JPH05336732A - Igbt gate circuit - Google Patents
Igbt gate circuitInfo
- Publication number
- JPH05336732A JPH05336732A JP4141230A JP14123092A JPH05336732A JP H05336732 A JPH05336732 A JP H05336732A JP 4141230 A JP4141230 A JP 4141230A JP 14123092 A JP14123092 A JP 14123092A JP H05336732 A JPH05336732 A JP H05336732A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- igbt
- transistor
- resistance
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Voltage And Current In General (AREA)
- Dc-Dc Converters (AREA)
- Power Conversion In General (AREA)
- Inverter Devices (AREA)
- Electronic Switches (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、IGBTを使用した装
置におけるIGBTゲート回路に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an IGBT gate circuit in a device using an IGBT.
【0002】[0002]
【従来の技術】IGBTは近年インバータ回路、チョッ
パ回路等の電力変換装置に使用されてきている。IGB
Tはゲートに信号が入力されるとスイッチング動作を行
う。IGBTの動作について図5を用いて説明する。図
5はIGBTのゲート回路図である。IGBT1のゲー
ト回路10は、IGBT1のゲート−エミッタ端子間に接
続されて構成される。IGBT1のゲート端子にはゲー
ト抵抗11が接続される。ゲート抵抗11と直列にゲートオ
ン用トランジスタ21のエミッタ端子が接続され、コレク
タ端子にゲートオン用直流電源22の+側が接続される。
又、ゲート抵抗11と直列にゲートオフ用トランジスタ23
のコレクタ端子が接続され、エミッタ端子にゲートオフ
用直流電源24の−側が接続される。ゲートオン用直流電
源22の−側及びゲートオフ用直流電源24の+側は、IG
BT1のエミッタ端子に接続される。2. Description of the Related Art In recent years, IGBTs have been used in power converters such as inverter circuits and chopper circuits. IGB
T performs a switching operation when a signal is input to its gate. The operation of the IGBT will be described with reference to FIG. FIG. 5 is a gate circuit diagram of the IGBT. The gate circuit 10 of the IGBT 1 is connected between the gate and emitter terminals of the IGBT 1. A gate resistor 11 is connected to the gate terminal of the IGBT 1. The emitter terminal of the gate-on transistor 21 is connected in series with the gate resistor 11, and the + side of the gate-on DC power supply 22 is connected to the collector terminal.
Also, a gate-off transistor 23 is connected in series with the gate resistor 11.
Is connected to the collector terminal, and the emitter terminal is connected to the minus side of the gate-off DC power supply 24. The-side of the gate-on DC power supply 22 and the + side of the gate-off DC power supply 24 are IG
It is connected to the emitter terminal of BT1.
【0003】ゲートオン用トランジスタ21にゲートオン
信号が入力されると、ゲートオン用トランジスタ21がオ
ン状態となる。するとゲートオン用直流電源22からIG
BT1のゲート−エミッタ間にバイアス電圧がかかり、
IGBT1はオン状態となる。又、ゲートオフ用トラン
ジスタ23にゲートオフ信号が入力されるとゲートオフ用
トランジスタ23がオン状態となる。するとゲートオフ用
直流電源24から、IGBT1のゲート−エミッタ間に逆
バイアス電圧がかかりIGBT1はオフ状態となる。When a gate-on signal is input to the gate-on transistor 21, the gate-on transistor 21 is turned on. Then the gate-on DC power supply 22
Bias voltage is applied between the gate and emitter of BT1,
The IGBT 1 is turned on. When the gate-off signal is input to the gate-off transistor 23, the gate-off transistor 23 is turned on. Then, a reverse bias voltage is applied between the gate and the emitter of the IGBT1 from the gate-off DC power supply 24, and the IGBT1 is turned off.
【0004】図6はIGBTオフ時にIGBTに流れる
電流IとIGBTのコレクタ−エミッタ間電圧Vの様子
を示した図で、図6(a)はゲート抵抗値が小さい場
合、図6(b)はゲート抵抗値が大きい場合の関係図で
ある。ゲート抵抗値を大きくする程、IGBTオフ時の
電流Iの減衰率が緩やかになり、IGBTのコレクタ−
エミッタ間電圧Vのオーバーシュートは低下することに
なるが、IGBTオフ時のスイッチングロスは大きくな
っている。このオーバーシュート量、スイッチングロス
は、入力電圧、使用するIGBTによって異なるが、例
えば入力電圧が600 Vの時、ゲート抵抗が51Ωの場合と
10Ωの場合とでは、ゲート抵抗が51Ωの時の方が、オー
バーシュート量は約1/2以下となるが、スイッチング
ロスは逆に約2.5 倍程度となる。従って入力電圧が定格
あるいは通常レベルの変動程度では、ゲート抵抗は素子
電圧耐量の許す範囲で小さくし、スイッチングロスを小
さく抑えるように設定している。FIG. 6 is a diagram showing a state of a current I flowing through the IGBT and a collector-emitter voltage V of the IGBT when the IGBT is off. FIG. 6A shows a case where the gate resistance value is small, and FIG. It is a relationship diagram when a gate resistance value is large. The larger the gate resistance value, the slower the attenuation rate of the current I when the IGBT is off.
