JPH02262840A - Controller for active filter - Google Patents

Controller for active filter

Info

Publication number
JPH02262840A
JPH02262840A JP1081484A JP8148489A JPH02262840A JP H02262840 A JPH02262840 A JP H02262840A JP 1081484 A JP1081484 A JP 1081484A JP 8148489 A JP8148489 A JP 8148489A JP H02262840 A JPH02262840 A JP H02262840A
Authority
JP
Japan
Prior art keywords
load
active filter
carrier frequency
conditions
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1081484A
Other languages
Japanese (ja)
Inventor
Yusuke Ashizaki
祐介 芦崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1081484A priority Critical patent/JPH02262840A/en
Publication of JPH02262840A publication Critical patent/JPH02262840A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Abstract

PURPOSE:To reduce switching loss of main switching element without sacrifice of higher harmonic suppressing effect by automatically resulting PWM carrier frequency of a PWM converter based on comparison result between detected higher harmonic and voltage distortion and preset operating conditions. CONSTITUTION:A carrier frequency (fc) controlling circuit 9C is preset to vary the carrier frequency on some conditions, and when a specific order harmonic is a problem because of the character of load setting is made according to the character of the system or the load. In this case, the fc controlling circuit 9C responds quickly to the conditions for increasing fc while responds to the conditions for decreasing fc such that operation is started upon continuation of that condition for a predetermined time. When a main circuit element 10 is switched with as low fc as possible within such range as voltage distortion at system side and the amount of higher harmonics to be produced from the load satisfy preset conditions, an active filter can be functioned effectively with minimum switching loss.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、負荷より発生する高調波を除去するために電
力系統の出力端に接続されるPWMコンバータ形アクテ
ィブフィルタの制御装置に関するものである。
[Detailed description of the invention] [Object of the invention] (Industrial application field) The present invention is directed to the control of a PWM converter type active filter connected to the output end of a power system in order to remove harmonics generated from a load. It is related to the device.

(従来の技術) 近年、各種のパワーエレクトロニクス機器が産業分野に
普及するのに伴い、これらの装置から発。
(Conventional technology) In recent years, as various power electronics devices have become widespread in the industrial field, the power electronics devices have become increasingly popular.

生する高調波が電力系統へ流入するという問題が生じて
いる。
A problem has arisen in that the generated harmonics flow into the power system.

この問題を解決する有効な手段の一つとして、GTO,
SIサイリスタなど自己消弧形の半導体電力素子を高速
スイッチングすることにより、負荷の発生する高調波と
逆位相の補償電流を負荷接続ラインあるいは母線に注入
して発生高調波を相殺するPWMコンバータ形のアクテ
ィブフィルタが注目されてきている。
As one of the effective means to solve this problem, GTO,
A PWM converter type that uses high-speed switching of a self-extinguishing semiconductor power device such as an SI thyristor to inject a compensation current in the opposite phase to the harmonics generated by the load into the load connection line or bus bar to cancel out the generated harmonics. Active filters are attracting attention.

従来のPWMコンバータ形アクティブフィルタの構成を
第2図°に示す、主回路方式には直流電圧源を使用する
電圧形と直流電流源を用いる電流形とがあるが、ここで
は電圧形の例が示されている。
The configuration of a conventional PWM converter type active filter is shown in Figure 2.The main circuit type includes a voltage type that uses a DC voltage source and a current type that uses a DC current source.Here, an example of the voltage type is shown. It is shown.

第2図において、1は電力系統、2は高調波発生負荷、
3はアクティブフィルタ主回路、4はアクチイブフィル
タ制御回路であり、簡単のために制御回路は1相分のみ
を示している。
In Fig. 2, 1 is the power system, 2 is the harmonic generation load,
3 is an active filter main circuit, and 4 is an active filter control circuit. For simplicity, only one phase of the control circuit is shown.

アクティブフィルタの主回路3は、自己消弧半導体素子
10(以下単に主回路素子と呼ぶ)とダイオード11と
を逆並列接続したモジュール12をブリッジに組むこと
により構成されている。13はリアクトル、14は直流
コンデンサである。
The main circuit 3 of the active filter is constructed by assembling a module 12 in which a self-extinguishing semiconductor element 10 (hereinafter simply referred to as a main circuit element) and a diode 11 are connected in antiparallel to form a bridge. 13 is a reactor, and 14 is a DC capacitor.

