JPH02263492A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH02263492A
JPH02263492A JP8406389A JP8406389A JPH02263492A JP H02263492 A JPH02263492 A JP H02263492A JP 8406389 A JP8406389 A JP 8406389A JP 8406389 A JP8406389 A JP 8406389A JP H02263492 A JPH02263492 A JP H02263492A
Authority
JP
Japan
Prior art keywords
layer
quantum well
substrate crystal
substrate
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8406389A
Other languages
Japanese (ja)
Other versions
JP2751356B2 (en
Inventor
Yuichi Ide
雄一 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1084063A priority Critical patent/JP2751356B2/en
Publication of JPH02263492A publication Critical patent/JPH02263492A/en
Application granted granted Critical
Publication of JP2751356B2 publication Critical patent/JP2751356B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make a manufacturing process simple and obtain a highly reliable quantum well laser at a high yielding rate by replacing processes, i.e., vapor deposition of Si, adhesion of a Si3N4 film, and thermal annealing with those of 'on the spot' deposition of Si and thermal annealing that are performed in an epitaxial growth device. CONSTITUTION:The 1st clad layer 2, a quantum well active layer 3 consisting of a three-layer: photoguide layer - quantum well layer - photoguide layer, a p-type clad layer 4 as the 2nd clad layer, and a contact layer 5 are treated one after the other with organometal vapor phase epitaxy (MOVPE growth) on an n-type GaAs substrate 1 and a substrate crystal is obtd. Subsequently, SiH4 or Si2H6 gas is introduced in a device and the substrate crystal is exposed to the gas. This state allows laser beams 11 to irradiate on the surface of the substrate crystal and Si to perform deposition and then two pieces of Si films 80 are formed into the stripe shaped. Further, the stripes like Si films 80 which are obtained by heating the substrate crystal after putting it as it is in the device and by performing deposition are diffused thermally in the substrate crystal. This approach solves problems of a diffusion process of Si where its process is complicated and distortions appear in the case of thermal annealing for diffusion and a semiconductor laser which is simple and is superior in laser oscillation characteristics and reliability is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザの製造方法に関し、特に、量子井
戸を活性層とし、不純物導入による量子井戸の混晶化を
利用した埋込構造を有する量子井戸レーザの製造方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor laser, and in particular, a method for manufacturing a semiconductor laser, which has a quantum well as an active layer and a buried structure utilizing mixed crystallization of the quantum well by introducing impurities. This invention relates to a method for manufacturing a quantum well laser.

〔従来の技術〕[Conventional technology]

半導体レーザを光通信や光情報処理用の光源として使用
するには、パルスまたは直流電流で駆動した場合にその
電流の大小によらず安定な基本横モードで発振すること
が要求される。基本横モードを安定に得るためには、活
性層に平行な方向、即ち横方向につくりっけの屈折率分
布を形成する方法が一般的である。従来、この種の半導
体装置ザとして、活性領域に量子井戸を使用し、不純物
拡散による量子井戸の混晶化を利用して横方向の屈折率
分布を形成した半導体レーザが提案されている。
In order to use a semiconductor laser as a light source for optical communication or optical information processing, it is required to oscillate in a stable fundamental transverse mode when driven with a pulse or direct current, regardless of the magnitude of the current. In order to stably obtain the fundamental transverse mode, it is common to form an artificial refractive index distribution in a direction parallel to the active layer, that is, in the lateral direction. Conventionally, as this type of semiconductor device laser, a semiconductor laser has been proposed in which a quantum well is used in an active region and a lateral refractive index distribution is formed by utilizing mixed crystal formation of the quantum well by impurity diffusion.