Although the overshoot of the emitter-to-emitter voltage V is reduced, the switching loss when the IGBT is off is large. The amount of overshoot and switching loss differ depending on the input voltage and the IGBT used, but for example, when the input voltage is 600 V and the gate resistance is 51 Ω.
In the case of 10Ω, when the gate resistance is 51Ω, the overshoot amount is about 1/2 or less, but the switching loss is about 2.5 times. Therefore, the gate resistance is set to be as small as the allowable range of the element voltage, and the switching loss is set to be small when the input voltage is about the fluctuation of the rated value or the normal level.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、入力電
圧が増大して過電圧となった場合、IGBTオフ時のコ
レクタ−エミッタ間電圧のオーバーシュートの最大値
が、素子電圧耐量を越えIGBTを破壊してしまうとい
う問題があった。However, when the input voltage increases and becomes an overvoltage, the maximum value of the overshoot of the collector-emitter voltage when the IGBT is off exceeds the withstand voltage of the element and the IGBT is destroyed. There was a problem that it would end up.
【0006】そこで本発明は上記問題点を除去し、入力
電圧の通常時はIGBTオフ時のスイッチングロスを低
減させ、入力電圧の過電圧時はIGBTのコレクタ−エ
ミッタ間電圧のオーバーシュートの最大値を素子電圧耐
量以内に抑制させることにより、IGBTの破壊を防止
することのできるIGBTゲート回路を提供することを
目的とする。Therefore, the present invention eliminates the above problems, reduces the switching loss when the IGBT is off when the input voltage is normal, and reduces the maximum overshoot of the collector-emitter voltage of the IGBT when the input voltage is overvoltage. It is an object of the present invention to provide an IGBT gate circuit capable of preventing the breakdown of the IGBT by suppressing it within the withstand voltage of the element voltage.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に本発明では、IGBTのゲートオン信号をうけて、I
GBTをオンするゲートオン手段と、IGBTのゲート
オフ信号をうけて、IGBTをオフするゲートオフ手段
と、IGBTのゲートとゲートオン手段及びゲートオフ
手段との間に接続されたゲート抵抗と、IGBTのオフ
時に、IGBTのコレクタ−エミッタ間電圧を検出し、
所定の基準値と比較して、IGBTのコレクタ−エミッ
タ間電圧が異常値として検出された場合に、ゲート抵抗
を可変するゲート抵抗可変手段とを具備してなる。In order to achieve the above object, according to the present invention, a gate-on signal of an IGBT is applied to I
Gate-on means for turning on the IGBT, gate-off means for turning off the IGBT in response to the gate-off signal of the IGBT, gate resistance connected between the gate of the IGBT and the gate-on means and gate-off means, and the IGBT when the IGBT is off. The collector-emitter voltage of
It comprises gate resistance varying means for varying the gate resistance when the collector-emitter voltage of the IGBT is detected as an abnormal value as compared with a predetermined reference value.
【0008】[0008]
【作用】上述した構成により、ゲートオン手段はゲート
オン信号をうけると、IGBTをオンする。又ゲートオ
フ手段はゲートオフ信号をうけるとIGBTをオフす
る。この時ゲート抵抗可変手段により、IGBTのコレ
クタ−エミッタ間電圧が所定の基準値と比較して異常値
と判断された場合、ゲート抵抗は可変される。従って、
IGBTにかかる電圧が異常値の場合ゲート抵抗値を大
きく設定することで、IGBTのコレクタ−エミッタ間
電圧のオーバーシュートの最大値を素子電圧耐量以内に
抑制させるように働くことができる。With the above structure, the gate-on means turns on the IGBT when receiving the gate-on signal. The gate-off means turns off the IGBT when receiving the gate-off signal. At this time, the gate resistance changing means changes the gate resistance when the collector-emitter voltage of the IGBT is compared with a predetermined reference value and determined to be an abnormal value. Therefore,
When the voltage applied to the IGBT is an abnormal value, by setting the gate resistance value large, it is possible to work to suppress the maximum value of the overshoot of the collector-emitter voltage of the IGBT within the withstand voltage of the element voltage.
