JPH02263766A - Production of ceramic parts - Google Patents

Production of ceramic parts

Info

Publication number
JPH02263766A
JPH02263766A JP1083511A JP8351189A JPH02263766A JP H02263766 A JPH02263766 A JP H02263766A JP 1083511 A JP1083511 A JP 1083511A JP 8351189 A JP8351189 A JP 8351189A JP H02263766 A JPH02263766 A JP H02263766A
Authority
JP
Japan
Prior art keywords
molded body
thermosetting resin
atmosphere
temp
thermosetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1083511A
Other languages
Japanese (ja)
Inventor
Masaru Kumagai
勝 熊谷
Takashi Aoba
青葉 尭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1083511A priority Critical patent/JPH02263766A/en
Publication of JPH02263766A publication Critical patent/JPH02263766A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To sufficiently cure thermosetting resin by heating a molded body constituting of nonoxidic ceramics powder, thermosetting resin and a cure accelerating adjuvant at specified temp. in the oxygen atmosphere and thereafter heating it in the nonoxidative atmosphere. CONSTITUTION:(B) 10 to 20 pts.wt. thermosetting resin (e.g. phenolic resin) for a component A discribed hereunder which is utilized as a binder, (C) 15 pts.wt. cure accelerating adjuvant (e.g. dicumyl peroxide) for the component A which is utilized for the component B and (C) a plasticizer and a lubricant, etc., in accordance with necessity are mixed with (A) nonoxide ceramics powder (e.g. Si3N4 powder). This mixture is kneaded, ground and thereafter injection- molded to obtain a molded body. Then this molded body is heated at the thermosetting starting temp. of the component D concretely <=200 deg.C at 1 to 20 deg.C/hour rate of temp. rise in the oxygen atmosphere (e.g. the atmosphere). Thereafter it is heated at the highest temp. of degreasing concretely <=500 deg.C at 5 to 50 deg.C/ hour rate of temp. rise in the nonoxidative atmosphere (e.g. gaseous nitrogen) and degreased.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は弗酸化セラミックス部品の製造方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing fluoroceramic parts.

(従来の技術) セラミックス部品の製造方法として、射出成形により成
形体を成形する方法がある。この製造方法は、セラミッ
クス粉末にバインダとしての樹脂や有機物添加剤を添加
して加熱混練し、得られた混線物を射出成形して所定形
状の成形体を成形し、さ、らに成形体に脱脂処理を行な
い成形体に含まれる添加剤を除去し、その後で成形体を
焼結して焼結体を形成する方法である。そして、この方
法において、セラミックスに添加する樹脂としては成形
体の強度を高めるために熱硬化性樹脂を使用することが
行なわれている。
(Prior Art) As a method of manufacturing ceramic parts, there is a method of molding a molded body by injection molding. This manufacturing method involves adding a resin as a binder and an organic additive to ceramic powder, heating and kneading the mixture, injection molding the resulting mixed material to form a molded body of a predetermined shape, and then forming the molded body into a molded body. In this method, additives contained in the molded body are removed by degreasing, and then the molded body is sintered to form a sintered body. In this method, a thermosetting resin is used as the resin added to the ceramic in order to increase the strength of the molded body.

しかして、このように射出成形で成形体を成形する製造
方法は窒化物、炭化物などの非酸化物のセラミックス部
品を製造する場合にも採用されている。この製造方法で
は、脱脂工程を非酸化雰囲気、具体的には不活性ガス雰
囲気の中で成形体を加熱して行なっている。これは従来
から非酸化物セラミックスは非酸化雰囲気中で加熱する
と変質するおそれがあると考えられているためである。
Therefore, the manufacturing method of molding a molded body by injection molding is also employed when manufacturing non-oxide ceramic parts such as nitrides and carbides. In this manufacturing method, the degreasing step is carried out by heating the molded body in a non-oxidizing atmosphere, specifically an inert gas atmosphere. This is because it has been conventionally believed that non-oxide ceramics may deteriorate in quality when heated in a non-oxidizing atmosphere.

