JPH02263726A - Production of superconducting ceramic fiber - Google Patents

Production of superconducting ceramic fiber

Info

Publication number
JPH02263726A
JPH02263726A JP1259828A JP25982889A JPH02263726A JP H02263726 A JPH02263726 A JP H02263726A JP 1259828 A JP1259828 A JP 1259828A JP 25982889 A JP25982889 A JP 25982889A JP H02263726 A JPH02263726 A JP H02263726A
Authority
JP
Japan
Prior art keywords
ceramic fiber
superconducting ceramic
fiber
superconducting
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1259828A
Other languages
Japanese (ja)
Inventor
Masashi Onishi
正志 大西
Takashi Kogo
隆司 向後
Tetsuya Osugi
哲也 大杉
Gotaro Tanaka
豪太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1259828A priority Critical patent/JPH02263726A/en
Priority to US07/435,039 priority patent/US4975416A/en
Priority to AU44635/89A priority patent/AU4463589A/en
Priority to ES89121306T priority patent/ES2075843T3/en
Priority to SU894742467A priority patent/RU1831470C/en
Priority to DE68922965T priority patent/DE68922965T2/en
Priority to EP89121306A priority patent/EP0369464B1/en
Priority to KR1019890016741A priority patent/KR920003025B1/en
Priority to CN89108697A priority patent/CN1027776C/en
Priority to BR898905840A priority patent/BR8905840A/en
Publication of JPH02263726A publication Critical patent/JPH02263726A/en
Priority to US07/612,457 priority patent/US5229357A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/022Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from molten glass in which the resultant product consists of different sorts of glass or is characterised by shape, e.g. hollow fibres, undulated fibres, fibres presenting a rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/733Rapid solidification, e.g. quenching, gas-atomizing, melt-spinning, roller-quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/739Molding, coating, shaping, or casting of superconducting material
    • Y10S505/74To form wire or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/742Annealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Glass Compositions (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To improve flexibility and to increase critical current density due to a thermal treatment of a long size fiber produced by drawing a molten glass base material obtained by cooling a molten mixture of starting powdery raw materials. CONSTITUTION:A powdery mixture of starting materials capable of forming a superconducting oxide, e.g. Bi2O3, SrCO3 and CaCO3 is melted by heating at a temp. between the m.p. of the mixture and the m.p. +400 deg.C and the molten mixture is cooled to obtain a glass base material. This base material is heated and drawn into a fiber and this fiber is heat-treated by holding at the crystal nucleus formation temp. for >=1hr and further holding at the crystal growth temp. for >=20hr. The heat-treated fiber may be clad with a metal and heat- treated under pressure as required.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超電導セラミックスファイバの製造方法に関
するもである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a superconducting ceramic fiber.

〔従来の技術〕[Conventional technology]

従来、超電導セラミックスファイバなどの超電導線材は
、例えば「銀シースバイブ伸線法」により製造されてい
る。この方法では、まず原料としてB 1 0  s 
S r COSCa COs Cu 0等が秤量、混合
された後、予備焼結されて微粉末に粉砕される。次いで
、この原料混合粉末を銀(Ag )バイブに充填した後
、冷間加工を経て伸線され、細径化される。しかる後、
その線材を熱処理することにより、超電導現象を呈する
線材とされている。
Conventionally, superconducting wires such as superconducting ceramic fibers have been manufactured by, for example, the "silver sheath vibe wire drawing method." In this method, first, B 10 s is used as a raw material.
After S r COSCa COs Cu 0, etc. are weighed and mixed, they are pre-sintered and ground into fine powder. Next, this raw material mixed powder is filled into a silver (Ag) vibrator, and then cold-worked and wire-drawn to reduce the diameter. After that,
By heat-treating the wire, the wire exhibits superconductivity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の製造方法では下記のような問題が
あった。第1は、バイブを冷間加工によって伸線してい
るため、長尺な線材を連続して得られないことである。
However, conventional manufacturing methods have the following problems. First, since the vibrator is drawn by cold working, it is not possible to continuously obtain a long wire rod.