【0009】[0009]
【実施例】本発明の実施例を図面を参照し詳細に説明す
る。Embodiments of the present invention will be described in detail with reference to the drawings.
【0010】図2はIGBTを使用したチョッパ回路を
示す図である。直流電源3から与えられる直流電力はフ
ィルタコンデンサ4により安定化されIGBT1を通じ
て負荷6に供給される。フィルタコンデンサ4には並列
に直流電圧検出器(DCPT)5が接続される。IGB
T1のコレクタ−エミッタ端子間には逆並列にフライホ
イールダイオード1aがゲート−エミッタ端子間にはI
GBTゲート回路(以下ゲート回路で示す)2が接続さ
れる。負荷6には逆並列にIGBT1のオフ時の負荷電
流還流用フライホイールダイオード7が接続される。図
1は本発明の一実施例を示すIGBTのゲート回路図で
ある。FIG. 2 is a diagram showing a chopper circuit using an IGBT. The DC power supplied from the DC power supply 3 is stabilized by the filter capacitor 4 and supplied to the load 6 through the IGBT 1. A DC voltage detector (DCPT) 5 is connected in parallel to the filter capacitor 4. IGB
The flywheel diode 1a is connected in anti-parallel between the collector and emitter terminals of T1 and is I between the gate and emitter terminals.
A GBT gate circuit (hereinafter referred to as a gate circuit) 2 is connected. The load 6 is connected in anti-parallel with the flywheel diode 7 for returning the load current when the IGBT 1 is off. FIG. 1 is a gate circuit diagram of an IGBT showing an embodiment of the present invention.
【0011】IGBT1のゲート回路2は、IGBT1
のゲート−エミッタ端子間に接続されて構成される。I
GBT1のゲート端子にはゲート抵抗部20aが直列に接
続される。ゲート抵抗部20aはゲート抵抗200, 201の直
列回路と、ゲート抵抗200 と並列にトランジスタ202 が
接続され、更にトランジスタ202 のコレクタ−エミッタ
端子間には逆並列にフライホイールダイオード203 が、
ベース端子には比較回路204 が接続されて構成される。
ゲート抵抗部20aと直列にIGBT1のゲートオン手段
として、ゲートオン用トランジスタ21のエミッタ端子が
接続され、コレクタ端子にゲートオン用直流電源22の+
側が接続される。又ゲート抵抗部20aと直列にゲートオ
フ手段としてゲートオフ用トランジスタ23のコレクタ端
子が接続され、エミッタ端子にゲートオフ用直流電源24
の−側が接続される。ゲートオン用直流電源22の−側及
びゲートオフ用直流電源24の+側はIGBT1のエミッ
タ端子に接続される。The gate circuit 2 of the IGBT 1 is
Is connected between the gate and emitter terminals of the. I
The gate resistance portion 20a is connected in series to the gate terminal of the GBT 1. The gate resistor section 20a includes a series circuit of gate resistors 200 and 201, a transistor 202 connected in parallel with the gate resistor 200, and a flywheel diode 203 in antiparallel between the collector and emitter terminals of the transistor 202.
A comparison circuit 204 is connected to the base terminal.
An emitter terminal of a gate-on transistor 21 is connected as a gate-on means of the IGBT 1 in series with the gate resistance section 20a, and a collector terminal of a DC power source 22 for gate-on +
The sides are connected. Further, the collector terminal of the gate-off transistor 23 is connected as a gate-off means in series with the gate resistance portion 20a, and the emitter terminal thereof is connected to the DC power supply 24 for gate-off.
The-side of is connected. The − side of the gate-on DC power supply 22 and the + side of the gate-off DC power supply 24 are connected to the emitter terminal of the IGBT 1.