(発明が解決しようとする問題点) しかし、このような従来の方法においては、非酸化物セ
ラミックス粉末に熱硬化性樹脂を添加した飼料を使用し
て射出成形した成形体を脱脂処理する場合に、熱硬化性
樹脂が充分に熱硬化せず、成形体の強度の向上が不充分
であるという問題がある。
(Problems to be Solved by the Invention) However, in such conventional methods, when degreasing a molded body that has been injection molded using feed prepared by adding a thermosetting resin to non-oxide ceramic powder, However, there is a problem in that the thermosetting resin is not sufficiently thermoset and the strength of the molded article is insufficiently improved.

そこで、非酸化物セラミックス粉末に熱硬化性樹脂と一
緒にこの樹脂の熱硬化を促進させるために過酸化物を添
加して成形体を成形し、脱脂工程で添加されている硬化
促進用助剤の作用により熱硬化樹脂を充分熱硬化させて
成形体の強度を高める方法が考えられている。しかしな
がら、この場合にも成形体を非酸化雰囲気の中で脱脂す
ると、硬化促進用助剤が充分作用せず熱硬化性樹脂の硬
化促進を期待できないという問題がある。
Therefore, in order to accelerate the thermosetting of this resin, peroxide is added to the non-oxide ceramic powder together with a thermosetting resin to form a molded body, and a curing accelerating aid is added during the degreasing process. A method has been considered in which the thermosetting resin is sufficiently thermally cured by the action of 1 to increase the strength of the molded article. However, in this case as well, there is a problem in that if the molded body is degreased in a non-oxidizing atmosphere, the curing accelerating aid does not work sufficiently and the curing of the thermosetting resin cannot be expected to be accelerated.

本発明は前記事情に基づいてなされたもので、成形体に
含まれる硬化促進用助剤を充分作用させて熱硬化樹脂を
充分熱硬化させることにより、高い強度を有する射出成
形された非酸化物セラミックス成形体を得ることができ
るセラミ、ツクス部品の製造方法を提供することを目的
とする。
The present invention has been made based on the above-mentioned circumstances, and it is possible to produce an injection molded non-oxide material having high strength by fully allowing the curing accelerating aid contained in the molded article to sufficiently heat-cure the thermosetting resin. It is an object of the present invention to provide a method for manufacturing ceramic and tuxedo parts by which a ceramic molded body can be obtained.

C発明の構成コ (問題点を解決するための手段と作用)本発明の発明者
は非酸化物セラミックスの製造方法について研究を重ね
てきた。その結果、成形体に含まれる硬化促進用助剤は
酸素が存在しないと作用しにくく、このため非酸化雰囲
気中で脱脂処理を行なうと助剤が充分作用しないことを
見出した。そして、成形体を酸素雰囲気中で加熱する実
験を行なった結果、成形体が熱硬化性樹脂が熱硬化を開
始する温度まで温度上昇する間に助剤が活発に作用して
、成形体がこの温度まで熱せられると、酸素存在下の助
剤の活発な作用により熱硬化樹脂が迅速Cご熱硬化を開
始し、さらに成形体が加熱されると熱硬化樹脂が充分熱
硬化することがわかった。しかし、従来より非酸化物セ
ラミックスの脱脂は非酸化雰囲気で行なわないと駄目で
あると考えられてきたが、発明者はこの点を見直すため
に前記の実験の中で成形体の非酸化物セラミックス成分
の状態を観察した結果、熱硬化性樹脂の熱硬化が開始さ
れる温度までは非酸化物セラミックス成分が同等変質し
ないことを確認できた。
C. Constitution of the Invention (Means and Effects for Solving the Problems) The inventor of the present invention has conducted repeated research on methods for producing non-oxide ceramics. As a result, it was found that the curing accelerating auxiliary agent contained in the molded article does not work well in the absence of oxygen, and therefore, when degreasing treatment is performed in a non-oxidizing atmosphere, the auxiliary agent does not work sufficiently. As a result of an experiment in which the molded body was heated in an oxygen atmosphere, it was found that while the temperature of the molded body rose to the temperature at which the thermosetting resin started thermosetting, the auxiliary agent acted actively and the molded body It was found that when heated to this temperature, the thermosetting resin quickly begins to thermoset due to the active action of the auxiliary agent in the presence of oxygen, and that when the molded body is further heated, the thermosetting resin is sufficiently thermosetted. . However, it has been conventionally believed that degreasing of non-oxide ceramics must be carried out in a non-oxidizing atmosphere, but in order to reconsider this point, the inventor conducted As a result of observing the state of the components, it was confirmed that the non-oxide ceramic components did not change in quality up to the temperature at which thermosetting of the thermosetting resin started.

