JPH01163921A - Manufacture of superconductive fiber - Google Patents

Manufacture of superconductive fiber

Info

Publication number
JPH01163921A
JPH01163921A JP63061676A JP6167688A JPH01163921A JP H01163921 A JPH01163921 A JP H01163921A JP 63061676 A JP63061676 A JP 63061676A JP 6167688 A JP6167688 A JP 6167688A JP H01163921 A JPH01163921 A JP H01163921A
Authority
JP
Japan
Prior art keywords
superconducting
substance
superconductive
space
fibrous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63061676A
Other languages
Japanese (ja)
Inventor
Akira Fukizawa
蕗沢 朗
Junichi Sato
純一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63061676A priority Critical patent/JPH01163921A/en
Publication of JPH01163921A publication Critical patent/JPH01163921A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a high density and an even quality and to realize the superconductive property and a good mechanical strength by melting a ceramics type superconductive substance, discharging it in a fiber form from a nozzle, and then applying a heat treatment to realize the superconductive property. CONSTITUTION:A ceramics type superconductive substance is heated at a temperature higher than its melting point, and resultant molten substance is discharged from a nozzle into the space, the space at a high temperature 750 to 950 deg.C, preferably, and a fibriform substance is formed. In this case, as soon as the fibriform substance is solidified, a metal membrane is attached, or after that, the fibriform substance is left for a specific time in the high temperature space. After that, the fibriform substance is heat-treated to realize the superconductive property. Consequently, a superconductive fiber of not only a high density, but also of a superconductive property at the level suitable for a practical use and a good mechanical strength can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミックス系の超電導繊維の製造方法に関し
、特に、溶融物質を紡糸することで高密度で細径の超電
導繊維を製造可能にする方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing ceramic superconducting fibers, and in particular, a method for producing high-density, small-diameter superconducting fibers by spinning a molten substance. It is related to.

[従来の技術] 最近酸化物系超電導体は、従来型の金属系或いは金属間
化合物系の超電導材料に比べて液体窒素温度よりも遥か
に高いTc  (超電導開始温度)を持っていることか
ら、各種産業分野への幅広い応用が期待されている。
[Prior Art] Recently, oxide-based superconductors have been found to have a Tc (superconductivity initiation temperature) much higher than the liquid nitrogen temperature compared to conventional metal-based or intermetallic-based superconducting materials. It is expected to have a wide range of applications in various industrial fields.

このような酸化物超電導体は、いわゆるセラミックスで
あるが、蒸着、スパッタリング、CVDなどの薄膜形成
技術を用いて、エレクトロニクスデバイス用の薄膜作製
が行われている。
Such oxide superconductors are so-called ceramics, and thin films for electronic devices are manufactured using thin film forming techniques such as vapor deposition, sputtering, and CVD.

[発明が解決しようとする課題] 一方、セラミックス超電導体よりなる超電導繊維の製造
も試みられており、例えば、ゾル・ゲル法等でセラミッ
クス繊維を作製する方法が検討されている。この方法は
、いわばセラミックス繊維の製造法と同様であって、超
電導体の微粒子を紡糸性のある溶媒に混合し、ノズルよ
り押し出して繊維状にした後、超電導体の微粒子が焼結
する温度まで加熱して繊維を作製する方法である。しか
し、この方法で作製された超電導繊維は、低密度で機械
強度が低く、超電導特性が劣り、特に、臨界電流密度が
実用上の要求値である百方アンペア/ ejには遠く及
ばない数百アンペア程度に留まっている。これは、この
ようにして作製された超電導繊維の内部には、多数の粒
界や空孔が存在しており、これらが超電導特性の向上を
妨げる原因となっているためである。
[Problems to be Solved by the Invention] On the other hand, attempts have been made to manufacture superconducting fibers made of ceramic superconductors, and, for example, methods of manufacturing ceramic fibers using a sol-gel method are being considered. This method is similar to the method for manufacturing ceramic fibers, in which superconductor fine particles are mixed with a spinnable solvent, extruded through a nozzle to form fibers, and then heated to a temperature at which the superconductor fine particles are sintered. This is a method of producing fibers by heating. However, the superconducting fibers produced by this method have low density, low mechanical strength, and poor superconducting properties, and in particular, the critical current density is several hundreds of amperes/ej, which is far from the practically required value. It remains at about ampere. This is because a large number of grain boundaries and pores are present inside the superconducting fiber produced in this manner, and these are the cause of impeding improvement in superconducting properties.