【0012】ゲートオン用トランジスタ21にゲートオン
信号が入力されると、ゲートオン用トランジスタ21がオ
ン状態となる。するとゲートオン用直流電源22から、I
GBT1のゲート−エミッタ間にバイアス電圧がかかり
IGBT1はオン状態となる。通常トランジスタ202 を
オン状態にさせておくことで、IGBT1オン時のゲー
ト抵抗はゲート抵抗201 となる。又、オフゲート用トラ
ンジスタ23にゲートオフ信号が入力されると、ゲートオ
フ用トランジスタ23がオン状態となる。するとゲートオ
フ用直流電源24からIGBT1のゲート−エミッタ間に
逆バイアス電圧がかかりIGBT1はオフ状態となる。
この場合も通常トランジスタ202 をオン状態にさせてお
くことでIGBT1オフ時のゲート抵抗はゲート抵抗20
2 となる。When a gate-on signal is input to the gate-on transistor 21, the gate-on transistor 21 is turned on. Then, from the gate-on DC power supply 22, I
A bias voltage is applied between the gate and the emitter of the IGBT 1, and the IGBT 1 is turned on. When the transistor 202 is normally turned on, the gate resistance when the IGBT 1 is turned on becomes the gate resistance 201. When a gate-off signal is input to the off-gate transistor 23, the gate-off transistor 23 is turned on. Then, a reverse bias voltage is applied from the gate-off DC power supply 24 between the gate and the emitter of the IGBT 1, and the IGBT 1 is turned off.
Also in this case, the gate resistance when the IGBT1 is off is set to the gate resistance 20 by keeping the normal transistor 202 on.
It becomes 2.
【0013】IGBT1オフ時にIGBT1にかかる電
圧は、フィルタコンデンサ4に並列に接続されたDCP
T5で検出される電圧値である。このDCPT5で検出
される電圧値は比較回路204 に入力され、所定の基準値
と比較される。図3に比較回路の制御ブロック図を示
す。DCPT5より検出された電圧値VFCと所定の基準
値C1とが比較回路204 に入力されると、VFCとC1の
大きさが比較される。通常時はVFC≦C1であるので、
トランジスタ202 にオン信号が入力され、トランジスタ
202 はオン状態に保たれる。入力電圧が過電圧となる
と、VFC>C1となりトランジスタ202 にオフ信号が入
力され、トランジスタ202 はオフ状態となる。この時ゲ
ート抵抗としては、ゲート抵抗200 とゲート抵抗201 の
直列抵抗となり、通常時のゲート抵抗よりも大きな値の
抵抗を設定できる。従って通常時ゲート抵抗を10Ωに設
定し、異常時は51Ωに設定したい場合などはゲート抵抗
201 を10Ω、ゲート抵抗200 を41Ωとすることで、通常
(VFC≦C1)の時は10Ωという小さなゲート抵抗201
を設定することでスイッチングロスを小さく抑えること
ができる。又、入力過電圧時などの異常時(VFC>C
1)は41Ωのゲート抵抗200 と10Ωのゲート抵抗201 と
の直列抵抗51Ωに設定できるので、オーバーシュートを
抑制し、素子破壊を防ぐことができる。The voltage applied to the IGBT 1 when the IGBT 1 is off is the DCP connected in parallel to the filter capacitor 4.
It is a voltage value detected at T5. The voltage value detected by this DCPT5 is input to the comparison circuit 204 and compared with a predetermined reference value. FIG. 3 shows a control block diagram of the comparison circuit. When the voltage value V FC detected by DCPT5 and the predetermined reference value C1 are input to the comparison circuit 204, the magnitudes of V FC and C1 are compared. Since V FC ≤C1 in the normal state,
The ON signal is input to the transistor 202
The 202 remains on. When the input voltage becomes overvoltage, V FC > C1 and the off signal is input to the transistor 202, and the transistor 202 is turned off. At this time, the gate resistance is a series resistance of the gate resistance 200 and the gate resistance 201, and a resistance having a larger value than the normal gate resistance can be set. Therefore, if you want to set the gate resistance to 10 Ω during normal operation and 51 Ω during abnormal conditions, etc.
By setting 201 to 10 Ω and gate resistance 200 to 41 Ω, the gate resistance 201 is as small as 10 Ω normally (V FC ≦ C1).
By setting, the switching loss can be suppressed to be small. In addition, at the time of abnormalities such as input overvoltage (V FC > C
Since 1) can be set to a series resistance of 51Ω including a gate resistance 200 of 41Ω and a gate resistance 201 of 10Ω, it is possible to suppress overshoot and prevent element destruction.