第2図はそのような半導体レーザの一例を示す共振器方
向に垂直な断面図であり、類似のものがアプライド・フ
ィジックス・レターズ(AppliedPhysics
 Letters)第50巻第23号(1987年)の
1637頁から1639頁に提案されている。第2図に
おいて、1は基板、2は第1クラッド層、3は量子井戸
活性層、4は第2クラッド層、5はコンタクト層、6は
絶縁膜、7は拡散領域、8および9は電極である。
Figure 2 is a cross-sectional view perpendicular to the cavity direction showing an example of such a semiconductor laser, and a similar one is published in Applied Physics Letters.
Letters), Vol. 50, No. 23 (1987), pages 1637 to 1639. In FIG. 2, 1 is a substrate, 2 is a first cladding layer, 3 is a quantum well active layer, 4 is a second cladding layer, 5 is a contact layer, 6 is an insulating film, 7 is a diffusion region, 8 and 9 are electrodes. It is.

第3図にこの従来の半導体レーザの製造工程を示した。FIG. 3 shows the manufacturing process of this conventional semiconductor laser.

第3図(a)のn型GaAs基板1上に、有機金属気相
成長(Metal Organic Vapor Ph
aseEpitaxy 、以下MOVPEと略す)法に
より、第1クランド層として厚さ1μmのn型Affi
o、tGa□、3ASクラッド層2、厚さ各0.1μm
のアンドープA l o、 zs G a O,?SA
 S光ガイド層に両側から挟まれノこ厚さ100人のア
ンドープのGaAs単−ff子井戸からなる量子井戸活
性層3、第2クラッド層として厚さ1μmのp型A 1
 g、 qG 80.3ASクラッド層4、厚さ0.1
5μmのp型GaAs:tクラッド層5を積層する(第
3図(b))。
Metal organic vapor phase epitaxy (Metal Organic Vapor Ph
AseEpitaxy (hereinafter abbreviated as MOVPE) method was used to form an n-type Affi film with a thickness of 1 μm as the first ground layer.
o, tGa□, 3AS cladding layer 2, thickness 0.1 μm each
Undoped A lo, zs G a O,? S.A.
A quantum well active layer 3 consisting of an undoped GaAs single-ff well with a thickness of 100 mm is sandwiched between S light guide layers from both sides, and a p-type A 1 with a thickness of 1 μm serves as a second cladding layer.
g, qG 80.3AS cladding layer 4, thickness 0.1
A p-type GaAs:t cladding layer 5 of 5 μm is laminated (FIG. 3(b)).

次に、レーザ発振するストライプ状の活性領域を除き、
Stをn型A l 6. ?G a 0.3A Sクラ
ッド層2に達する深さまで拡散するが、Siの拡散は2
段階の工程によって行われている。先ずp型GaAsコ
ンタクト層5の表面に気相成長法により厚さ400人の
Si膜70と厚さ900人のSt:+N4膜71を順次
付着させる(第3図(C))。その上から所望のストラ
イプ状領域にAr” レーザ光10を照射して、p型G
aAsコンタクト層5.P型A l o、 ?A S 
o、 2G aクラッド層4.量子井戸活性層3を溶融
させて、結晶中にSiを溶は込ませる(第3図(d))
Next, except for the striped active region that oscillates,
St to n-type Al 6. ? Ga 0.3A S diffuses to a depth reaching the cladding layer 2, but the diffusion of Si is 2
It is done in a step process. First, a 400-thick Si film 70 and a 900-thick St:+N4 film 71 are sequentially deposited on the surface of the p-type GaAs contact layer 5 by vapor phase growth (FIG. 3(C)). Ar'' laser beam 10 is irradiated onto a desired striped area from above to form a p-type G
aAs contact layer5. P-type A lo, ? A.S.
o, 2G a cladding layer 4. The quantum well active layer 3 is melted to infiltrate Si into the crystal (Fig. 3(d)).
.

