するように
配置してなるものである。
FIG. 3 shows an example of the method for detecting the circumferential component of the shield current according to the present invention, in which the pickup coil PC is arranged so as to be wound crosswise at right angles to the axis X of the cable core. It is.

そのように配置することで、ケーブルコアの芯線電流と
シールド電流の軸方向成分の合成成分は、検出せずにシ
ールド電流の周方向成分のみを検出できるようにしてい
る。さらに詳細には、シールド電流の周方向成分■。′
によって矢印(イ)の方向に所定の磁界が発生し、それ
に伴って、ビックアンプコイルPCに電流1.lが流れ
、またコイル端子間に所定の電圧が発生するので、これ
らの電流・電圧を検出することにより、シールド電流の
周方向成分!。′を検出する。
By arranging them in this manner, only the circumferential component of the shield current can be detected without detecting the composite component of the core wire current of the cable core and the axial component of the shield current. More specifically, the circumferential component of the shield current■. ′
A predetermined magnetic field is generated in the direction of arrow (A), and accordingly, a current of 1. l flows and a predetermined voltage is generated between the coil terminals, so by detecting these currents and voltages, the circumferential component of the shield current can be determined. . ′ is detected.

そして、そこで検出された電流は、シールドワイヤの巻
き付け角度をθとすると、■。Sinθに比例した関係
を有するので、その値からシールド電流を求めることが
できる。
Then, the current detected there is ■, assuming that the winding angle of the shield wire is θ. Since it has a relationship proportional to Sin θ, the shield current can be determined from that value.

第4図は、本発明にかかる芯線電流とシールド電流の軸
方向成分の合成成分の検出手法例を示したもので、検出
素子としての変流器CTを、それ自身にケーブルコアが
貫通する状態に配置した例である。
FIG. 4 shows an example of a method for detecting the composite component of the axial components of the core current and the shield current according to the present invention, in which the cable core passes through the current transformer CT as a detection element. This is an example where the

つまり、上記合成成分!。′によって矢印(ロ)の方向
に所定の磁界が発生し、それに伴って変流IcTのコイ
ルに電流i、″が流れ、またコイル端子間に所定の電圧
が発生するので、これらの電流・電圧を検出することに
より、芯線電流とシールド電流の軸方向成分の合成成分
10′を検出する。
In other words, the above synthetic ingredients! . ′ generates a predetermined magnetic field in the direction of the arrow (b), and accordingly, a current i,″ flows through the coil of the transformer ICT, and a predetermined voltage is generated between the coil terminals, so these currents and voltages By detecting , a composite component 10' of the axial components of the core current and the shield current is detected.

ここで検出される合成成分1o  IIは、1o  (
1cosθ)に比例することから、Ioを求めることが
できる。
The synthetic component 1o II detected here is 1o (
1 cos θ), Io can be determined.

なお、以上の実施例は飽くまでも一つの例示であって、
本発明の特許請求の範囲記載の思想からすれば、それに
限定的に解釈されるべきではなく寧ろ当該特許請求の範
囲記載の思想の範囲において、種々の変形があり得る。
It should be noted that the above embodiment is just one example, and
The invention should not be construed as being limited to the concept described in the claims of the present invention, but rather various modifications may be made within the scope of the concept described in the claims.

例えば、ワイヤシールドは、一方向のみの巻き付けタイ
プの他に、ケーブル長手方向に交互反転させたS−Z巻
き付けタイプにも応用できる。その場合、ケーブル長さ
方向で巻き付け角度が異なってくるが、前述のように検
出センサで検出される電流は、ワイヤ巻き付け角度と相
関があるので、センサ取り付け位置により検出電流が異
なってくる。それには初期設定つまりセンサ取付位置の
調整や基準電流通電による初期調整により、シールド電
流と検出電流の関係を把握することで対応が可能である
For example, the wire shield can be applied not only to a unidirectional winding type but also to an S-Z winding type in which the cable is alternately reversed in the longitudinal direction. In that case, the winding angle differs in the cable length direction, but as described above, the current detected by the detection sensor has a correlation with the wire winding angle, so the detected current differs depending on the sensor mounting position. This can be handled by understanding the relationship between the shield current and the detected current through initial settings, that is, adjusting the sensor mounting position and initial adjustment by energizing the reference current.

また、本発明によれば、地絡時に発生する地絡サージ検
出、高周波電流検出にも適用できるものである。
Further, according to the present invention, it can also be applied to ground fault surge detection and high frequency current detection that occur during a ground fault.

〔発明の作用・効果〕[Action/effect of the invention]

以上の説明によって明らかなように、本発明にかかるシ
ールドワイヤの電流分離測定方法によれば、芯線電流と
シールド電流の軸方向成分の合成成分を検出する素子と
シールド電流の周方向成分を検出する素子の何れか一方
あるいは両方をケーブルの外周上に取り付けるだけで、
芯線電流とシールド電流とを分離して測定することがで
きるので、検出素子をケーブルの任意の位置で取り付け
ることにより、地絡事故区間標定の区間を任意に設定す
ることが可能となる。このことは、従来シールド電流を
芯線電流と分離して取り出すために必要であった、絶縁
接続箱を殊更必要とせずに電流測定が行えることになる
As is clear from the above description, according to the shield wire current separation measurement method according to the present invention, an element detects a composite component of the axial component of the core current and the shield current, and a circumferential component of the shield current is detected. Simply attach one or both of the elements to the outer circumference of the cable.
Since the core wire current and the shield current can be measured separately, by attaching the detection element at any position on the cable, it becomes possible to arbitrarily set the section for ground fault section location. This means that current measurement can be performed without the need for an insulating junction box, which was conventionally required to separate the shield current from the core current.