本発明は、セラミックス系超電導繊維の製造に関する上
記従来技術の欠点を解消し、高密度で、かつ、一般の焼
結体に見られるようなはっきりした粒界を備えておらず
、加えて、実用上問題のない程度の超電導特性と更には
機械強度特性を備えた超電導繊維を製造する方法を提供
することを目的とするものである。
The present invention eliminates the drawbacks of the above-mentioned conventional techniques regarding the production of ceramic superconducting fibers, has a high density, does not have clear grain boundaries as seen in general sintered bodies, and is also practical. The object of the present invention is to provide a method for manufacturing superconducting fibers having superconducting properties and mechanical strength properties that do not cause any problems.

[課題を解決するための手段] 上記目的を達成するため、本発明者は、超電導体の微粉
末を焼結する方法では限界があることに鑑みて新規なプ
ロセスを見い出すべく種々研究を重ねた結果、超電導体
の微粉末を焼結するのではなく、超電導性物質を高温で
溶解した後、紡糸し、冷却或いは徐冷しながら再結晶さ
せる方法を用いることにより、高密度で、かつ、一般の
焼結体にみられるようなはっきりした結晶粒界がない超
電導繊維を製造できることを発見し、本発明をなすに至
ったものである。
[Means for Solving the Problem] In order to achieve the above object, the present inventor conducted various studies to find a new process in view of the limitations of the method of sintering fine superconductor powder. As a result, instead of sintering fine superconductor powder, we melted the superconducting material at high temperatures, spun it, and then recrystallized it while cooling or slow cooling. The present invention was based on the discovery that it is possible to produce superconducting fibers that do not have distinct grain boundaries as seen in sintered bodies.

すなわち、超電導繊維の製造方法に係る本発明は、セラ
ミックス系超電導性物質をその溶融点以上に加熱して得
られた溶融物質をノズルより空間に、好ましくは高温の
空間に放出して繊維形状物質とし、必要に応じて、該繊
維形状物質が固化すると同時に金属膜を付着せしめ、或
いはその後該繊維状物質を該高温空間に一定時間留まら
せ、しかる後、該繊維形状物質を熱処理して超電導性を
発現させることを特徴とするものである。
That is, the present invention, which relates to a method for producing superconducting fibers, involves heating a ceramic-based superconducting material above its melting point and releasing the resulting molten material into a space, preferably into a high-temperature space, to produce a fiber-shaped material. If necessary, a metal film is attached at the same time as the fibrous material solidifies, or the fibrous material is left in the high temperature space for a certain period of time, and then the fibrous material is heat-treated to make it superconducting. It is characterized by causing the expression of

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明で使用する超電導物質としてはセラミックス系超
電導物質であり、これにはペロブスカイト型セラミック
スやビスマス系複合酸化物のセラミックスが含まれる。
The superconducting material used in the present invention is a ceramic-based superconducting material, which includes perovskite ceramics and bismuth-based composite oxide ceramics.

ペロブスカイト型セラミックスは一般式ABCuO(但
し、A: 237−x Y、L a r Nd r  S m r  E u 
+ G d + D y 、Ho 。
Perovskite ceramics have the general formula ABCuO (A: 237-x Y, L a r Nd r S m r E u
+ G d + D y , Ho.

Er、Tn+、Yb又はLu、B:Ba又はSr。Er, Tn+, Yb or Lu, B: Ba or Sr.

X:通常0〜0.35)で表わされる。又、ビスマス系
複合酸化物は資源的に入手しゃすいBi、Sr。
X: Usually expressed as 0 to 0.35). In addition, bismuth-based composite oxides include Bi and Sr, which are easily available in terms of resources.