【0014】図4は他の実施例を示すIGBTのゲート
回路図である。IGBT1のゲート端子にはゲート抵抗
部20bが直列に接続される。ゲート抵抗部20bはゲート
抵抗205 と並列にゲート抵抗206 、ダイオード207 の直
列回路、及びゲート抵抗208、ダイオード209 、トラン
ジスタ202 の直列回路が接続され、トランジスタ202の
ベース端子には比較回路204 が接続されて構成される。
ゲートオン手段及びゲートオフ手段の回路構成は、図1
の実施例と同様で、それぞれゲート抵抗部20bと直列に
接続されている。FIG. 4 is a gate circuit diagram of an IGBT showing another embodiment. The gate resistor 20b is connected in series to the gate terminal of the IGBT 1. The gate resistance unit 20b is connected in parallel with the gate resistance 205 to the series circuit of the gate resistance 206, the diode 207, and the series circuit of the gate resistance 208, the diode 209, and the transistor 202, and the comparison circuit 204 is connected to the base terminal of the transistor 202. Is configured.
The circuit configuration of the gate-on means and the gate-off means is shown in FIG.
Similar to the above embodiment, each is connected in series with the gate resistance portion 20b.
【0015】ゲートオン用トランジスタ21にゲートオン
信号が入力されると、IGBT1はオン状態となる。通
常トランジスタ202 をオン状態にさせておくことで、I
GBT1オン時のゲート抵抗はゲート抵抗205 とゲート
抵抗206 との並列抵抗値となる。又、ゲートオフ用トラ
ンジスタ23にゲートオフ信号が入力されると、IGBT
1はオフ状態となる。この場合も通常トランジスタ202
をオン状態にさせておくことで、IGBT1オフ時のゲ
ート抵抗はゲート抵抗205 とゲート抵抗208 との並列抵
抗値となる。When the gate-on signal is input to the gate-on transistor 21, the IGBT 1 is turned on. Normally, by turning on the transistor 202, I
The gate resistance when the GBT1 is on is the parallel resistance value of the gate resistance 205 and the gate resistance 206. When a gate-off signal is input to the gate-off transistor 23, the IGBT
1 is turned off. Also in this case, the normal transistor 202
When the IGBT 1 is turned off, the gate resistance when the IGBT 1 is turned off is the parallel resistance value of the gate resistance 205 and the gate resistance 208.
【0016】本実施例でも同様にDCPT5の出力電圧
値VFCと所定の基準値C1とを比較回路204 で比較する
ことにより、トランジスタ202 をオン状態又はオフ状態
に動作させる。VFC>C1状態になる入力過電圧時など
は、比較回路204 によりトランジスタ202 にオフ信号を
入力することで、ゲート抵抗はゲート抵抗205 に設定で
きる。従って通常時ゲート抵抗を10Ωに設定し異常時は
51Ωに設定したい場合などは、ゲート抵抗205 を51Ω、
ゲート抵抗206 ,208 をそれぞれ約12Ωとすればよい。Also in this embodiment, similarly, the output voltage value V FC of the DCPT 5 and the predetermined reference value C1 are compared by the comparison circuit 204 to operate the transistor 202 in the ON state or the OFF state. At the time of input overvoltage where V FC > C1 state, the gate resistance can be set to the gate resistance 205 by inputting an OFF signal to the transistor 202 by the comparison circuit 204. Therefore, the gate resistance is normally set to 10Ω
If you want to set it to 51Ω, set the gate resistance 205 to 51Ω,
The gate resistors 206 and 208 may each be about 12Ω.
【0017】従って、入力過電圧時などの時のみゲート
抵抗値を大きく設定することにより、通常時は低スイッ
チングロスとなるため素子冷却のためのフィンなどを大
きくする必要がなくなり、小型軽量、高効率でかつ過電
圧に強いIGBTゲート回路を提供することができる。Therefore, by setting the gate resistance value large only at the time of input overvoltage or the like, the switching loss is low in the normal state, so that it is not necessary to increase the fins for cooling the elements, and the size is small, the weight is high, and the efficiency is high. It is possible to provide an IGBT gate circuit that is strong against overvoltage.
【0018】なお、本実施例では、チョッパ回路に使用
した場合を示したが、インバータ回路などの電力変換装
置に使用されるIGBT素子に対しても使用することが
できる。In this embodiment, the case of using it in the chopper circuit is shown, but it can also be used in the IGBT element used in the power converter such as the inverter circuit.
【0019】[0019]
【発明の効果】以上説明したように、本発明によれば、
通常時はゲート抵抗値を小さく設定してスイッチングロ
スを低減し、一時的におこる過電圧時などにはゲート抵
抗値を大きく設定することにより、IGBTにかかるオ
ーバーシュート電圧の最大値を抑制してIGBTを電圧
破壊から防止するという効果を得ることができる。As described above, according to the present invention,
Normally, the gate resistance value is set small to reduce switching loss, and when the overvoltage occurs temporarily, the gate resistance value is set large to suppress the maximum value of the overshoot voltage applied to the IGBT. It is possible to obtain the effect of preventing the voltage from being destroyed.