これらのことから成形体を熱硬化性樹脂が硬化を開始す
る温度までは酸素雰囲気中で加熱することゝにより、成
形体のセラミックス成分を変質させることなく硬化促進
助剤を活発に作用させて熱硬化性樹脂を充分熱硬化させ
ることができことを見出した。
For these reasons, by heating the molded body in an oxygen atmosphere to the temperature at which the thermosetting resin begins to harden, the hardening accelerator can actively act and the heat can be applied without changing the quality of the ceramic components of the molded body. It has been found that the curable resin can be sufficiently thermally cured.

本発明のセラミックス部品の製造方法は、非酸化物セラ
ミックス粉末と熱硬化性樹脂とこの熱硬化性樹脂の硬化
を促進させる助剤とを混合した材料を射出成形して得た
成形体に脱脂を行なうに際して、前記成形体を大気中に
おいて前記熱硬化性樹脂が熱硬化を開始する温度まで加
熱し、その後前記成形体を非酸化雰囲気において加熱す
ることを特徴とするものである。
The method for manufacturing ceramic parts of the present invention involves degreasing a molded body obtained by injection molding a material containing a mixture of non-oxide ceramic powder, a thermosetting resin, and an auxiliary agent that accelerates the hardening of the thermosetting resin. When carrying out this process, the molded body is heated in the atmosphere to a temperature at which the thermosetting resin starts thermosetting, and then the molded body is heated in a non-oxidizing atmosphere.

本発明のセラミックス部品の製造方法につい−C説明す
る。
The method for manufacturing ceramic parts of the present invention will be explained below.

まず、非酸化物セラミックス粉末に熱硬化性樹脂、硬化
促進用助剤およびその他の一般助剤を添加して加熱混練
する。非酸化物セラミックスとしては513N4などの
窒化物セラミックス、SICなどの炭化物セラミックス
などが代表的なものとして挙げられる。熱硬化性樹脂は
バインダーとして添加するもので、尿素樹脂、メラミン
樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエス
テル、アルキド樹脂、ウレタン樹脂、エボナイトなどが
挙られる。これらの熱硬化性樹脂のセラミックス粉末に
対する添加割合は10〜20重量部である。熱硬化性樹
脂の熱硬化を促進させるための助剤は、DCP (ジク
ミルパーオキサイド)などが挙げられる。この助剤のセ
ラミックス粉末に対する添加割合は1〜5重量部である
。また、一般の助剤は可塑剤や滑剤などとして添加する
もので、パラフィンワックス、ステアリン酸、D、0.
Pなどが挙げられる。この一般助剤の添加割合は5〜2
0重量部である。
First, a thermosetting resin, a curing accelerating aid, and other general aids are added to non-oxide ceramic powder, and the mixture is heated and kneaded. Typical non-oxide ceramics include nitride ceramics such as 513N4 and carbide ceramics such as SIC. The thermosetting resin is added as a binder, and examples include urea resin, melamine resin, phenol resin, epoxy resin, unsaturated polyester, alkyd resin, urethane resin, and ebonite. The proportion of these thermosetting resins added to the ceramic powder is 10 to 20 parts by weight. Examples of the auxiliary agent for accelerating thermosetting of the thermosetting resin include DCP (dicumyl peroxide). The proportion of this auxiliary agent added to the ceramic powder is 1 to 5 parts by weight. In addition, general auxiliary agents are added as plasticizers and lubricants, such as paraffin wax, stearic acid, D, 0.
Examples include P. The addition ratio of this general auxiliary agent is 5 to 2
It is 0 parts by weight.

次いで、得られた混練物を射出成形機に入れ金型の内部
に射出して所定形状の成形体を成形する。
Next, the obtained kneaded material is put into an injection molding machine and injected into a mold to form a molded article of a predetermined shape.