Ca、Cu等の元素より構成されているのみならず臨界
温度が110’にと従来のY−Ba−Cu酸化物に比較
して約20’にも高い。又、水との反応も生じず化学的
に安定な物質といわれている。例えばBi −8r −
Ca −Cu系酸化物の好ましい元素比はBl : S
r : Ca : Cu =1 : 1 : 1 : 
2であり、Bi  OSrCO3,Cab、CuO23
″ を秤量混合して酸素含有雰囲気下750〜880℃で熱
処理して製造されるものである。
It is not only composed of elements such as Ca and Cu, but also has a critical temperature of 110', which is about 20' higher than that of conventional Y-Ba-Cu oxide. It is also said to be a chemically stable substance that does not react with water. For example, Bi −8r −
The preferred elemental ratio of Ca-Cu-based oxide is Bl:S
r: Ca: Cu = 1: 1: 1:
2, Bi OSrCO3, Cab, CuO23
'' are weighed and mixed and heat-treated at 750 to 880°C in an oxygen-containing atmosphere.

このようなセラミックス系酸化物超電導物質は常法によ
り、例えば構成元素の酸化物、水酸化物、無機酸塩、有
機酸塩の粉末混合、共沈法、ゾルゲル法、スプレードラ
イ法等により調合する。調合した原料はそのまま、ある
いは所定の熱処理を加えて超電導体の結晶構造とした後
、適宜材質の容器に入れ、溶融点以上の温度まで加熱し
て溶融し、溶融物質とする。例えばペロブスカイト型セ
ラミックスの場合では溶融点は約1200℃であるので
1500℃程度に加熱し、Bi  −Sr −Ca −
Cu系酸化物の場合では溶融点は約900℃であるので
1200℃程度に加熱して溶融物質とする。容器の材質
としては超電導物質と反応しない材料が好ましく、Mg
O,或いは、Slを含まないAR20a、窒化アルミ等
のセラミックスがよい。金属製容器を用いる場合にはW
、Ta等を用いても良いが、超電導性物質との反応を抑
えるためにはセラミックス製容器を用いることが望まし
い。加熱方法には、抵抗加熱方式、高周波加熱方式、或
いはハロゲンランプを用いる方法がある。溶解中の雰囲
気はアルゴン雰囲気とするのが良い。
Such ceramic-based oxide superconducting materials are prepared by conventional methods, such as powder mixing of constituent element oxides, hydroxides, inorganic acid salts, and organic acid salts, coprecipitation method, sol-gel method, spray drying method, etc. . The prepared raw materials are put into a container made of an appropriate material either as they are or after being subjected to a predetermined heat treatment to form a superconductor crystal structure, and heated to a temperature higher than the melting point to melt the material to form a molten substance. For example, in the case of perovskite ceramics, the melting point is about 1200°C, so it is heated to about 1500°C, Bi - Sr - Ca -
In the case of Cu-based oxide, the melting point is about 900°C, so it is heated to about 1200°C to form a molten substance. The material for the container is preferably a material that does not react with superconducting substances, and Mg
Ceramics such as AR20a and aluminum nitride that do not contain O or Sl are preferable. W when using a metal container
, Ta, etc. may be used, but in order to suppress the reaction with the superconducting substance, it is desirable to use a ceramic container. Heating methods include a resistance heating method, a high frequency heating method, and a method using a halogen lamp. The atmosphere during melting is preferably an argon atmosphere.

超電導性物質が溶解した後は、上記容器の底部又は側面
下部に設けたノズルから速やかに溶融物質を繊維状に放
出させる。その際、重力により引き出す態様でよいが、
容器内部に散気圧の圧力を加え、ノズルから放出させて
も良い。引き出し放出速度は、900〜1500℃の範
囲では0.6〜3m/winが適当である。
After the superconducting substance is melted, the molten substance is immediately discharged in the form of fibers from a nozzle provided at the bottom or lower side of the container. At that time, it may be pulled out by gravity, but
A diffused pressure may be applied inside the container and the material may be discharged from the nozzle. The appropriate drawing/discharging speed is 0.6 to 3 m/win in the range of 900 to 1500°C.