【図1】本発明の一実施例を示すIGBTのゲート回路
図である。FIG. 1 is a gate circuit diagram of an IGBT showing an embodiment of the present invention.
【図2】IGBTを使用したチョッパ回路を示す図であ
る。FIG. 2 is a diagram showing a chopper circuit using an IGBT.
【図3】比較回路の抑制ブロック図である。FIG. 3 is a suppression block diagram of a comparison circuit.
【図4】本発明の他の実施例を示すIGBTのゲート回
路図である。FIG. 4 is a gate circuit diagram of an IGBT showing another embodiment of the present invention.
【図5】従来のIGBTのゲート回路図である。FIG. 5 is a gate circuit diagram of a conventional IGBT.
【図6】IGBTオフ時の素子に流れる電流と素子間電
圧の関係を示す図である。FIG. 6 is a diagram showing a relationship between a current flowing through an element and an inter-element voltage when the IGBT is off.
1…IGBT 2…IGBTゲート回路 20a,20b…ゲート抵抗部 202 …トランジスタ 204 …比較回路 5…DCPT 1 ... IGBT 2 ... IGBT gate circuit 20a, 20b ... Gate resistance section 202 ... Transistor 204 ... Comparison circuit 5 ... DCPT
Claims (1)
記IGBTをオンするゲートオン手段と、 前記IGBTのゲートオフ信号をうけて、前記IGBT
をオフするゲートオフ手段と、 前記IGBTのゲートと前記ゲートオン手段及び前記ゲ
ートオフ手段との間に接続されたゲート抵抗と、 前記IGBTのオフ時に、前記IGBTのコレクタ−エ
ミッタ間電圧を検出し、所定の基準値と比較して、前記
IGBTのコレクタ−エミッタ間電圧が異常値として検
出された場合に、前記ゲート抵抗を可変するゲート抵抗
可変手段とを備えてなることを特徴するIGBTゲート
回路。1. A gate-on means for turning on the IGBT in response to an IGBT gate-on signal, and an IGBT for receiving the gate-off signal of the IGBT.
A gate-off means for turning off the gate, a gate resistance connected between the gate of the IGBT and the gate-on means and the gate-off means, and a collector-emitter voltage of the IGBT is detected when the IGBT is off, An IGBT gate circuit, comprising: a gate resistance varying means for varying the gate resistance when the collector-emitter voltage of the IGBT is detected as an abnormal value as compared with a reference value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4141230A JPH05336732A (en) | 1992-06-02 | 1992-06-02 | Igbt gate circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4141230A JPH05336732A (en) | 1992-06-02 | 1992-06-02 | Igbt gate circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05336732A true JPH05336732A (en) | 1993-12-17 |
Family
ID=15287140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4141230A Pending JPH05336732A (en) | 1992-06-02 | 1992-06-02 | Igbt gate circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05336732A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0817381A2 (en) * | 1996-07-05 | 1998-01-07 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device drive circuit |
WO1998053546A1 (en) * | 1997-05-23 | 1998-11-26 | Kabushiki Kaisha Toshiba | Power converter wherein mos gate semiconductor device is used |
JP2001314075A (en) * | 2000-04-28 | 2001-11-09 | Fuji Electric Co Ltd | Gate drive circuit of power semiconductor device |
JP2004096318A (en) * | 2002-08-30 | 2004-03-25 | Mitsubishi Electric Corp | Semiconductor device for electric power |
JP2004253582A (en) * | 2003-02-20 | 2004-09-09 | Hitachi Ltd | Method and apparatus for driving semiconductor device |
JP2005020919A (en) * | 2003-06-27 | 2005-01-20 | Toyota Industries Corp | Controller for electric motor |
JP2005198406A (en) * | 2004-01-07 | 2005-07-21 | Mitsubishi Electric Corp | Step-up device and motor controller |
JP2005269446A (en) * | 2004-03-19 | 2005-09-29 | Nissan Motor Co Ltd | Drive circuit for voltage-driven semiconductor device |
JP2008035068A (en) * | 2006-07-27 | 2008-02-14 | Toyota Central Res & Dev Lab Inc | Driving circuit for transistor |
JP2008147786A (en) * | 2006-12-06 | 2008-06-26 | Denso Corp | Driving circuit of insulated gate transistor |
JP2010110076A (en) * | 2008-10-29 | 2010-05-13 | Shindengen Electric Mfg Co Ltd | Switching converter |
WO2010082305A1 (en) * | 2009-01-13 | 2010-07-22 | 富士通株式会社 | Dc-dc converter, method for controlling dc-dc converter, and electronic device |