第2は、原料混合粉末をバイブに充填して伸線している
ため、バイブの内部で原料混合粉末が途切れることがあ
り、従って十分な細径化ができないことである。第3は
、銀シースで覆った状態で熱処理しているため、超電導
セラミックスの作製において重要な酸素の供給が不十分
になることである。
Second, since the raw material mixed powder is filled in a vibrator for wire drawing, the raw material mixed powder may be interrupted inside the vibrator, and therefore, sufficient diameter reduction cannot be achieved. Third, since heat treatment is performed while covered with a silver sheath, the supply of oxygen, which is important in the production of superconducting ceramics, becomes insufficient.

[課題を解決するための手段〕 本発明者は上記課題の解決のため、鋭意研究を重ねた結
果、長尺であって可撓性が高く、しかも高い臨界電流密
度を有する超電導セラミックスファイバの製造方法を見
出した。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventor has conducted intensive research and has succeeded in manufacturing a superconducting ceramic fiber that is long, highly flexible, and has a high critical current density. I found a way.

この製造方法においては、まず第1工程として、超電導
酸化物を構成し得る原料混合粉末が用意され、その融点
温度以上での加熱溶融の後に、急速冷却によって超伝導
組成のガラス母材が形成される。ここで、加熱溶融温度
は原料混合粉末の融点プラス400℃を越えないように
することが望ましい。これは、原料混合粉末中の蒸気圧
の高い成分が揮散しないようにするためである。また、
急冷処理は例えば原料融液を鉄板上に流してプレスすれ
ばよい。また、原料に炭酸塩を使用したとき:ごは、カ
ーボンを除去するため800℃程度で仮焼してもよい。
In this manufacturing method, in the first step, a raw material mixed powder that can constitute a superconducting oxide is prepared, and after being heated and melted above its melting point temperature, a glass base material having a superconducting composition is formed by rapid cooling. Ru. Here, it is desirable that the heating melting temperature does not exceed the melting point of the raw material mixed powder plus 400°C. This is to prevent components with high vapor pressure in the raw material mixed powder from volatilizing. Also,
The rapid cooling process may be performed, for example, by pouring the raw material melt onto an iron plate and pressing it. Further, when carbonate is used as a raw material: rice may be calcined at about 800° C. to remove carbon.

次に、第2工程として、超伝導組成のガラス母材を第1
図のような紡糸装置にセットし、所望の外径のファイバ
に線引きする。第1図に示すように、ガラス母材1は石
英製のダミー棒2に固着され、このガラス母材1は石英
管3に挿入される。
Next, as a second step, a glass base material with a superconducting composition is
Set it in the spinning device as shown in the figure and draw it into a fiber of the desired outer diameter. As shown in FIG. 1, a glass base material 1 is fixed to a dummy rod 2 made of quartz, and this glass base material 1 is inserted into a quartz tube 3.

そして、石英管3の外側にはヒーター4が設けられてい
る。ダミー棒2が母材送り装置5によって下降されると
、そのダミー棒2の先端のガラス母材]はヒーター4で
加熱され、軟化して線引きが始められる。線引きされた
ファイバ6はキャプスタン7を経由して、巻取部8に巻
き取られる。なおこのときの線引き温度は、ガラス母材
1の粘性が106〜10’  [poise ]の範囲
に相当する温度であることが望ましい。
A heater 4 is provided outside the quartz tube 3. When the dummy rod 2 is lowered by the base material feeding device 5, the glass base material at the tip of the dummy rod 2 is heated by the heater 4, softened, and wire drawing begins. The drawn fiber 6 passes through a capstan 7 and is wound into a winding section 8 . Note that the drawing temperature at this time is preferably a temperature corresponding to a viscosity of the glass base material 1 in the range of 10 6 to 10' [poise].