加えて、電流検出素子の取り付け間隔によっては、地絡
事故点の標定も可能となり、また、検出素子を接続部の
両端部ケーブル部に取り付けることにより、ケーブル部
事故と接続部事故の区分も可能となる。
In addition, depending on the installation spacing of the current detection elements, it is possible to locate the point of a ground fault, and by attaching detection elements to the cable at both ends of the connection, it is possible to distinguish between cable failures and connection failures. becomes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はワイヤシールドケーブルの説明図、第2図はワ
イヤシールドケーブルにおける各電流成分の流れの説明
図、第3図及び第4図は、本発明における電流分離測定
手法の具体例を示し、第3図はシールド電流の周方向成
分検出例、第4図は芯線電流とシールド電流の軸方向成
分の合成成分検出例である。 図中、lは芯線、2は絶縁体、3はケーブルコア、4は
ワイヤ、5はシールド、PCはピックアップコイル、C
Tは変流器である。 篤 図 第 図 3(〒−γ)しファノ 第 旧 第
Fig. 1 is an explanatory diagram of a wire shielded cable, Fig. 2 is an explanatory diagram of the flow of each current component in the wire shielded cable, and Figs. 3 and 4 show a specific example of the current separation measurement method in the present invention. FIG. 3 shows an example of detecting the circumferential component of the shield current, and FIG. 4 shows an example of detecting the combined component of the core current and the axial component of the shield current. In the figure, l is the core wire, 2 is the insulator, 3 is the cable core, 4 is the wire, 5 is the shield, PC is the pickup coil, and C
T is a current transformer. Atsushizu Figure 3 (〒-γ) and Fano Old Age

Claims (2)

【特許請求の範囲】[Claims] (1)ケーブルコア上に所定の巻き付け角度をもって巻
き付けられたワイヤシールドに流れるシールド電流のケ
ーブル周方向成分、及びケーブルコアの芯線に流れる芯
線電流とワイヤシールドに流れるシールド電流の軸方向
成分の合成成分の何れか一方あるいは両方を検出してシ
ールド電流または芯線電流を求めることを特徴とするワ
イヤシールドケーブルにおける電流分離測定方法。
(1) The cable circumferential component of the shield current that flows through the wire shield wound at a predetermined winding angle on the cable core, and the composite component of the core wire current that flows through the core wire of the cable core and the axial component of the shield current that flows through the wire shield. 1. A current separation measurement method in a wire shielded cable, characterized by detecting either or both of the above to determine the shield current or the core current.
(2)シールド電流の周方向成分の検出手段が、ケーブ
ルの軸方向に対して直角に交差して当該ケーブル上に巻
回されたピックアップコイルからなる請求項(1)記載
の電流分離測定方法。
(2) The current separation measurement method according to claim 1, wherein the means for detecting the circumferential component of the shield current comprises a pickup coil wound on the cable at right angles to the axial direction of the cable.
JP8642089A 1989-04-05 1989-04-05 Method for measuring current separation in wire shielded cables Expired - Lifetime JPH0789137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8642089A JPH0789137B2 (en) 1989-04-05 1989-04-05 Method for measuring current separation in wire shielded cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8642089A JPH0789137B2 (en) 1989-04-05 1989-04-05 Method for measuring current separation in wire shielded cables

Publications (2)

Publication Number Publication Date
JPH02264876A true JPH02264876A (en) 1990-10-29
JPH0789137B2 JPH0789137B2 (en) 1995-09-27

Family

ID=13886395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8642089A Expired - Lifetime JPH0789137B2 (en) 1989-04-05 1989-04-05 Method for measuring current separation in wire shielded cables

Country Status (1)

Country Link
JP (1) JPH0789137B2 (en)

Also Published As

Publication number Publication date
JPH0789137B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
US8058881B2 (en) Method for checking the current flow through individual wires of a braided wire, and apparatus for carrying out the method
RU2717397C1 (en) Device and method for measuring current strength of one separate wire of multi-wire system
CA2593553C (en) Aerospace movement probe
GB2227845A (en) Loop-impedance-tester
JPH02264876A (en) Measuring method for current separation in wire shield cable
WO2022070842A1 (en) Magneto-impedance sensor element
US8253410B2 (en) Protective system for a multiple channel transformer probe
JP3681483B2 (en) Insulated wire defect detection method
JP2004170172A (en) Electric field and magnetic field sensor
JPH0261710B2 (en)
JPH0778516B2 (en) Ground fault fault location method for wire shielded power cables
JP2018054490A (en) Current sensor and current detector
JPH1073631A (en) Method and apparatus for detecting defect of insulated wire
JP2850463B2 (en) Power cable deterioration diagnosis method
JP2628738B2 (en) Power cable test equipment
JPH03175375A (en) Detection of cable current
JPH0749365A (en) Measuring method for partial discharge
JPH0231881Y2 (en)
JPS60216252A (en) Cracking monitor for resin molded electric appliance
JPH03170881A (en) Locating method for accident point of underground line
JPS62168073A (en) Monitoring method for power-transmission line
JPH03170882A (en) Method for separating and measuring cable conductor current and shield current from outer periphery of cable
JPH0616069B2 (en) Insulation deterioration detector for power cable
JPH05322964A (en) Device for measuring insulation deterioration of power cable
JPH03198615A (en) Conductor shift detector for power cable connecting box