繊維形状物質を放出させる空間の雰囲気はアルゴン等で
もよいが酸素含有雰囲気が好ましい。
The atmosphere in the space in which the fibrous material is released may be argon or the like, but an oxygen-containing atmosphere is preferable.

この空間の温度は750〜950℃とするのが好ましい
。引き出した繊維状物質を、速やかに室温或いは液体窒
素温度に冷却しても繊維状の物質は得られるが、このよ
うに急冷して作製した物質はアモルファスで化学組成が
不均一である。このものは低温では電気抵抗は半導体挙
動を示し超電導性までは示さない。したがって、急冷し
て作製した繊維状物質は超電導性を付与するためには結
晶化が進行する750℃以上の温度で熱処理しなければ
ならないが、アモルファスであるために結晶化の進行が
遅く各結晶粒も小さい。また、化学組成が不均一なため
に超電導を示さない第2相が粒界に析出し、繊維形状物
質の超電導特性は悪化する。
The temperature of this space is preferably 750 to 950°C. Although a fibrous material can be obtained by quickly cooling the drawn fibrous material to room temperature or liquid nitrogen temperature, the material produced by rapid cooling in this way is amorphous and has a non-uniform chemical composition. At low temperatures, this material exhibits semiconducting electrical resistance and does not exhibit superconductivity. Therefore, in order to impart superconductivity to a fibrous material prepared by rapid cooling, it must be heat-treated at a temperature of 750°C or higher, at which crystallization progresses, but since it is amorphous, crystallization progresses slowly and each crystal is The grains are also small. Furthermore, due to the non-uniform chemical composition, a second phase that does not exhibit superconductivity precipitates at grain boundaries, deteriorating the superconducting properties of the fibrous material.

一方、例えばBi  −Sr −Ca −Cu系酸化物
の場合750〜880℃、ペロブスカイト型セラミック
スの場合850〜950℃の高温空間に繊維形状物質を
引き出した際、組成の均一化と結晶成長が緩やかに繊維
内部で進行するので、高密度な繊維状多結晶超電導体が
得やすい。そのためには、引き出した繊維状物質をその
ような高温空間にに一定時間(例、1時間)留まらせる
のが好ましい。
On the other hand, when a fibrous material is drawn into a high-temperature space of 750 to 880°C for Bi-Sr-Ca-Cu oxides and 850 to 950°C for perovskite ceramics, the composition becomes uniform and the crystal growth is slow. Since the process proceeds inside the fiber, it is easy to obtain a high-density fibrous polycrystalline superconductor. For this purpose, it is preferable to allow the drawn fibrous material to remain in such a high temperature space for a certain period of time (eg, 1 hour).

得られた繊維形状物質は、空間或いは炉床にて超電導性
を発現させるための熱処理を施しても良いが、連続した
長繊維とするためには、引出しと同時に巻取りながら熱
処理することが望ましい。
The obtained fibrous material may be heat-treated in space or on the hearth to develop superconductivity, but in order to form continuous long fibers, it is preferable to heat-treat the material while winding it up at the same time as drawing it out. .

なお、繊維形状物質は、ノズルから引き出した後、固化
すると同時に表面に金属膜を付着せしめることができる
。この場合、金属膜としては熱処理時に溶融せず、超電
導繊維と反応しない金属であることが望ましく、Au、
Ag、Cu等が良い。
Note that, after being pulled out from the nozzle, the fibrous material can be solidified and a metal film can be attached to the surface at the same time. In this case, the metal film is preferably a metal that does not melt during heat treatment and does not react with the superconducting fibers, such as Au,
Ag, Cu, etc. are good.

金属膜の付着方法としては蒸着のほか、熱CVDによっ
て金属膜を付着せしめても良い。金属膜を有する超電導
繊維は、金属膜を有しない繊維に比べて、機械的強度を
増加することができる。
In addition to vapor deposition, the metal film may be deposited by thermal CVD. Superconducting fibers with a metal film can have increased mechanical strength compared to fibers without a metal film.