次に、第3工程として、線引きされたファイバの熱処理
による再結晶化を行なう。熱処理条件については、アモ
ルファス状態から数多くの結晶を大きく成長させるため
に、結晶核生成温度(結晶核生成の速度が最大となる温
度)で1時間以上保持した後、結晶成長温度(結晶成長
の速度が最大となる温度)で20時間以上保持する。結
晶核生成温度はガラスの粘性が10 〜1012[po
lse ]の範囲に相当する温度であり、結晶成長温度
は原料の組成によって異なる。また、結晶核の生成を促
進するために、核形成剤としてAgを添加することも有
効である。ここで、Agは超電導特性に悪影響を及ぼさ
ない(“Applied physics Lette
r52(19)、9 May 、198B ’)。
Next, as a third step, the drawn fiber is recrystallized by heat treatment. Regarding the heat treatment conditions, in order to grow large numbers of crystals from an amorphous state, the temperature is maintained at the crystal nucleation temperature (the temperature at which the rate of crystal nucleation is maximum) for more than one hour, and then the crystal growth temperature (the temperature at which the rate of crystal growth is the highest) is maintained. (maximum temperature) for 20 hours or more. The crystal nucleation temperature is determined when the viscosity of the glass is 10 to 1012 [po
lse ], and the crystal growth temperature varies depending on the composition of the raw material. Furthermore, in order to promote the generation of crystal nuclei, it is also effective to add Ag as a nucleating agent. Here, Ag does not have a negative effect on superconducting properties (“Applied physics Lette
r52(19), 9 May, 198B').

次に、望ましくは次の第4工程が付加される。Next, the following fourth step is preferably added.

すなわち、第3工程で得られた超電導セラミックスファ
イバをAg等の金属で被覆し、圧延機やプレス機等で加
圧して熱処理を行なう。ここで上記の加圧はファイバの
側面方向から、すなちわ電流の方向と直交する方向から
行なうのが望ましく、その程度はファイバのへき間柱が
高まり得る程度、たとえば1ton/cd程度以上の圧
力で行なうのが望ましく、熱処理は前述の結晶成長温度
で20時間程度以上行なうのが望ましい。上記の加圧お
よび熱処理は1回だけでもよいが、複数回繰り返すのが
より望ましい。さらに、加圧と熱処理の組み合せとして
は、加圧の終了後に熱処理するものの他、加圧中から熱
処理を開始するものや、加圧と熱処理を並行的に行なう
ものもある。なお、前述の金属による被覆は、ファイバ
全体が被覆可能な方法であれば、いかなるものでもよい
。例えば金属パイプにファイバを挿入したり、2枚のテ
ープ状金属でファイバを被覆したり、金属の融液中にフ
ァイバを浸漬(ディッピング)することが考えられる。
That is, the superconducting ceramic fiber obtained in the third step is coated with a metal such as Ag, and heat-treated by applying pressure using a rolling mill, a press machine, or the like. Here, it is preferable that the above-mentioned pressure is applied from the side direction of the fiber, that is, from the direction perpendicular to the direction of the current, and the pressure is set to a level that can increase the fiber spacing, for example, a pressure of about 1 ton/cd or more. The heat treatment is preferably carried out at the above-mentioned crystal growth temperature for about 20 hours or more. The above pressurization and heat treatment may be performed only once, but it is more desirable to repeat them multiple times. Furthermore, as a combination of pressurization and heat treatment, there are cases in which heat treatment is performed after completion of pressurization, cases in which heat treatment is started during pressurization, and cases in which pressurization and heat treatment are performed in parallel. Note that the above-mentioned metal coating may be performed by any method as long as the entire fiber can be coated. For example, the fiber may be inserted into a metal pipe, the fiber may be covered with two metal tapes, or the fiber may be dipped into a metal melt.

〔作用〕[Effect]

本発明によれば、ガラス母材およびファイバには被覆が
なく、酸素の出入りが自由となっているので、超電導セ
ラミックス中の酸素が欠乏したりすることがない。また
、理論密度に近いアモルファス状態から超電導結晶を析
出、成長させているために、超電導セラミックス粉末を
加圧形成する従来の方法に較べて、密度の高い緻密な超
電導セラミックスからなるファイバが得られ、臨界電流
密度の向上に対して有効に働く。また、ガラス母材から
長尺のファイバを連続して紡糸することが可能であり、
ファイバ径の制御も任意に行ないうる。
According to the present invention, the glass base material and the fiber are not coated and oxygen can freely enter and exit, so that the superconducting ceramic will not be depleted of oxygen. In addition, since superconducting crystals are precipitated and grown from an amorphous state close to the theoretical density, fibers made of dense superconducting ceramics can be obtained compared to the conventional method of forming superconducting ceramic powder under pressure. Works effectively to improve critical current density. In addition, it is possible to continuously spin long fibers from a glass base material,
The fiber diameter can also be controlled arbitrarily.