補償電流指令値演算回路5は、CT15で取り込んだ負
荷電流Ifから高調波成分Ihを検出し、アクティブフ
ィルタが補償すべき電流指令値工8を演算する機能を持
っている。
The compensation current command value calculation circuit 5 has a function of detecting a harmonic component Ih from the load current If taken in by the CT 15 and calculating a current command value 8 to be compensated by the active filter.

定電流制御回路6は電流指令値工水とCT16で取込ん
だアクティブフィルタの出力電流IACFが一致するよ
う定電流制御を行い、基準電圧信号E。を出力する。
The constant current control circuit 6 performs constant current control so that the current command value and the output current IACF of the active filter taken in by the CT 16 match, and outputs the reference voltage signal E. Output.

この基準電圧信号ECは連続量であるので主回路素子の
オン・オフ信号に変換しなくてはならず、ゲートパルス
発生回路7は搬送波発生回路8が発生する搬送波又と基
準電圧信号ECとの大小比較を行って各主回路素子10
のオン・オフタイミング、すなわち各素子のゲートパル
スの位相を決定し、このケートパルスに従って各素子を
動作させることによって直流コンデンサ14の両端の直
流電圧VdがPWM制御され、リアクトル13を介して
アクティブフィルタは負荷の高調波Ihを相殺する補償
電流を出力する。
Since this reference voltage signal EC is a continuous quantity, it must be converted into an on/off signal for the main circuit elements. Each main circuit element 10 is compared in size.
By determining the on/off timing of the gate pulse, that is, the phase of the gate pulse of each element, and operating each element according to this gate pulse, the DC voltage Vd across the DC capacitor 14 is controlled by PWM, and the active filter is Outputs a compensation current that cancels out the load harmonic Ih.

第3図は単相のアクティブフィルタを例としてゲートパ
ルス発生回路7のPWM制御動作を示したもので、Xは
搬送波、YはXを反転させた搬送波、 ECは基準電圧
信号であり、 EcとX、ECとYをそれぞれ比較する
ことによって主回路素子10A〜100のオン・オフパ
ターンが決定される。
Fig. 3 shows the PWM control operation of the gate pulse generation circuit 7 using a single-phase active filter as an example, where X is a carrier wave, Y is a carrier wave obtained by inverting X, and EC is a reference voltage signal. By comparing X, EC, and Y, the on/off patterns of the main circuit elements 10A to 100 are determined.

アクティブフィルタの出力端電圧vc′は第3図の下段
に示すような短冊型のパルス列となり、リアクトル13
を通過した出力電圧VCは等測的に点線で示す波形とな
る。また主回路素子のスイッチング周波数はPWMII
送波周波数fcにより決定される。
The output terminal voltage vc' of the active filter becomes a strip-shaped pulse train as shown in the lower part of FIG.
The output voltage VC that has passed through has a waveform isometrically shown by a dotted line. Also, the switching frequency of the main circuit elements is PWMII
It is determined by the transmission frequency fc.

(発明が解決しようとする課題) 一般にPWM搬送波周波数fCを高くするとアクティブ
フィルタの高調波補償効果が高くなるので、アクティブ
フィルタは素子特性の許す範囲でfcを出来るだけ高い
一定値に固定したまま運転されるのが普通である。
(Problem to be Solved by the Invention) Generally, as the PWM carrier frequency fC increases, the harmonic compensation effect of the active filter increases, so the active filter is operated with fc fixed at a constant value as high as possible within the range allowed by the element characteristics. It is normal to do so.

しかしながらfcを高くするとスイッチングロスが増加
して装置の効率が悪くなるという開運があり、また負荷
の発生する高調波の大きさが変化して各次成分が減少す
るような場合には高い搬送波周波数のままで装置を運転
する必要はない。
However, if fc is increased, the switching loss will increase and the efficiency of the device will deteriorate.Also, if the harmonics generated by the load change and each harmonic component decreases, a higher carrier frequency is required. There is no need to operate the device as it is.