次に、結晶を850”Cで0,7時間アニールし、改め
てSiを所望の深さまで拡散させている。Siが拡散さ
れた領域7はn型となり、量子井戸活性層3については
、A l o、 zsG a 0.7SA S光ガイド
層とGaAs量子井戸が相互拡散して混晶化される。混
晶化された部分は混晶化されていない領域と比べ、低屈
折率となり、実効的な禁制帯幅が大きくなる。
Next, the crystal is annealed at 850"C for 0.7 hours, and Si is again diffused to the desired depth. The region 7 where Si is diffused becomes n-type, and the quantum well active layer 3 becomes Al o, zsG a 0.7SA The S light guide layer and the GaAs quantum well interdiffuse and become mixed crystal.The mixed crystal region has a lower refractive index than the unmixed region, and the effective The forbidden band width increases.

次に、p型GaAsコンタクトN5上にSiがストライ
プ状に拡散されたn型拡散研域7を覆い、かつ活性領域
は露出するようにS i O,または5t3N4絶縁膜
6を付着させる。絶縁膜6上にP型GaAsコンタクト
層5に対しオーミック性接触がとれるようにAuZn系
p型電極8を蒸着し、次いでn型GaAs基Fi1の裏
面にAuGeNiからなるn型電極9を蒸着して第3図
(e)に示すような半導体レーザ構造を得ている。これ
を共振器に対し直角な方向で襞間して襞開面をフォブリ
ペロ共振器反射面とすれば、第2図に示される量子井戸
レーザが完成する。
Next, an SiO or 5t3N4 insulating film 6 is deposited on the p-type GaAs contact N5 so as to cover the n-type diffusion region 7 in which Si is diffused in a stripe shape and expose the active region. An AuZn-based p-type electrode 8 is deposited on the insulating film 6 so as to make ohmic contact with the P-type GaAs contact layer 5, and then an AuGeNi-based n-type electrode 9 is deposited on the back surface of the n-type GaAs base Fi1. A semiconductor laser structure as shown in FIG. 3(e) was obtained. If this is folded in a direction perpendicular to the resonator and the folded surface is used as a Fobbly-Perot resonator reflection surface, the quantum well laser shown in FIG. 2 is completed.

以上のようにして製造された半導体レーザでは、活性領
域が、禁制帯幅が太き(屈折率が小さい半導体層で囲ま
れた構造となっており、横方向にっくりっけの屈折率分
布が形成されている。このような半導体レーザは、光お
よび電流の閉じ込め効率が良いので、低閾値電流で発振
し、安定な基本横モードが得られている。
In the semiconductor laser manufactured as described above, the active region has a structure in which the forbidden band width is wide (surrounded by a semiconductor layer with a small refractive index), and the refractive index distribution is sharp in the lateral direction. Since such a semiconductor laser has good light and current confinement efficiency, it oscillates with a low threshold current and has a stable fundamental transverse mode.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上述した従来の製造方法には、Siの拡散
工程が複雑である、Si、N4膜とGaASとの熱膨張
係数が違うので拡散のための熱アニール時に歪みが入り
、半導体レーザの発振特性。
However, in the conventional manufacturing method described above, the Si diffusion process is complicated, and the thermal expansion coefficients of Si and N4 films and GaAS are different, so distortion occurs during thermal annealing for diffusion, which affects the oscillation characteristics of the semiconductor laser.

信頼性を損なう等の問題がある。There are problems such as loss of reliability.