また、本発明において、熱処理後に種々の操作を加えて
もよい。例えばY−Ba−Cu系酸化物の場合における
500℃以下での比較的長時間の熱処理を施す方法、B
l  −Sr −Ca −Cu系酸化物の場合における
750〜880℃の熱処理後さらに炉温か約600℃に
なるまで徐冷した後、炉から取り出し急冷する方法等で
ある。
Moreover, in the present invention, various operations may be added after the heat treatment. B
In the case of l -Sr -Ca -Cu-based oxides, after heat treatment at 750 to 880°C, the material is slowly cooled until the furnace temperature reaches about 600°C, and then taken out from the furnace and rapidly cooled.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

[実施例1] 予め常法により作製したYBa2Cu306,8の化学
組成を有する超電導性物質50.を高純度アルミナ製の
容器に収容し、高周波加熱方式によって1350℃に加
熱した。この時の容器内部はアルゴン雰囲気とした。
[Example 1] A superconducting material 50 having a chemical composition of YBa2Cu306,8 was prepared in advance by a conventional method. was placed in a container made of high-purity alumina and heated to 1350° C. using a high-frequency heating method. At this time, the inside of the container was made into an argon atmosphere.

超電導性物質が完全に溶解した後、容器内部に2気圧の
アルゴン圧力を加え、直径0.1關のノズルから繊維形
状物質を950℃に加熱した電気炉内に放出した。放出
速度は1.5m/sinである。
After the superconducting material was completely melted, 2 atmospheres of argon pressure was applied inside the container, and the fibrous material was discharged into an electric furnace heated to 950° C. through a nozzle with a diameter of 0.1 mm. The discharge velocity is 1.5 m/sin.

放出直後の繊維形状物質の繊維表面に熱CVDによりA
gからなる金属皮膜を付着せしめた後、炉床に堆積させ
た。なお、熱CVDはAgCgを原料とし、1(lcs
/ll1inの堆積速度の条件で行った。
A is applied to the fiber surface of the fibrous material immediately after release by thermal CVD.
After depositing a metal film consisting of g, it was deposited on the hearth. In addition, thermal CVD uses AgCg as a raw material, and 1 (lcs
The deposition rate was set at a deposition rate of /ll1in.

炉床に堆積した繊維形状物質を950℃で1時間処理し
た後、徐冷し、700℃に達した時点で炉内に酸素ガス
を導入し、酸素雰囲気とした後、5℃/sinで冷却し
た。得られた繊維形状物質は、直径0.15m■で超電
導開始温度Tcが85玉であった。
After treating the fiber-shaped material deposited on the hearth at 950°C for 1 hour, it is slowly cooled, and when it reaches 700°C, oxygen gas is introduced into the furnace to create an oxygen atmosphere, followed by cooling at 5°C/sin. did. The obtained fibrous material had a diameter of 0.15 m and a superconductivity initiation temperature Tc of 85 mm.

[実施例2] 予め常法により作製した元素比でBi:Sr:Ca :
Cu=1:1:1:2の化学組成を有する超電導物質5
0gを高純度アルミナ製の容器に収容し、高周波方式に
より1200℃に加熱した。この時の容器内部は酸素雰
囲気とした。
[Example 2] Bi:Sr:Ca with the element ratio prepared in advance by a conventional method:
Superconducting material 5 having a chemical composition of Cu=1:1:1:2
0 g was placed in a container made of high-purity alumina and heated to 1200° C. using a high frequency method. At this time, the inside of the container was made into an oxygen atmosphere.

超電導物質が完全に溶解した後、容器内部に2気圧のア
ルゴン圧力を加え、直径0.1mmのノズルから繊維形
状物質を850℃に加熱した電気炉内に放出した。放出
速度は1.5m/a+inである。
After the superconducting material was completely melted, argon pressure of 2 atmospheres was applied inside the container, and the fibrous material was discharged from a nozzle with a diameter of 0.1 mm into an electric furnace heated to 850°C. The discharge velocity is 1.5 m/a+in.

放出直後の繊維形状物質の繊維表面に熱CVDによりA
gからなる金属皮膜を付着せしめた後、炉床に堆積させ
た。なお、熱CVDはAgCjlを原料とし、Loz/
sinの堆積速度の条件で行った。
A is applied to the fiber surface of the fibrous material immediately after release by thermal CVD.
After depositing a metal film consisting of g, it was deposited on the hearth. In addition, thermal CVD uses AgCjl as a raw material, and Loz/
The test was carried out under the condition of a deposition rate of sin.