特に最近は主回路素子の電流電圧定格が増大すると共に
動作周波数も数kHzから数10kHzに向上しており
、スイッチングロスも相当な値になるので、状況に応じ
てスイッチング周波数(すなわち搬送波周波数)をm整
してスイッチングロスを低減することが必要である。
In particular, recently, as the current and voltage ratings of main circuit elements have increased, the operating frequency has also improved from several kHz to several tens of kHz, and the switching loss has also become considerable, so the switching frequency (i.e. carrier frequency) has to be adjusted depending on the situation. It is necessary to reduce switching loss by adjusting the switching loss.

本発明は、高調波抑制効果を損なうこと無く主回路素子
のスイッチングロスを低減し、これによって運転効率を
向上した合理的なPWMコンバータ形アクティブフィル
タの制御装置を提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a rational control device for a PWM converter type active filter that reduces switching loss of main circuit elements without impairing the harmonic suppression effect and thereby improves operating efficiency.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段と作用) 本発明は、電力系統へ接続された高調波発生負荷に並列
に接続されて負荷に発生する高調波を補償するPWMコ
ンバータ形のアクティブフィルタの制御装置において、
負荷に発生する各次高調波を検出する高調波検出回路と
、負荷入力時の電圧歪みを検出する電圧歪み検出回路と
、上記検出した高調波および電圧歪みをあらかじめ設定
した運転条件と比較し、その比較結果に基づいてPWM
コンバータのPW、M搬送波周波数を自動調整する搬送
波周波数制御回路を備え、運転条件を満足する範囲で最
も低い搬送波周波数でPWMコンバータのPWM制御を
行い、これによってPWMコンバータの主回路素子のス
イッチングロスを最小にしてアクティブフィルタの運転
効率の向上をはかったものである。
(Means and effects for solving the problem) The present invention provides a control device for a PWM converter type active filter that is connected in parallel to a harmonic generating load connected to an electric power system and compensates for harmonics generated in the load. ,
A harmonic detection circuit that detects each harmonic generated in the load, a voltage distortion detection circuit that detects voltage distortion at the time of load input, and a comparison of the detected harmonics and voltage distortion with preset operating conditions, Based on the comparison results, PWM
Equipped with a carrier frequency control circuit that automatically adjusts the PW and M carrier frequencies of the converter, it performs PWM control of the PWM converter at the lowest carrier frequency within the range that satisfies the operating conditions, thereby reducing switching loss of the main circuit elements of the PWM converter. This is aimed at improving the operating efficiency of the active filter by minimizing the amount of noise.

(実施例) 本発明の一実施例を第1図に示す。第1図において第2
図と同一の部分には同一記号を付してその説明を省略し
ている。
(Example) An example of the present invention is shown in FIG. In Figure 1, the second
The same parts as in the figures are given the same symbols and their explanations are omitted.

第1図において、9Aは系統の電圧歪み率を測定する回
路、9Bは負荷電流に含まれる各次高調波を測定する回
路、9Cは上記9Aおよび9Bの測定結果から搬送波周
波数の上げ下げを判断する搬送波周波数制御回路である
In Figure 1, 9A is a circuit that measures the voltage distortion rate of the grid, 9B is a circuit that measures each harmonic included in the load current, and 9C is a circuit that determines whether to raise or lower the carrier frequency from the measurement results of 9A and 9B above. This is a carrier frequency control circuit.

搬送波周波数制御回路9Cにはあらかじめ、どのような
条件で搬送波の周波数を変えるかが設定されており、例
えば「系統側の総合電圧歪みがA%以下、かつ負荷の高
調波の全次数が基本波のB%以下の条件をもって搬送波
周波数を下げる」とか。
The carrier wave frequency control circuit 9C is set in advance under what conditions the carrier wave frequency is to be changed. The carrier frequency is lowered under the condition that it is less than B% of the

負荷の性質上特定次数の高調波が問題となる場合には、
「次数Nの高調波が基本波の0%以上になったら搬送波
周波数を上げる」など、その系統や負荷の特徴に合わせ
た饅定が行われている。
If harmonics of a specific order are a problem due to the nature of the load,
Settings are made according to the characteristics of the system and load, such as ``increase the carrier frequency when the N-order harmonic becomes 0% or more of the fundamental wave.''