本発明の目的は、これらの問題を解決した簡単かつレー
ザ発振特性、信頼性に優れた半導体レーザが得られる製
造方法を提供することにある。
An object of the present invention is to provide a manufacturing method that solves these problems and allows a simple semiconductor laser with excellent laser oscillation characteristics and reliability to be obtained.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体レーザの製造方法は、 第1導電型の半導体基板上に少なくとも第1導電型の第
1クラッド層と少なくとも2種の半導体層からなる量子
井戸構造を有し、第1クラッド層より禁制帯幅が狭く屈
折率が大きい量子井戸活性層と、量子井戸活性層よりも
禁制帯幅が広く屈折率が小さい第2導電型の第2クラッ
ド層と、第2クラッド層より禁制帯幅が狭い電極コンタ
クト層を順次エピタキシャル成長して基板結晶を得るエ
ピタキシャル成長工程と、 基板結晶表面を第1導電型不純物元素を含む不純物ガス
雰囲気に曝しつつエネルギービームを基板結晶表面上の
平行に延伸した2つのストライプ状領域に限定して照射
し、照射領域下の基板結晶に前記第1導電型の不純物を
ストライプ状に析出させる工程と、 前記基板結晶を加熱して前記の析出不純物を前記照射領
域下に拡散せしめ、前記照射領域下の電極コンタクト層
、第2クラッド層および量子井戸活性層を第1導電型に
なさしめるとともに、前記量子井戸活性層を前記照射領
域下において混晶化せしめる不純物拡散工程とを含むこ
とを特徴とする。
The method for manufacturing a semiconductor laser of the present invention includes a quantum well structure including at least a first cladding layer of the first conductivity type and at least two types of semiconductor layers on a semiconductor substrate of the first conductivity type; a quantum well active layer with a narrow forbidden band width and a large refractive index; a second cladding layer of a second conductivity type with a wider forbidden band width than the quantum well active layer and a lower refractive index; An epitaxial growth process in which a substrate crystal is obtained by successively epitaxially growing a narrow electrode contact layer, and an energy beam extending parallel to two stripes on the substrate crystal surface while exposing the substrate crystal surface to an impurity gas atmosphere containing a first conductivity type impurity element. irradiating the impurity of the first conductivity type in stripes on the substrate crystal under the irradiation area; heating the substrate crystal to diffuse the precipitated impurity under the irradiation area; and an impurity diffusion step of making the electrode contact layer, the second cladding layer, and the quantum well active layer under the irradiation region have a first conductivity type, and making the quantum well active layer mixed crystal under the irradiation region. It is characterized by containing.

エネルギービームとしては、レーザ光線、または電子な
どの荷電粒子線を用いることができる。
As the energy beam, a laser beam or a beam of charged particles such as electrons can be used.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照し”で説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例を説明する工程図であり、
第2図の構造の半導体レーザの製造について述べる。
FIG. 1 is a process diagram illustrating an embodiment of the present invention,
The manufacture of a semiconductor laser having the structure shown in FIG. 2 will be described.

先ずn型GaAs基板1を有機溶剤で洗浄し、化学的に
エツチングして清浄化した後、MOVPE装置内に導入
する(第1図(a))。このn型GaAs基板1上に第
1クラッド層として厚さ1.0μmのn型A 1!、 
O,?G a 0.3A Sクラッド層2 (Siドー
プ;濃度l×10111cII−″)、厚さ0.1μm
(7)n型A f o、 zsG a o、 tsA 
S光ガイド層(Si  ドープ;濃度I Xl0I7c
+a−3)と厚さ100人のアンドープGaAs単一量
子井戸層と厚さ0.1μmのp型A l o、 zs 
G a o、 tsA s光ガイド層(Znドープ;濃
度I XIO”cm−’)の3層からなる量子井戸活性
層3、第2クラッド層として厚さ1.0μmのp型A 
10. ?G a o、 xA Sクラッド層4 (Z
nドープ;濃度1×101″cIl−″)、厚さ0.1
5μmのp型GaASコンタクト層5 (Znドープ;
濃度I Xl・O”cm−’)を順次MOVPE成長す
る。以上のエピタキシャル成長工程によって基板結晶(
第1図(b))が得られる。
First, the n-type GaAs substrate 1 is cleaned with an organic solvent and chemically etched to clean it, and then introduced into a MOVPE apparatus (FIG. 1(a)). On this n-type GaAs substrate 1, an n-type A 1! with a thickness of 1.0 μm is formed as a first cladding layer. ,
O,? Ga 0.3A S cladding layer 2 (Si doped; concentration l×10111cII-″), thickness 0.1 μm
(7) n-type A f o, zsG ao, tsA
S optical guide layer (Si doped; concentration I Xl0I7c
+a-3) and 100mm thick undoped GaAs single quantum well layer and 0.1μm thick p-type A lo,zs
A quantum well active layer 3 consisting of three layers: G ao, tsA s light guide layer (Zn doped; concentration I
10. ? G ao, xA S cladding layer 4 (Z
n-doped; concentration 1×101″cIl-″), thickness 0.1
5 μm p-type GaAS contact layer 5 (Zn doped;
Sequential MOVPE growth is performed at a concentration of I
FIG. 1(b)) is obtained.