次に、得られた成形体を脱脂炉に入れて加熱して脱脂す
ることにより、成形体に含まれる樹脂、助剤を分解させ
て除去する。この脱脂工程では、まず成形体を酸素雰囲
気すなわち大気中において成形体に含まれる熱硬化性樹
脂の熱硬化開始温度、具体的には200℃まで加熱する
。この場合の昇温速度は1〜b 低融点成分が気化して成形体から除去される。さらに、
成形体が温度200℃まで加熱された後は、成形体を非
酸化雰囲気、具体的にはN2ガスなどの不活性ガス雰囲
気中において脱脂最高温度、具体的には500℃まで加
熱して成形体の脱脂を行なう。この場合の昇温速度は5
〜b ある。この段階で高融点成分が気化して成形体から除去
される。ここで、前半の酸素雰囲気中での脱脂処理につ
いて説明する。酸素雰囲気中で成形体を熱硬化性樹脂の
熱硬化開始温度まで加熱する場合には、成形体の非酸化
物セラミックス成分は同等変質しない。そして、酸素の
存在下で成形体に含まれる硬化促進用助剤が活発に作用
する。このため、後半で成形体を非酸化雰囲気で加熱し
て成形体の温度が熱硬化性樹脂の硬化開始温度を越える
と、硬化促進用助剤の活発な作用により熱硬化性樹脂の
熱硬化が促進され充分硬化する。すなわち、熱硬化性樹
脂の脱水素反応と酸化架橋が進行し成形体の内部で網状
構造が生じるため成形体が硬化してほとんど変形しなく
なる。なお、硬化した樹脂は成形体の温度上昇とともに
徐々にあるいは急激に分解するが、その時点では他の低
融点成分が除去した後なので、成形体には微細孔ができ
、樹脂の分解物は要因に微細孔を通り除去されるので成
形体には亀裂や脹れが発生しない。この場合、非酸化雰
囲気状態ではカーボンが少し残存することがあるが、最
後に酸化雰囲気でカーボンを燃焼させることにより、好
ましい効果を奏する。
Next, the obtained molded body is placed in a degreasing furnace and heated to be degreased, thereby decomposing and removing the resin and auxiliary agent contained in the molded body. In this degreasing step, the molded body is first heated in an oxygen atmosphere, that is, in the air, to the thermosetting start temperature of the thermosetting resin contained in the molded body, specifically, to 200°C. The temperature increase rate in this case is 1 to b. The low melting point component is vaporized and removed from the molded body. moreover,
After the molded body is heated to a temperature of 200°C, the molded body is degreased in a non-oxidizing atmosphere, specifically an inert gas atmosphere such as N2 gas, and heated to a maximum temperature of 500°C. Degrease. In this case, the heating rate is 5
~b Yes. At this stage, the high melting point components are vaporized and removed from the molded body. Here, the first half of the degreasing treatment in an oxygen atmosphere will be explained. When the molded body is heated to the thermosetting start temperature of the thermosetting resin in an oxygen atmosphere, the non-oxide ceramic component of the molded body does not change in quality to the same extent. In the presence of oxygen, the curing accelerator contained in the molded article actively acts. Therefore, if the molded body is heated in a non-oxidizing atmosphere in the second half and the temperature of the molded body exceeds the curing start temperature of the thermosetting resin, the thermosetting resin will not be thermoset due to the active action of the curing accelerator. Accelerated and fully cured. That is, the dehydrogenation reaction and oxidative cross-linking of the thermosetting resin proceed to form a network structure inside the molded article, so that the molded article is hardened and hardly deformed. Note that the cured resin decomposes gradually or rapidly as the temperature of the molded object increases, but at that point, other low melting point components have been removed, so micropores are formed in the molded object, and the decomposition products of the resin are a factor. Since the molded product is removed through micropores, no cracks or bulges occur in the molded product. In this case, some carbon may remain in a non-oxidizing atmosphere, but a favorable effect can be achieved by finally burning the carbon in an oxidizing atmosphere.