更に、加圧および熱処理の組み合せからなる工程を付加
すれば、超電導結晶のへき間柱を高めることにより、臨
界電流密度の飛躍的向上が可能になる。
Furthermore, by adding a process consisting of a combination of pressurization and heat treatment, the critical current density can be dramatically improved by increasing the interstitial pillars of the superconducting crystal.

〔実施例〕〔Example〕

以下、本発明の好適な実施例を説明する。 Hereinafter, preferred embodiments of the present invention will be described.

(実施例1) まず、B1 0  、 Pb O,Sr Co  、 
CaCO3およびCuOを B1  :Pb  :Sr  :Ca  :Cu−1,
6:0. 4:2:2:”3 となるように秤量し、混合した。この混合された粉末を
白金るつぼに入れて、1150℃で40分間溶融した後
、冷却された鉄板上に融液を流し、もう1枚の鉄板でプ
レスして211IIIの厚さの板ガラスを得た。このガ
ラスを横711111縦5(至)に加工し、これを石英
製のダミー棒の先端に取付けた後、435℃に加熱され
た電気炉に挿入して線引し、幅1.5關、厚さ100μ
m1長さ10mのテープ状ファイバを得た。
(Example 1) First, B1 0 , Pb O, Sr Co ,
CaCO3 and CuO as B1:Pb:Sr:Ca:Cu-1,
6:0. They were weighed and mixed so that the ratio was 4:2:2:3.The mixed powder was placed in a platinum crucible and melted at 1150°C for 40 minutes, then the melt was poured onto a cooled iron plate. Pressed with another iron plate to obtain a plate glass with a thickness of 211III.This glass was processed into a width of 711111 and a length of 5 (to).After attaching it to the tip of a dummy rod made of quartz, it was heated to 435℃. Insert it into a heated electric furnace and draw it to a width of 1.5 mm and a thickness of 100 μm.
A tape-shaped fiber with m1 length of 10 m was obtained.

このファイバは可撓性に優れており、直径が10m+s
のマンドレルにも十分に巻きつけることができた。次に
、このテープ状ファイバを熱処理炉に入れて、430℃
で4時間の処理(結晶核の生成処理)をした後、820
℃に昇温しで、さらに60時間の熱処理(結晶成長処理
)をした。このようにして得られた超電導セラミックス
ファイバの特性(臨界温度T 、臨界電流密度J )を
、CC 公知の4端子法で測定したところ、T  (R−0)一
86″に、J  =10OA/cd(77’に、零磁場
下)の超電導特性を得た。
This fiber has excellent flexibility and has a diameter of 10m+s.
I was able to wrap it around a mandrel. Next, this tape-shaped fiber was placed in a heat treatment furnace at 430°C.
After 4 hours of treatment (crystal nucleus generation treatment), 820
The temperature was raised to .degree. C., and heat treatment (crystal growth treatment) was performed for an additional 60 hours. The characteristics (critical temperature T, critical current density J) of the superconducting ceramic fiber obtained in this way were measured using the CC well-known four-terminal method, and it was found that T (R-0) - 86'', J = 10OA/ cd (at 77', under zero magnetic field) superconducting properties were obtained.

(実施例2) 実施例1の工程において、熱処理条件のみを変化させた
。すなわち、テープ状ファイバを熱処理炉に入れて、4
23℃で4時間の処理をした後、860℃に昇温しで1
00時間の熱処理をした。
(Example 2) In the process of Example 1, only the heat treatment conditions were changed. That is, the tape-shaped fiber is placed in a heat treatment furnace and subjected to 4
After 4 hours of treatment at 23°C, the temperature was raised to 860°C and 1
Heat treatment was performed for 00 hours.

その結果、T  CR繍0)−101’に、J  −C 100A/cj(77″に1零磁場下)の特性を得た。As a result, T CR 0)-101', J-C A characteristic of 100 A/cj (under 1 zero magnetic field at 77'') was obtained.