次に基板結晶をMOVPE装置から出さずに、MOVP
E装置内にSiH4またはSi、H,ガスを導入し、基
板結晶をガスに曝す。この状態でスポットサイズ1μm
に絞ったAr”レーザビーム11を基板結晶表面上に照
射し、線状に走査して2木のストライプ状にSiを析出
させ、2本のストライプ状Si膜80を形成する(第1
図(C))。
Next, without taking the substrate crystal out of the MOVPE equipment,
E Introduce SiH4 or Si, H, gas into the apparatus and expose the substrate crystal to the gas. In this state, the spot size is 1 μm.
An Ar'' laser beam 11 focused on the crystal surface of the substrate is irradiated and scanned linearly to precipitate Si in two stripes to form two stripe-shaped Si films 80 (first
Figure (C)).

Ar”レーザのパワーは0.01からIW程度の範囲で
調節し、基板結晶表面の温度が過度に上昇しないように
する。例えば650°C位に抑えれば、Stは析出する
が、基板結晶が溶解したり熱歪みで欠陥が導入される可
能性は小さく、適当である。
The power of the "Ar" laser is adjusted in the range of 0.01 to IW to prevent the temperature of the substrate crystal surface from rising excessively.For example, if the temperature is kept at about 650°C, St will precipitate, but the substrate crystal surface will not rise too much. The possibility of melting or introducing defects due to thermal distortion is small and appropriate.

ストライプ状Si膜80は厚さ10人から100人程変
態上あれば、後の拡散工程で拡散源として用、いること
ができる。また、ストライプ状のSiは、2本析出させ
るわけであるが、その間隔はレーザ発振領域(活性量域
)の幅を規定することになる。
If the striped Si film 80 has a thickness of about 10 to 100 layers, it can be used as a diffusion source in a subsequent diffusion step. Furthermore, two stripes of Si are precipitated, and the interval between them defines the width of the laser oscillation region (active amount region).

次の拡散工程でStが動き、実際の活性領域幅はストラ
イプ間隔より狭くなるので、ストライプの間隔はこれを
考慮し少なくとも1μmはとる必要があろう。
Since St moves in the next diffusion process and the actual active region width becomes narrower than the stripe spacing, the stripe spacing must be at least 1 μm in consideration of this.

次に、基板結晶をそのままMOVPE装置内で加熱して
上述の工程で析出させたストライプ状の′Siを、基板
結晶中に熱拡散させる。基板加熱方法としては、MOV
PE成長に用いたと同じ方法、即ちランプ加熱または高
周波加熱によっても良いし、第1図(d)に示すように
Ar”レーザ光または電子ビームを用いても良い。図で
は、Ar”レーザ光または電子ビームを参照番号12で
示している。
Next, the substrate crystal is heated as it is in the MOVPE apparatus to thermally diffuse the striped Si deposited in the above process into the substrate crystal. As a substrate heating method, MOV
The same method used for PE growth, ie lamp heating or radio frequency heating, may be used, or Ar'' laser beam or electron beam may be used as shown in Figure 1(d). The electron beam is designated by reference numeral 12.