JP2011119885A (en) * | 2009-12-02 | 2011-06-16 | Toyo Electric Mfg Co Ltd | Gate drive device of voltage drive type semiconductor device |
JP2011142752A (en) * | 2010-01-07 | 2011-07-21 | Toshiba Corp | Gate drive circuit |
CN102237781A (en) * | 2010-05-06 | 2011-11-09 | Ls产电株式会社 | Switching gate driver |
JP5377756B2 (en) * | 2010-04-14 | 2013-12-25 | 本田技研工業株式会社 | Short circuit protection method |
JP2015213296A (en) * | 2014-03-04 | 2015-11-26 | トライクイント・セミコンダクター・インコーポレイテッドTriQuint Semiconductor,Inc. | Bias circuit for high-power high-frequency switching element |
US9283850B2 (en) | 2012-02-17 | 2016-03-15 | Mitsubishi Electric Corporation | Semiconductor device and cooling system for semiconductor device |
JP2016140218A (en) * | 2015-01-29 | 2016-08-04 | 京セラドキュメントソリューションズ株式会社 | Power supply device and image forming apparatus |
CN106160446A (en) * | 2014-12-10 | 2016-11-23 | 现代摩比斯株式会社 | The gate driver circuit of preventing arm short circuit and method |
CN109474167A (en) * | 2017-09-07 | 2019-03-15 | 台达电子工业股份有限公司 | The driving method of driving circuit and power switch |
JP2019221088A (en) * | 2018-06-21 | 2019-12-26 | 株式会社東芝 | Power semiconductor driving device and power conversion apparatus |
WO2021010353A1 (en) * | 2019-07-17 | 2021-01-21 | パナソニックIpマネジメント株式会社 | Gate drive circuit, and semiconductor breaker |
US11575373B2 (en) | 2018-10-18 | 2023-02-07 | Qorvo Us, Inc. | Switch circuitry |
-
1992
- 1992-06-02 JP JP4141230A patent/JPH05336732A/en active Pending
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0817381A2 (en) * | 1996-07-05 | 1998-01-07 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device drive circuit |
US5986484A (en) * | 1996-07-05 | 1999-11-16 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device drive circuit with voltage surge suppression |
EP0817381B1 (en) * | 1996-07-05 | 2004-04-21 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device drive circuit |
WO1998053546A1 (en) * | 1997-05-23 | 1998-11-26 | Kabushiki Kaisha Toshiba | Power converter wherein mos gate semiconductor device is used |
JP2001314075A (en) * | 2000-04-28 | 2001-11-09 | Fuji Electric Co Ltd | Gate drive circuit of power semiconductor device |
JP2004096318A (en) * | 2002-08-30 | 2004-03-25 | Mitsubishi Electric Corp | Semiconductor device for electric power |
JP2004253582A (en) * | 2003-02-20 | 2004-09-09 | Hitachi Ltd | Method and apparatus for driving semiconductor device |
JP2005020919A (en) * | 2003-06-27 | 2005-01-20 | Toyota Industries Corp | Controller for electric motor |
JP2005198406A (en) * | 2004-01-07 | 2005-07-21 | Mitsubishi Electric Corp | Step-up device and motor controller |
JP2005269446A (en) * | 2004-03-19 | 2005-09-29 | Nissan Motor Co Ltd | Drive circuit for voltage-driven semiconductor device |
US7242238B2 (en) | 2004-03-19 | 2007-07-10 | Nissan Motor Co., Ltd. | Drive circuit for voltage driven type semiconductor element |
JP2008035068A (en) * | 2006-07-27 | 2008-02-14 | Toyota Central Res & Dev Lab Inc | Driving circuit for transistor |
JP2008147786A (en) * | 2006-12-06 | 2008-06-26 | Denso Corp | Driving circuit of insulated gate transistor |
JP2010110076A (en) * | 2008-10-29 | 2010-05-13 | Shindengen Electric Mfg Co Ltd | Switching converter |
WO2010082305A1 (en) * | 2009-01-13 | 2010-07-22 | 富士通株式会社 | Dc-dc converter, method for controlling dc-dc converter, and electronic device |
CN102273056A (en) * | 2009-01-13 | 2011-12-07 | 富士通株式会社 | DC-DC converter, method for controlling DC-DC converter, and electronic device |
US8344718B2 (en) | 2009-01-13 | 2013-01-01 | Fujitsu Limited | DC-DC converter, method for controlling DC-DC converter, and electronic device |