(実施例3) まず、B1 0  、 Pb 0%Sr Co  、C
aCO3およびCuOを Bi  :Pb  :Sr  :Ca  :Cu−1,
6:0. 4:2:2:3 となるように秤量し、混合した。その混合された原料の
重量の20%に相当するA g 20を秤量し、上記の
原料混合粉末に加えた。この原料粉末を白金るつぼに入
れ、1150℃で40分間溶融した後、冷却された鉄板
上に融液を流し、もう1枚の鉄板でプレスして2 mm
の厚さの板ガラスを得た。そして、このガラスを実施例
1と同一方法で線引し、同一温度条件で熱処理を行なっ
て超電導セラミックスファイバを得た。
(Example 3) First, B1 0 , Pb 0%Sr Co , C
aCO3 and CuO as Bi:Pb:Sr:Ca:Cu-1,
6:0. They were weighed and mixed in a ratio of 4:2:2:3. A g 20 corresponding to 20% of the weight of the mixed raw materials was weighed and added to the raw material mixed powder. This raw material powder was placed in a platinum crucible and melted at 1150°C for 40 minutes, then the melt was poured onto a cooled iron plate and pressed with another iron plate to form a 2 mm piece.
A plate glass with a thickness of . Then, this glass was drawn in the same manner as in Example 1, and heat treated under the same temperature conditions to obtain a superconducting ceramic fiber.

上記の方法によるファイバの作製を2回行ない、それぞ
れ得られた2つのファイバ(サンプルA。
The above method was used to fabricate fibers twice, resulting in two fibers (Sample A).

B)の特性を4端子法で測定したところ、サンプルAで
はT  (R−0)−87”K、J  箇250C A/cdc77’に、零磁場下)、サンプルBではT 
 (R−0)=102’KSJ  −250A/cdC (77’IC1零磁場下)の特性を得た。実施例1のも
のに比べて臨界電流密度J が向上した理由は、Agの
添加によって結晶核の生成が促進され、より緻密な組織
となったためであると考えられる。
When the characteristics of B) were measured using the four-terminal method, sample A had T(R-0)-87"K, J (at 250C A/cdc77', under zero magnetic field), and sample B had T.
A characteristic of (R-0)=102'KSJ -250A/cdC (77'IC1 under zero magnetic field) was obtained. The reason why the critical current density J was improved compared to that of Example 1 is considered to be that the addition of Ag promoted the generation of crystal nuclei, resulting in a more dense structure.

(実施例4) まず、実施例1と同様の方法でテープ状ファイバを作製
した。次に、結晶核生成のための第1段階の熱処理を行
なうことなく、直接に室温から820℃まで昇温し、6
0時間の熱処理(結晶成長処理)を施した。このように
して得られた超電導セラミックスファイバの特性を、公
知の4端子法テiT?]定したとコロ、T  (R−0
)−40’K、J  −1OA/cd (4,2π、零
磁場下)であつた。実施例1,2に比べれば劣るものの
、はぼ十分な超電導特性が得られている。
(Example 4) First, a tape-shaped fiber was produced in the same manner as in Example 1. Next, the temperature was directly raised from room temperature to 820°C without performing the first stage heat treatment for crystal nucleation.
Heat treatment (crystal growth treatment) was performed for 0 hours. The characteristics of the superconducting ceramic fiber obtained in this way were evaluated using the known four-terminal method. ] set and colo, T (R-0
) -40'K, J -1OA/cd (4,2π, under zero magnetic field). Although inferior to Examples 1 and 2, almost sufficient superconducting properties were obtained.

(実施例5) まず、実施例1と同様の方法でテープ状ファイバを作製
した。次に、結晶核生成のため第1段階の熱処理を行な
うことなく、直接に室温から860℃まで昇温し、10
0時間の熱処理(結晶成長処理)を施した。このように
して得られた超電導セラミックスファイバの特性を、公
知の4端子法で測定したところ、T  −(R−0)−
80玉、J  =1OA/cシ(77’に、零磁場下)
であった。
(Example 5) First, a tape-shaped fiber was produced in the same manner as in Example 1. Next, the temperature was directly raised from room temperature to 860°C without performing the first stage heat treatment for crystal nucleation.
Heat treatment (crystal growth treatment) was performed for 0 hours. The characteristics of the superconducting ceramic fiber obtained in this way were measured using a known four-probe method, and it was found that T -(R-0)-
80 balls, J = 1OA/c (at 77', under zero magnetic field)
Met.