ランプ加熱または高周波加熱による場合は、基板結晶全
体を850°Cに1時間程度保つことにより、n型A 
10.7G a o、 sA Sクラッド層2に達する
深さまでSiを拡散し、n型拡散層7を形成することが
できる。レーザ光または電子ビームを用いる場合は、局
所的にストライプ状Si膜8oのみを加熱するように走
査することが可能である。この場合は照射パワー密度を
調節して、基板結晶が溶融したり欠陥が入ったりしない
範囲で短時間のうちにSiを所望の深さまで拡散し、n
型拡散層7を形成することが可能である。
When using lamp heating or high frequency heating, the entire substrate crystal is kept at 850°C for about 1 hour to form an n-type A
By diffusing Si to a depth reaching the 10.7G ao, sA S cladding layer 2, the n-type diffusion layer 7 can be formed. When using a laser beam or an electron beam, it is possible to scan so as to locally heat only the striped Si film 8o. In this case, adjust the irradiation power density to diffuse Si to the desired depth in a short time without melting the substrate crystal or creating defects.
It is possible to form a type diffusion layer 7.

次にp型GaAsコンタクト層5上に、n型拡散領域7
を覆い、かつ活性領域は露出するようにStowまたは
5isN4絶縁膜6を付着させる。
Next, an n-type diffusion region 7 is placed on the p-type GaAs contact layer 5.
A Stow or 5isN4 insulating film 6 is deposited to cover the active region and expose the active region.

これは通常の熱CVD法とフォトリソグラフィによれば
良い。絶縁膜6上にp型GaAsコンタクト層6に対し
オーミンク性接触がとれるようにAuZn系n型電極8
を蒸着し、次いでn型GaAS基板1の裏面にAuGe
Niからなるn型電極9を蒸着して第2図(e)に示す
ような半導体レーザ構造が得られる。これを共振器に対
し直角な方向で襞間して襞間面をフォブリベロ共振器反
射面とすれば、第2図に示される量子井戸レーザが完成
する。
This can be done by ordinary thermal CVD method and photolithography. An AuZn-based n-type electrode 8 is formed on the insulating film 6 so as to make ohmink contact with the p-type GaAs contact layer 6.
Then, AuGe is deposited on the back surface of the n-type GaAS substrate 1.
By depositing an n-type electrode 9 made of Ni, a semiconductor laser structure as shown in FIG. 2(e) is obtained. If this is interfolded in a direction perpendicular to the resonator and the interfolded surface is used as a Folibero resonator reflection surface, the quantum well laser shown in FIG. 2 is completed.

共振器反射面を得るにはドライエツチングによっても良
い。その場合には、エピタキシャル成長工程から共振器
反射面形成までを一貫したドライプロセスで、換言すれ
ば、基板結晶を大気に触れさせることなく、一連の真空
装置内で行うことも可能である。
Dry etching may also be used to obtain the resonator reflecting surface. In that case, it is also possible to carry out the process from the epitaxial growth process to the formation of the resonator reflective surface in a consistent dry process, in other words, in a series of vacuum apparatuses without exposing the substrate crystal to the atmosphere.

なお、上述の実施例では、エピタキシャル成長とそれ以
後のプロセスをMOVPE装置によって行っているが、
これは分子線エピタキシーや、原料にガスを用いるガス
ソース分子線エビクキシーであっても良い。
In addition, in the above-mentioned example, epitaxial growth and subsequent processes were performed using a MOVPE apparatus.
This may be molecular beam epitaxy or gas source molecular beam epitaxy using gas as a raw material.

また、材料としては、G a A s / A I G
 a A s系で説明したが、他のm−v、  ■−m
化合物半導体、例えばInP基板を用いた、InGaA
s/InP、InGaAsP/InP、InGaAs/
InAffiAs、InGaP/InAlGaP等々の
材料でもよいことは言うまでもない。
In addition, as a material, Ga As / A I G
Although it was explained using the a A s system, other m-v, ■-m
Compound semiconductors, such as InGaA using an InP substrate
s/InP, InGaAsP/InP, InGaAs/
It goes without saying that materials such as InAffiAs, InGaP/InAlGaP, etc. may also be used.