JPWO2010082305A1 (en) * | 2009-01-13 | 2012-06-28 | 富士通株式会社 | DC / DC converter, DC / DC converter control method, and electronic apparatus |
JP2011119885A (en) * | 2009-12-02 | 2011-06-16 | Toyo Electric Mfg Co Ltd | Gate drive device of voltage drive type semiconductor device |
JP2011142752A (en) * | 2010-01-07 | 2011-07-21 | Toshiba Corp | Gate drive circuit |
JP5377756B2 (en) * | 2010-04-14 | 2013-12-25 | 本田技研工業株式会社 | Short circuit protection method |
CN102237781A (en) * | 2010-05-06 | 2011-11-09 | Ls产电株式会社 | Switching gate driver |
US8362812B2 (en) | 2010-05-06 | 2013-01-29 | Lsis Co., Ltd. | Switching gate driver |
JP2011239383A (en) * | 2010-05-06 | 2011-11-24 | Lsis Co Ltd | Switching gate driver |
US9283850B2 (en) | 2012-02-17 | 2016-03-15 | Mitsubishi Electric Corporation | Semiconductor device and cooling system for semiconductor device |
JP2015213296A (en) * | 2014-03-04 | 2015-11-26 | トライクイント・セミコンダクター・インコーポレイテッドTriQuint Semiconductor,Inc. | Bias circuit for high-power high-frequency switching element |
CN106160446B (en) * | 2014-12-10 | 2018-10-26 | 现代摩比斯株式会社 | The gate driving circuit and method of preventing arm short circuit |
CN106160446A (en) * | 2014-12-10 | 2016-11-23 | 现代摩比斯株式会社 | The gate driver circuit of preventing arm short circuit and method |
JP2016140218A (en) * | 2015-01-29 | 2016-08-04 | 京セラドキュメントソリューションズ株式会社 | Power supply device and image forming apparatus |
CN109474167A (en) * | 2017-09-07 | 2019-03-15 | 台达电子工业股份有限公司 | The driving method of driving circuit and power switch |
JP2019221088A (en) * | 2018-06-21 | 2019-12-26 | 株式会社東芝 | Power semiconductor driving device and power conversion apparatus |
US11575373B2 (en) | 2018-10-18 | 2023-02-07 | Qorvo Us, Inc. | Switch circuitry |
WO2021010353A1 (en) * | 2019-07-17 | 2021-01-21 | パナソニックIpマネジメント株式会社 | Gate drive circuit, and semiconductor breaker |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05336732A (en) | Igbt gate circuit | |
US5018041A (en) | Circuit for internal current limiting in a fast high side power switch | |
US7368972B2 (en) | Power transistor control device | |
US4819157A (en) | Overcurrent protection circuit for inverter device including majority circuit for turn-off of majority of conducting transistors | |
JPH07297358A (en) | Semiconductor power module and power converter | |
JPH0437649B2 (en) | ||
US6809561B2 (en) | Semiconductor power converting apparatus | |
JPH11234104A (en) | Semiconductor module and inverter device | |
US3729655A (en) | Protective circuit arrangement for a switching transistor in an inductive load circuit | |
US6137703A (en) | Clamped bidirectional power switches | |
US5650906A (en) | Circuit arrangement for protecting power semiconductor switches which can be switched on and off against overvoltages | |
US4167776A (en) | Inverter circuit | |
Weis et al. | A new gate driver circuit for improved turn-off characteristics of high current IGBT modules | |
US5737200A (en) | Semiconductor device protection method | |
US3304489A (en) | High frequency switching regulator | |
US5945868A (en) | Power semiconductor device and method for increasing turn-on time of the power semiconductor device | |
US5235487A (en) | Inverter with overload current protection | |
JPH07147726A (en) | Overvoltage limiting circuit of semiconductor device | |
JPH0918310A (en) | Overcurrent protective circuit for insulated gate semiconductor element | |
Knöll | High-current transistor choppers | |
JPH0624393U (en) | IGBT inverter circuit | |
JPH0685496B2 (en) | Gate drive circuit for electrostatic induction type self-extinguishing device | |
JPH0274149A (en) | Chopper | |
JP2911767B2 (en) | Switching element drive circuit | |
JPS59202727A (en) | Overvoltage preventing device of semiconductor switch |