(実施例6) 実施例1と同一の方法で作製したテープ状ファイバ21
を、第2図のように幅3關、厚さ300μmの2枚のA
gテープ22.23で挟み、プレス機によって20to
n/c−の圧力を加えた。次いで、このファイバを85
0℃で50時間の熱処理をした後、上記のプレス機によ
る加圧と熱処理を、同一条件で再度繰り返した。このよ
うにして得られたファイバの特性を4端子法で調べたと
ころ、77’に、零磁場下でJ  −3500A/cd
の高い臨界電流密度が観測された。
(Example 6) Tape-shaped fiber 21 produced by the same method as Example 1
As shown in Figure 2, two sheets of A with a width of 3 mm and a thickness of 300 μm are
Sandwiched with g tape 22.23 and pressed 20 to
A pressure of n/c- was applied. This fiber is then
After heat treatment at 0° C. for 50 hours, the above pressurization and heat treatment were repeated again under the same conditions. When the characteristics of the fiber obtained in this way were investigated using the four-terminal method, it was found that 77'
A high critical current density was observed.

(実施例7) まず、仕込み組成を Bi  :Pb :Sr :Ca :Cu−1,6:0
.4:2:2:3 となるように秤量し、混合した。そして、800℃で1
0時間の仮焼きをした後、粉砕して再度混合した。この
混合粉末を白金るつぼに入れ、1150℃で20分間溶
融した後、実施例1と同一方法でガラス化、線引した。
(Example 7) First, the charging composition was Bi:Pb:Sr:Ca:Cu-1,6:0
.. They were weighed and mixed in a ratio of 4:2:2:3. And 1 at 800℃
After calcination for 0 hours, the mixture was ground and mixed again. This mixed powder was placed in a platinum crucible and melted at 1150° C. for 20 minutes, and then vitrified and wire-drawn in the same manner as in Example 1.

次に、このファイバを熱処理炉に入れ、423℃の温度
条件で4時間の熱処理を行ない、860℃に昇温しで更
に240時間の熱処理を行なって超電導セラミックスフ
ァイバを得た。
Next, this fiber was placed in a heat treatment furnace and heat treated at 423° C. for 4 hours, then heated to 860° C. and further heat treated for 240 hours to obtain a superconducting ceramic fiber.

上記の方法により得られたファイバの特性を4端子法で
測定したところ、T  (R−0)−68π、J  =
51A/cd (4,2″に1零磁場下)、の特性を得
た。
When the characteristics of the fiber obtained by the above method were measured using the four-terminal method, T (R-0)-68π, J =
A characteristic of 51 A/cd (under 1 zero magnetic field at 4.2'') was obtained.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、原料を溶融、急冷するこ
とによって超電導組成のガラス母材を作製し、このガラ
ス母材を電気炉で線引することによってファイバが得ら
れるので、このファイバは長尺かつ可撓性に優れたもの
とすることができる。
As explained in detail above, a glass base material with a superconducting composition is produced by melting and rapidly cooling raw materials, and a fiber is obtained by drawing this glass base material in an electric furnace. It can be made to be long and have excellent flexibility.

また、ファイバの外径についても任意に制御することが
できる。さらに、アモルファス状態から結晶化させるこ
とで緻密な結晶組織が得られるので、臨界電流密度J 
の向上に対しても有効である。
Furthermore, the outer diameter of the fiber can also be controlled arbitrarily. Furthermore, since a dense crystal structure can be obtained by crystallizing from an amorphous state, the critical current density J
It is also effective for improving

一方、金属被覆した後に加圧、熱処理をすることで、J
 を飛躍的に向上できるので、送電用ケ−プルやマグネ
ットへの応用が期待できる。
On the other hand, by applying pressure and heat treatment after metal coating, J
Since this technology can dramatically improve the performance, it can be expected to be applied to power transmission cables and magnets.