〔発明の効果〕〔Effect of the invention〕

以上現実したように、本発明の製造方法は、従来の製造
方法に必要であったSiの蒸着、Si3N4膜の付着、
熱アニールという工程が、エピタキシャル成長装置内で
行われる“その場“Si析出、熱アニールに置き換えら
れる。従って、St。
As realized above, the manufacturing method of the present invention eliminates the evaporation of Si, the adhesion of Si3N4 film, which were necessary in the conventional manufacturing method.
The step of thermal annealing is replaced by "in-situ" Si deposition and thermal annealing performed in an epitaxial growth apparatus. Therefore, St.

N4付着のために基板結晶を他の装置に移す必要がなく
工程が簡単化される。
There is no need to transfer the substrate crystal to another device for N4 deposition, which simplifies the process.

また、本発明では工程の途中で基板結晶を大気に曝すこ
とがないので、酸化、汚染によるレーザ発振特性の劣化
や信頼性上の問題がなくなる。更に、従来の製造方法で
問題であった熱アニール時にSi:+N4膜から歪みが
導入される問題もな(なる。
Furthermore, in the present invention, since the substrate crystal is not exposed to the atmosphere during the process, there is no deterioration of laser oscillation characteristics or reliability problems due to oxidation or contamination. Furthermore, the problem of strain being introduced from the Si:+N4 film during thermal annealing, which was a problem with conventional manufacturing methods, is eliminated.

よって、本発明によれば高い歩留まりで、信頼性の良い
量子井戸レーザを得ることができる。
Therefore, according to the present invention, a highly reliable quantum well laser can be obtained with high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法の主要な工程を説明する工程
断面図、 第2図は量子井戸レーザの一例を示す断面図、第3図は
従来の製造方法の主要な工程を説明する工程断面図であ
る。 1・・・・・基板 2・・・・・第1クラッド層 3・・・・・量子井戸活性層 4・・・・・第2クラッド層 5 ・ 6 ・ 7 ・ 8 ・ 9 ・ 10・ 11・ 12・ 70.80・ ・ 71・ ・ ・ ・ コンタクト層 絶縁膜 拡散領域 n型電極 n型電極 レーザ光 Ar+レーザビーム Ar”レーザビームまたは電子 ビーム ・Si膜 ・Si3N4膜
FIG. 1 is a process cross-sectional view explaining the main steps of the manufacturing method of the present invention, FIG. 2 is a cross-sectional view showing an example of a quantum well laser, and FIG. 3 is a process step explaining the main steps of the conventional manufacturing method. FIG. 1...Substrate 2...First cladding layer 3...Quantum well active layer 4...Second cladding layer 5, 6, 7, 8, 9, 10, 11・ 12 ・ 70.80 ・ 71 ・ ・ ・ ・ Contact layer Insulating film Diffusion region n-type electrode