このようにして得られた高い強度を有する成形体を、そ
の後で焼結炉に入れ焼結して高い品質の非酸化セラミッ
クスの焼結体を形成する。
The thus obtained compact having high strength is then placed in a sintering furnace and sintered to form a high quality non-oxidizing ceramic sintered body.

(実施例) 非酸化セラミックス粉末として平均粒径0.8μlのS
l 3 N4粉末=100重量部、熱硬化性樹脂として
フェノール樹脂:15重量部、硬化促進用助剤としてD
CP (ジクミルパーオキサイド)3重量部、その他の
助剤としてパラフィンワックス;5重量部、ステアリン
酸:2重量部、D、O,P:5重量部を混合、混練し、
この混練物を粉砕気で粉砕して射出成形用材料とした。
(Example) S with an average particle size of 0.8 μl as a non-oxidized ceramic powder
l 3 N4 powder = 100 parts by weight, phenol resin as thermosetting resin: 15 parts by weight, D as curing accelerator
Mix and knead 3 parts by weight of CP (dicumyl peroxide), 5 parts by weight of paraffin wax as other auxiliaries, 2 parts by weight of stearic acid, and 5 parts by weight of D, O, P.
This kneaded material was pulverized with pulverizing air to obtain a material for injection molding.

次にこの材料を使用して射出成形した。この場合、加熱
筒温度150℃、射出圧力800Kgf/cd、金型温
度60℃の条件で射出成形し、を成形した。
This material was then used for injection molding. In this case, injection molding was performed under the conditions of a heating cylinder temperature of 150°C, an injection pressure of 800 kgf/cd, and a mold temperature of 60°C.

次に得られた成形体を脱脂炉の内部に設置し、5℃/時
間の昇温速度で室温から500℃まで加熱した。この途
中成形体に含まれるフェノール樹脂の熱硬化反応を充分
に行なわせるために170℃の段階で5時間保持した。
Next, the obtained molded body was placed inside a degreasing furnace and heated from room temperature to 500°C at a temperature increase rate of 5°C/hour. In order to sufficiently carry out the thermosetting reaction of the phenol resin contained in this intermediate molded product, the temperature was maintained at 170° C. for 5 hours.

この際脱脂雰囲気として180℃までコンプレッサによ
り空気を10g/分で炉内に送り、次いでN2ガスを2
M3/時間で保持した。加熱終了後にN2ガスの供給を
止め、脱脂炉の内部に空気を送って残存するカーボンを
燃焼させた。
At this time, as a degreasing atmosphere, air is sent into the furnace at a rate of 10 g/min up to 180°C, and then N2 gas is
It was held at M3/hour. After the heating was completed, the supply of N2 gas was stopped, and air was sent into the interior of the degreasing furnace to burn off the remaining carbon.

脱脂した成形体の重量から成形体の脱脂率を測定した結
果99%であった。脱脂の成形体の変形量をおよび表面
欠陥を調べたところ、それらは認められず健全な成形体
が得られた。
The degreasing rate of the molded product was measured from the weight of the degreased molded product and was found to be 99%. When the degreased molded body was examined for deformation and surface defects, no such defects were observed and a sound molded body was obtained.

また、比較例として本発明例と同じ材料で成形体のロー
タを成形し、この成形体を全てN2ガスの中で5℃/時
間の昇温速度で500℃まで加熱して脱脂処理を行なっ
た。脱脂後の成形体を調べたところ軸部に大きな変形や
亀裂が認められた。
In addition, as a comparative example, a rotor of a molded body was molded from the same material as the inventive example, and the molded body was heated to 500°C at a temperature increase rate of 5°C/hour in N2 gas to perform a degreasing treatment. . When the compact was examined after degreasing, large deformations and cracks were found in the shaft.

[発明の効果] 以上説明したように本発明のセラミックス部品の製造方
法によれば、射出成形された非酸化物セラミックスの成
形体を脱脂するに際して、成形体に含まれる硬化促進°
用助剤を活発に作用させて熱硬化性樹脂を充分熱硬化さ
せ健全なセラミックス成形体を得ることができる。
[Effects of the Invention] As explained above, according to the method for manufacturing ceramic parts of the present invention, when degreasing an injection-molded non-oxide ceramic molded body, the hardening accelerating temperature contained in the molded body is removed.
By making the auxiliary agent act actively, the thermosetting resin can be sufficiently thermally cured, and a sound ceramic molded body can be obtained.