この場合、搬送波周波数を上げる条件に対しては搬送波
周波数制御回路9Cは急速に応答し、下げる条件に対し
てはその条件が一定時間継続した後に動作をはじめるよ
うにしである。
In this case, the carrier wave frequency control circuit 9C responds quickly to the condition of increasing the carrier wave frequency, and starts operating after the condition continues for a certain period of time to the condition of decreasing the carrier wave frequency.

これはランダムに高調波が変動する負荷の場合、搬送波
周波数の上げ下げが頻繁になることを避けるためであり
、このようにして搬送波周波数制御回路9Cは搬送波発
生回路8に周波数の「上げ下げ」の指令信号を与える。
This is to avoid frequent increases and decreases in the carrier wave frequency in the case of a load in which harmonics vary randomly. give a signal.

このように系統側の電圧歪みと負荷の高調波発生量があ
らかじめ設定した条件を満たす範囲で、できるだけ低い
搬送波周波数で主回路素子lOをスイッチングさせるこ
とによって、最小のスイッチングロスでアクティブフィ
ルタを有効に動作させることが可能となる。
In this way, by switching the main circuit element IO at the lowest possible carrier frequency within the range where the voltage distortion on the grid side and the amount of harmonic generation in the load satisfy the preset conditions, the active filter can be made effective with minimum switching loss. It becomes possible to operate it.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明のPWMコンバータ形アクテ
ィブフィルタの制御装置によれば、あらかじめ設定した
条件内でできるだけ低い搬送波周波数で主回路素子のス
イッチングを行わせているので、所望の高調波抑制効果
を損なうこと無くスイッチングロスを小さくした。効率
の高いアクティブフィルタの運転を実現することができ
る。
As explained above, according to the control device for the PWM converter type active filter of the present invention, the switching of the main circuit elements is performed at the lowest possible carrier frequency within the preset conditions, so that the desired harmonic suppression effect can be achieved. Switching loss was reduced without any loss. Highly efficient active filter operation can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるアクティブフィルタの制御装置の
一実施例を示す系統図、第2図は従来のアクティブフィ
ルタの制御装置の一例を示す系統図、第3図はアクティ
ブフィルタのPWM制御の説明図である。 1・・・電力系ja2・・・高調波発生負荷3・・・ア
クティブフィルタ主回路 4・・・アクティブフィルタ制御回路 5・・・補償電流指令値演算回路 6・・・定電流制御
回路7・・・ゲートパルス発生回路  8・・・搬送波
発生回路9A・・・電圧歪み検出回路    9B・・
・高調波検出回路9C・・・搬送波周波数制御回路  
10.l0A−100・・・主回路素子11・・・ダイ
オード       12・・・モジュール13・・・
リアクトル       14・・・直流コンデンサ1
5、16・・・CT (8733)  代理人 弁理士 猪 股 祥 晃(ほ
か1名)第1図 +3121011
FIG. 1 is a system diagram showing an example of an active filter control device according to the present invention, FIG. 2 is a system diagram showing an example of a conventional active filter control device, and FIG. 3 is an explanation of PWM control of an active filter. It is a diagram. 1... Power system ja2... Harmonic generation load 3... Active filter main circuit 4... Active filter control circuit 5... Compensation current command value calculation circuit 6... Constant current control circuit 7. ...Gate pulse generation circuit 8...Carrier wave generation circuit 9A...Voltage distortion detection circuit 9B...
・Harmonic detection circuit 9C...carrier frequency control circuit
10. l0A-100...Main circuit element 11...Diode 12...Module 13...
Reactor 14...DC capacitor 1
5, 16...CT (8733) Agent Patent attorney Yoshiaki Inomata (and 1 other person) Figure 1 +3121011

Claims (1)