【図面の簡単な説明】 第1図はファイバを線引きするための紡糸装置を示す図
、第2図はファイバに金属を被覆する状態を示す図であ
る。 1・・・ガラス母材、2・・・ダミー棒、4・・・ヒー
ター21・・・テープ状ファイバ、22.23・・・A
gテープ。 第1目
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a spinning device for drawing a fiber, and FIG. 2 is a diagram showing a state in which the fiber is coated with metal. DESCRIPTION OF SYMBOLS 1...Glass base material, 2...Dummy rod, 4...Heater 21...Tape-shaped fiber, 22.23...A
g tape. 1st eye

Claims (10)

【特許請求の範囲】[Claims] 1.原料混合粉末を加熱溶融した後、冷却によってガラ
ス母材とする第1工程と、前記ガラス母材を加熱してフ
ァイバに線引きする第2工程と、前記ファイバを熱処理
によって超電導セラミックスファイバとする第3工程と
を備えることを特徴とする超電導セラミックスファイバ
の製造方法。
1. A first step of heating and melting the raw material mixed powder and then cooling it to form a glass base material, a second step of heating the glass base material and drawing it into a fiber, and a third step of heating the fiber to form a superconducting ceramic fiber through heat treatment. A method for manufacturing a superconducting ceramic fiber, comprising the steps of:
2.前記第3工程で得られた超電導セラミックスファイ
バを加圧する第4工程を更に備える請求項1記載の超電
導セラミックスフィバの製造方法。
2. The method for manufacturing a superconducting ceramic fiber according to claim 1, further comprising a fourth step of pressurizing the superconducting ceramic fiber obtained in the third step.
3.前記第3工程で得られた超電導セラミックスファイ
バを加圧して熱処理する第4工程を更に備える請求項1
記載の超電導セラミックスフィバの製造方法。
3. Claim 1 further comprising a fourth step of pressurizing and heat-treating the superconducting ceramic fiber obtained in the third step.
The method for manufacturing the superconducting ceramic fiber described above.
4.前記第3工程で得られた超電導セラミックスファイ
バを金属で被覆し、加圧して熱処理する第4工程を更に
備える請求項1記載の超電導セラミックスフィバの製造
方法。
4. 2. The method for producing a superconducting ceramic fiber according to claim 1, further comprising a fourth step of coating the superconducting ceramic fiber obtained in the third step with a metal, pressurizing it, and heat-treating it.
5.前記第1工程の加熱溶融温度が、前記原料混合粉末
の融点以上であって当該融点プラス400℃以下である
請求項1,2,3または4記載の超電導セラミックスフ
ァイバの製造方法。
5. 5. The method for producing a superconducting ceramic fiber according to claim 1, wherein the heating and melting temperature in the first step is higher than the melting point of the raw material mixed powder and lower than or equal to the melting point plus 400°C.
6.前記第2工程は、前記ファイバのアモルファス状態
から多数の結晶核を均一に生成させる第1の熱処理工程
と、前記結晶核に超電導結晶を成長させる第2の熱処理
工程とを有する請求項1,2,3,4または5記載の超
電導セラミックスファイバの製造方法。
6. 2. The second step comprises a first heat treatment step for uniformly generating a large number of crystal nuclei from the amorphous state of the fiber, and a second heat treatment step for growing superconducting crystals on the crystal nuclei. , 3, 4 or 5, the method for producing a superconducting ceramic fiber.
7.前記原料混合粉末には、前記第3工程での再結晶化
のための結晶核の析出を促進する核形成剤が添加されて
いる請求項1,2,3,4,5または6記載の超電導セ
ラミックスファイバの製造方法。
7. The superconductor according to claim 1, 2, 3, 4, 5, or 6, wherein the raw material mixed powder contains a nucleating agent that promotes precipitation of crystal nuclei for recrystallization in the third step. Method of manufacturing ceramic fiber.
8.前記核形成剤がAgである請求項7記載の超電導セ
ラミックスファイバの製造方法。
8. 8. The method for manufacturing a superconducting ceramic fiber according to claim 7, wherein the nucleating agent is Ag.
9.前記第4の工程は、加圧と熱処理またはそのいずれ
かの工程を複数回繰り返す工程である請求項3または4
記載の超電導セラミックスファイバの製造方法。
9. 4. The fourth step is a step of repeating pressurization and/or heat treatment multiple times.
A method for manufacturing the superconducting ceramic fiber described.
10.前記超電導セラミックスファイバを被覆する金属
がAgである請求項4または9記載の超電導セラミック
スファイバの製造方法。
10. The method for manufacturing a superconducting ceramic fiber according to claim 4 or 9, wherein the metal coating the superconducting ceramic fiber is Ag.
JP1259828A 1988-11-18 1989-10-04 Production of superconducting ceramic fiber Pending JPH02263726A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP1259828A JPH02263726A (en) 1988-11-18 1989-10-04 Production of superconducting ceramic fiber
US07/435,039 US4975416A (en) 1988-11-18 1989-11-13 Method of producing superconducting ceramic wire
AU44635/89A AU4463589A (en) 1988-11-18 1989-11-14 Method of producing superconducting ceramic wire
DE68922965T DE68922965T2 (en) 1988-11-18 1989-11-17 Method of making superconducting ceramic wires.
SU894742467A RU1831470C (en) 1988-11-18 1989-11-17 Process of manufacture of a superconductor ceramic wire
ES89121306T ES2075843T3 (en) 1988-11-18 1989-11-17 PRODUCTION METHOD OF A CERAMIC SUPERCONDUCTOR WIRE.
EP89121306A EP0369464B1 (en) 1988-11-18 1989-11-17 Method of producing superconducting ceramic wire
KR1019890016741A KR920003025B1 (en) 1988-11-18 1989-11-18 Method of producing superconducting ceramic wire
CN89108697A CN1027776C (en) 1988-11-18 1989-11-18 Method of producing superconducting ceramic wire
BR898905840A BR8905840A (en) 1988-11-18 1989-11-20 SUPERCONDUCTIVE CERAMIC WIRE PRODUCTION METHOD
US07/612,457 US5229357A (en) 1988-11-18 1990-11-14 Method of producing superconducting ceramic wire and product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29221088 1988-11-18
JP63-292210 1988-11-18
JP1259828A JPH02263726A (en) 1988-11-18 1989-10-04 Production of superconducting ceramic fiber