4、4,

【図面の簡単な説明】[Brief explanation of drawings]

第1図はロータの成形体を示す正面図である。 ・・・成形体。 FIG. 1 is a front view showing a molded rotor. ...Molded object.

Claims (2)

【特許請求の範囲】[Claims] (1)非酸化物セラミックス粉末と熱硬化性樹脂とこの
熱硬化性樹脂の硬化を促進させる助剤との混合した材料
を射出成形して得た成形体を脱脂するに際して、前記成
形体を酸素雰囲気中において前記熱硬化性樹脂が熱硬化
を開始する温度まで加熱し、その後前記成形体を非酸化
雰囲気において加熱することを特徴とするセラミックス
部品の製造方法。
(1) When degreasing a molded body obtained by injection molding a mixture of a non-oxide ceramic powder, a thermosetting resin, and an auxiliary agent that accelerates the hardening of the thermosetting resin, the molded body is exposed to oxygen. A method for manufacturing a ceramic component, comprising heating the thermosetting resin in an atmosphere to a temperature at which it starts thermosetting, and then heating the molded body in a non-oxidizing atmosphere.
(2)熱硬化性樹脂が熱硬化を開始する温度は200℃
以下である特許請求の範囲第1項記載のセラミックス部
品の製造方法。
(2) The temperature at which thermosetting resin starts thermosetting is 200°C
A method for manufacturing a ceramic component according to claim 1, which is as follows.
JP1083511A 1989-03-31 1989-03-31 Production of ceramic parts Pending JPH02263766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1083511A JPH02263766A (en) 1989-03-31 1989-03-31 Production of ceramic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1083511A JPH02263766A (en) 1989-03-31 1989-03-31 Production of ceramic parts

Publications (1)

Publication Number Publication Date
JPH02263766A true JPH02263766A (en) 1990-10-26

Family

ID=13804512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1083511A Pending JPH02263766A (en) 1989-03-31 1989-03-31 Production of ceramic parts

Country Status (1)

Country Link
JP (1) JPH02263766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058413A (en) * 2012-09-14 2014-04-03 Taiheiyo Cement Corp Ceramic preform, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058413A (en) * 2012-09-14 2014-04-03 Taiheiyo Cement Corp Ceramic preform, and method for producing the same

Similar Documents

Publication Publication Date Title
US4783297A (en) Method of producing ceramic parts
JPH02263766A (en) Production of ceramic parts
US5209885A (en) Aqueous extrusion of silicon nitride
US5030397A (en) Method of making large cross section injection molded or slip cast ceramics shapes
JP3051897B2 (en) Method for producing graphite dispersed ceramic molded body
JPS6129907B2 (en)
JP3297547B2 (en) Method for producing silicon carbide sintered body
JPH01261251A (en) Forming of powder
JPS6389462A (en) Manufacture of silicon nitride base sintered body
RU2781232C1 (en) Ceramic suspension for 3d printing and a method for producing complex-profile silicon carbide products based on reaction-bonded silicon carbide using 3d printing
JPS62113765A (en) Manufacture of silicon carbide formed body
JP2705618B2 (en) Method for producing silicon nitride sintered body
JP2658944B2 (en) Silicon nitride-titanium nitride composite ceramics and method for producing the same
JPH0459655A (en) Production of ceramic sintered compact
JPH0873272A (en) Ceramic molding composition
JPH08113668A (en) Production of mesocarbon powder molding and production of carbon sinter
JP3541445B2 (en) Powder molding method
JP2004091267A (en) Porous body, and composite material and pump part using the same
JPH11322441A (en) Production of inorganic powder molding and inorganic powder molding
JPS63201058A (en) Manufacture of ceramic sintered body
JPH01119563A (en) Production of silicon nitride-based sintered compact
JPS62260761A (en) Composition for ceramic injection forming
JPH0823042B2 (en) Metal injection molding method
JPS6169405A (en) Manufacture of complicate form ceramic part
JPS5891063A (en) Manufacture of sic ceramic sintered body