炉床に堆積した繊維形状物質を850℃で1時間処理し
た後、徐冷し、600℃に達した時点で炉内から取出し
急冷した。得られた繊維形状物質は直径0.15mmで
超電導開始温度が100玉であった。
The fibrous material deposited on the hearth was treated at 850° C. for 1 hour, then gradually cooled, and when it reached 600° C., it was taken out from the furnace and rapidly cooled. The obtained fibrous material had a diameter of 0.15 mm and a superconductivity onset temperature of 100 mm.

[発明の効果] 以上詳述したように、本発明によれば、セラミックス系
超電導性物質を一旦溶融し、これをノズルから繊維状に
放出させた後、熱処理により超電導性を発現させるので
、従来の焼結体のようなはっきりした粒界や空孔が存在
せず、高密度、かつ均質で、しかも実用上問題のない程
度の機械的強度及び超電導特性を備えた超電導繊維を製
造することが可能である。
[Effects of the Invention] As detailed above, according to the present invention, a ceramic superconducting substance is once melted, and after being discharged in the form of fibers from a nozzle, superconductivity is developed by heat treatment. It is possible to produce superconducting fibers that have no clear grain boundaries or pores like those found in sintered bodies, are dense and homogeneous, and have mechanical strength and superconducting properties that pose no practical problems. It is possible.

特にBl  −8r −Ca −Cu系酸化物超電導材
料は従来検討されてきたY−Ba−Cu−0系超電導材
料より融点が低い。このため900℃で融解させられる
ので本発明に示す溶融紡糸製造法では好適に用いられる
。又、長時間の酸素雰囲気処理を行なう必要がなく作製
工程の短縮を図ることができる。
In particular, Bl-8r-Ca-Cu based oxide superconducting materials have a lower melting point than Y-Ba-Cu-0 based superconducting materials that have been studied in the past. Therefore, since it can be melted at 900°C, it is suitably used in the melt spinning manufacturing method shown in the present invention. Furthermore, there is no need to perform long-time oxygen atmosphere treatment, and the manufacturing process can be shortened.

本発明で得られた超電導繊維は超電導コイルの巻線とし
て使用できるばかりでなく、送電用超電導線としても使
用できる。また、布状或はフェルト状とするならば磁気
シールド用材料としても使用できる。更に、超電導繊維
を作製すると同時に金属皮膜を付着せしめたものは、超
電導コイルの巻線或いは超電導送電線として利用する場
合に超電導線の安定化材となる金属膜を後から形成する
必要がなくなり、経済的である。
The superconducting fiber obtained in the present invention can be used not only as a winding of a superconducting coil, but also as a superconducting wire for power transmission. Furthermore, if it is made into a cloth or felt shape, it can be used as a magnetic shielding material. Furthermore, when a superconducting fiber is produced and a metal film is attached at the same time, when it is used as a superconducting coil winding or a superconducting power transmission line, there is no need to later form a metal film as a stabilizing material for the superconducting wire. Economical.

Claims (5)