Publications (1)

Publication Number Publication Date
JPH02263726A true JPH02263726A (en) 1990-10-26

Family

ID=17778945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1259828A Pending JPH02263726A (en) 1988-11-18 1989-10-04 Production of superconducting ceramic fiber

Country Status (3)

Country Link
JP (1) JPH02263726A (en)
KR (1) KR920003025B1 (en)
AU (1) AU656665B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134747A (en) * 1977-03-16 1979-01-16 Corning Glass Works Method of forming transparent and opaque portions in a reducing atmosphere glass
US4861751A (en) * 1987-07-23 1989-08-29 Standard Oil Company Production of high temperature superconducting materials

Also Published As

Publication number Publication date
KR920003025B1 (en) 1992-04-13
AU656665B2 (en) 1995-02-09
AU3709993A (en) 1993-07-29
KR900007752A (en) 1990-06-01

Similar Documents

Publication Publication Date Title
CN1027776C (en) Method of producing superconducting ceramic wire
JPH0440289B2 (en)
US5229357A (en) Method of producing superconducting ceramic wire and product
JP2822451B2 (en) Superconductor manufacturing method
JPH02263726A (en) Production of superconducting ceramic fiber
JPH03261006A (en) Manufacture of superconductive wire
JPH0346710A (en) Manufacture of superconductive wire
JPH07115924B2 (en) Method for manufacturing oxide superconductor
JPH027309A (en) Manufacture of oxide type superconductive wire
JPH03216917A (en) Manufacture of superconducting wire
JP2573961B2 (en) Superconducting wire manufacturing method
JPH0312313A (en) Production of superconducting ceramic fiber
JP3073798B2 (en) Superconducting wire manufacturing method
JPH02181315A (en) Manufacture of superconductive wire with predetermined shape
JPH0328141A (en) Production of oxide superconducting wire
JPH02230612A (en) Manufacture of oxide superconductive wire material
JPH01226735A (en) Production of superconducting material
JPH01239026A (en) Production of oxide superconducting form
JP2794245B2 (en) Method for producing Bi-based oxide superconductor single crystal
JPS58161924A (en) Manufacture of transparent thin strip of crystalline oriented lanthanum niobate
JP3411048B2 (en) Manufacturing method of oxide superconductor
JP2685951B2 (en) Method for manufacturing bismuth-based superconductor
JPH0329219A (en) Manufacture of oxide superconductive wire rod
JPH01163921A (en) Manufacture of superconductive fiber
JP2002241197A (en) Method for producing needle-like crystal of high temperature superconducting oxide