【特許請求の範囲】[Claims] 電力系統へ接続された高調波発生負荷に並列に接続され
て負荷の発生する高調波を補償するPWMコンバータ形
のアクティブフィルタの制御装置において、負荷の発生
する各次高調波を検出する高調波検出回路と、負荷入力
端の電圧歪みを検出する電圧歪み検出回路と、上記検出
した高調波および電圧歪みをあらかじめ設定した運転条
件と比較し、その比較結果に基づいてPWMコンバータ
のPWM搬送波周波数を自動調整する搬送波周波数制御
回路を備えたことを特徴とするアクティブフィルタの制
御装置。
Harmonic detection detects each harmonic generated by the load in a control device for a PWM converter type active filter that is connected in parallel to a harmonic generating load connected to the power system and compensates for harmonics generated by the load. A voltage distortion detection circuit that detects voltage distortion at the load input terminal compares the detected harmonics and voltage distortion with preset operating conditions, and automatically adjusts the PWM carrier frequency of the PWM converter based on the comparison results. 1. A control device for an active filter, comprising a carrier frequency control circuit for adjusting.
JP1081484A 1989-04-03 1989-04-03 Controller for active filter Pending JPH02262840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1081484A JPH02262840A (en) 1989-04-03 1989-04-03 Controller for active filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1081484A JPH02262840A (en) 1989-04-03 1989-04-03 Controller for active filter

Publications (1)

Publication Number Publication Date
JPH02262840A true JPH02262840A (en) 1990-10-25

Family

ID=13747678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1081484A Pending JPH02262840A (en) 1989-04-03 1989-04-03 Controller for active filter

Country Status (1)

Country Link
JP (1) JPH02262840A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109739A (en) * 2009-11-13 2011-06-02 Hitachi Ltd Power conversion apparatus
JP2018061351A (en) * 2016-10-05 2018-04-12 三菱重工サーマルシステムズ株式会社 Active filter control device, active filter device, electric power conversion system, control method, and program
US10944264B2 (en) 2011-11-25 2021-03-09 Comsys Ab Active filter for resonance reduction
SE538618E (en) * 2011-11-25 2023-02-21 Comsys Ab Control method and control system for an active filter for resonance reduction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109739A (en) * 2009-11-13 2011-06-02 Hitachi Ltd Power conversion apparatus
US10944264B2 (en) 2011-11-25 2021-03-09 Comsys Ab Active filter for resonance reduction
US11349307B2 (en) 2011-11-25 2022-05-31 Comsys Ab Active filter for resonance reduction
SE538618E (en) * 2011-11-25 2023-02-21 Comsys Ab Control method and control system for an active filter for resonance reduction
JP2018061351A (en) * 2016-10-05 2018-04-12 三菱重工サーマルシステムズ株式会社 Active filter control device, active filter device, electric power conversion system, control method, and program

Similar Documents

Publication Publication Date Title
JP2892183B2 (en) Power converter for photovoltaic power generation
JPH05336732A (en) Igbt gate circuit
JPH0954623A (en) Linkage type power converting device
KR20070097093A (en) Converter
JPH02262840A (en) Controller for active filter
JP4196697B2 (en) Power converter
US11368019B2 (en) Active filter device and air conditioner
US6366064B1 (en) Dual mode controller for switching circuirty
CN107396476B (en) Method for reducing EMI interference and electromagnetic heating device using same
JP3372914B2 (en) Switching power supply
JPH1141912A (en) Inverter circuit
CN100499348C (en) Power-supply device
JPH11164481A (en) Method for controlling active filter
JPH1028378A (en) Method for controlling power converter and method for controlling power converting system
JPH1198847A (en) Rectifier circuit
JP2003180082A (en) Ozone generation device
JP3753823B2 (en) Power supply
JPH09121561A (en) Method of treating regenerative energy of inverter and regenerative energy treating apparatus
JPS60168224A (en) Control method of self-excited converting device of pulse width modulation type
Saitou et al. A novel strategy of the high power PWM inverter with the series active filter
JP3915977B2 (en) Control circuit for series-parallel power supply
JPH10112979A (en) Power supply equipment
JP2001186774A (en) Capacitor discharge circuit of converter
JP3058928B2 (en) Inverter device
JPH073801Y2 (en) Protection circuit for active filter