【特許請求の範囲】[Claims] (1)セラミックス系超電導性物質をその溶融点以上に
加熱して得られた溶融物質をノズルより空間に放出して
繊維形状物質とし、その後この繊維形状物質を熱処理し
て超電導性を発現させることを特徴とする超電導繊維の
製造方法。
(1) The molten material obtained by heating a ceramic superconducting material above its melting point is discharged into space from a nozzle to form a fibrous material, and then the fibrous material is heat-treated to develop superconductivity. A method for producing superconducting fibers characterized by:
(2)セラミックス系超電導性物質をその溶融点以上に
加熱して得られた溶融物質をノズルより空間に放出して
繊維形状物質とし、該繊維形状物質が固化すると同時に
金属膜を付着せしめた後、該繊維形状物質を熱処理して
超電導を発現させることを特徴とする超電導繊維の製造
方法。
(2) The molten material obtained by heating the ceramic superconducting material above its melting point is discharged into space from a nozzle to form a fibrous material, and at the same time as the fibrous material solidifies, a metal film is attached. A method for producing superconducting fibers, which comprises heat-treating the fibrous material to develop superconductivity.
(3)セラミックス系超電導性物質をその溶融点以上に
加熱して得られた溶融物質をノズルより高温の空間に放
出して繊維形状物質とし、該高温空間に一定時間留まら
せた後、該繊維形状物質を熱処理して超電導性を発現さ
せることを特徴とする超電導繊維の製造方法。
(3) The molten material obtained by heating a ceramic superconducting material above its melting point is discharged from a nozzle into a high-temperature space to form a fiber-shaped material, and after remaining in the high-temperature space for a certain period of time, the molten material is A method for producing superconducting fibers, which comprises heat-treating a shaped substance to develop superconductivity.
(4)前記高温の空間は、セラミックス系超電導体の結
晶が析出する750〜950℃の温度に保持されている
請求項3に記載の方法。
(4) The method according to claim 3, wherein the high temperature space is maintained at a temperature of 750 to 950°C at which crystals of the ceramic superconductor precipitate.
(5)セラミックス系超電導性物質をその溶融点以上に
加熱して得られた溶融物質をノズルより高温の空間に放
出して繊維形状物質とし、該繊維形状物質が固化すると
同時に金属膜を付着せしめ、該高温空間に一定時間留ま
らせた後、該繊維形状物質を熱処理して超電導性を発現
させることを特徴とする超電導繊維の製造方法。
(5) The molten material obtained by heating a ceramic superconducting material above its melting point is discharged from a nozzle into a high-temperature space to form a fibrous material, and at the same time as the fibrous material solidifies, a metal film is attached. . A method for producing superconducting fibers, which comprises leaving the fiber-shaped material in the high-temperature space for a certain period of time, and then heat-treating the fiber-shaped material to develop superconductivity.
JP63061676A 1987-09-12 1988-03-14 Manufacture of superconductive fiber Pending JPH01163921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63061676A JPH01163921A (en) 1987-09-12 1988-03-14 Manufacture of superconductive fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22935987 1987-09-12
JP62-229359 1987-09-12
JP63061676A JPH01163921A (en) 1987-09-12 1988-03-14 Manufacture of superconductive fiber

Publications (1)

Publication Number Publication Date
JPH01163921A true JPH01163921A (en) 1989-06-28

Family

ID=26402740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63061676A Pending JPH01163921A (en) 1987-09-12 1988-03-14 Manufacture of superconductive fiber

Country Status (1)

Country Link
JP (1) JPH01163921A (en)

Similar Documents

Publication Publication Date Title
JP2674979B2 (en) Superconductor manufacturing method
AU642229B2 (en) Superconducting oxide-metal composites
US5972846A (en) Article comprising textured superconductive cuprate material
JPH0440289B2 (en)
US5304534A (en) Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates
JPH10101336A (en) Production of superconductor
US5229357A (en) Method of producing superconducting ceramic wire and product
JPH0328122A (en) Manufacture of object containing super conducting oxide material
JPH01163921A (en) Manufacture of superconductive fiber
JPH02275776A (en) Production of superconducting material
KR910009198B1 (en) Method of manufacturing superconductive products
JP3330962B2 (en) Manufacturing method of oxide superconductor
JP2501281B2 (en) Method for producing superconductor with high critical current density
US5348937A (en) Aligned bismuth, strontium, calcium cuprate coatings on polycrystalline substrates
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
JP2822328B2 (en) Superconductor manufacturing method
JPH03112810A (en) Production of oxide superconducting film
Strnad et al. On continuous oxide superconductor wire preparation by melt fast solidification and glass formation
KR920003025B1 (en) Method of producing superconducting ceramic wire
JPS63315572A (en) Production of superconductor
KR100338359B1 (en) A Fabrication Technique for Epitaxial Thick Films of High Temperature Superconductor by the Partial Melting Method
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JP2685951B2 (en) Method for manufacturing bismuth-based superconductor
JPH01208361A (en) Production of high-temperature superconducting fine ceramics particle
JPH01208360A (en) Production of superconductor