Claims (1)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板上に少なくとも第1導電
型の第1クラッド層と少なくとも2種の半導体層からな
る量子井戸構造を有し、第1クラッド層より禁制帯幅が
狭く屈折率が大きい量子井戸活性層と、量子井戸活性層
よりも禁制帯幅が広く屈折率が小さい第2導電型の第2
クラッド層と、第2クラッド層より禁制帯幅が狭い電極
コンタクト層を順次エピタキシャル成長して基板結晶を
得るエピタキシャル成長工程と、 基板結晶表面を第1導電型不純物元素を含む不純物ガス
雰囲気に曝しつつエネルギービームを基板結晶表面上の
平行に延伸した2つのストライプ状領域に限定して照射
し、照射領域下の基板結晶に前記第1導電型の不純物を
ストライプ状に析出させる工程と、 前記基板結晶を加熱して前記の析出不純物を前記照射領
域下に拡散せしめ、前記照射領域下の電極コンタクト層
、第2クラッド層および量子井戸活性層を第1導電型に
なさしめるとともに、前記量子井戸活性層を前記照射領
域下において混晶化せしめる不純物拡散工程とを含むこ
とを特徴とする半導体レーザの製造方法。
(1) It has a quantum well structure consisting of at least a first cladding layer of the first conductivity type and at least two types of semiconductor layers on a semiconductor substrate of the first conductivity type, and has a narrower forbidden band width and refractive index than the first cladding layer. A quantum well active layer with a large
An epitaxial growth step in which a cladding layer and an electrode contact layer having a narrower bandgap than the second cladding layer are sequentially epitaxially grown to obtain a substrate crystal, and an energy beam is applied to the substrate crystal surface while exposing it to an impurity gas atmosphere containing an impurity element of the first conductivity type. a step of irradiating the impurity of the first conductivity type in stripes on the substrate crystal under the irradiated area by irradiating the impurity to two stripe-shaped regions extending in parallel on the surface of the substrate crystal; and heating the substrate crystal. The precipitated impurities are diffused under the irradiation region, and the electrode contact layer, second cladding layer, and quantum well active layer under the irradiation region are made to have the first conductivity type, and the quantum well active layer is made to be of the first conductivity type. 1. A method for manufacturing a semiconductor laser, comprising the step of diffusing an impurity to form a mixed crystal under an irradiated region.
JP1084063A 1989-04-04 1989-04-04 Manufacturing method of semiconductor laser Expired - Lifetime JP2751356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1084063A JP2751356B2 (en) 1989-04-04 1989-04-04 Manufacturing method of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1084063A JP2751356B2 (en) 1989-04-04 1989-04-04 Manufacturing method of semiconductor laser

Publications (2)

Publication Number Publication Date
JPH02263492A true JPH02263492A (en) 1990-10-26
JP2751356B2 JP2751356B2 (en) 1998-05-18

Family

ID=13820039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1084063A Expired - Lifetime JP2751356B2 (en) 1989-04-04 1989-04-04 Manufacturing method of semiconductor laser

Country Status (1)

Country Link
JP (1) JP2751356B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100628A (en) * 1987-08-28 1988-05-02 Hitachi Ltd Optical recording and reproducing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100628A (en) * 1987-08-28 1988-05-02 Hitachi Ltd Optical recording and reproducing device

Also Published As

Publication number Publication date
JP2751356B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
US4843031A (en) Method of fabricating compound semiconductor laser using selective irradiation
US5013684A (en) Buried disordering sources in semiconductor structures employing photo induced evaporation enhancement during in situ epitaxial growth
US4270096A (en) Semiconductor laser device
EP0637086B1 (en) Light emitting semiconductor device and light enhanced deposition method for fabricating the same
JPH021386B2 (en)
JPH02263492A (en) Manufacture of semiconductor laser
US5563094A (en) Buried reverse bias junction configurations in semiconductor structures employing photo induced evaporation enhancement during in situ epitaxial growth and device structures utilizing the same
KR100634217B1 (en) Electro-optic semiconductor devices and method for making the same
JPH05226788A (en) Integrated circuit of semiconductor laser and manufacture thereof
US7046708B2 (en) Semiconductor laser device including cladding layer having stripe portion different in conductivity type from adjacent portions
US6275515B1 (en) Semiconductor laser device and method of producing the same
JP2956553B2 (en) Surface emitting laser and method of manufacturing the same
JP3270815B2 (en) Method for manufacturing semiconductor laser device
GB2109155A (en) Semiconductor laser manufacture
JPH11307457A (en) Non-alloy electrode contact layer and its preparation
JP3455867B2 (en) Semiconductor laser and method of manufacturing the same
JPH0430758B2 (en)
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof
JPH08274413A (en) Semiconductor device and its manufacture
TW439335B (en) A semiconductor laser and the fabrication method thereof
JPH0546116B2 (en)
JP2008053697A (en) Method for manufacturing semiconductor optical integrated element
JPH0878775A (en) Semiconductor laser device and its manufacture
JPH0682883B2 (en) Semiconductor laser manufacturing method
JPS60189280A (en) Manufacture of semiconductor laser