JPH02262385A - Wavelength conversion type solid laser and its manufacture - Google Patents

Wavelength conversion type solid laser and its manufacture

Info

Publication number
JPH02262385A
JPH02262385A JP8355189A JP8355189A JPH02262385A JP H02262385 A JPH02262385 A JP H02262385A JP 8355189 A JP8355189 A JP 8355189A JP 8355189 A JP8355189 A JP 8355189A JP H02262385 A JPH02262385 A JP H02262385A
Authority
JP
Japan
Prior art keywords
wavelength
waveguide
laser
light
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8355189A
Other languages
Japanese (ja)
Inventor
Kazutaka Terajima
一高 寺嶋
Genichi Hatagoshi
玄一 波多腰
Masaru Kawachi
河内 勝
Yutaka Uematsu
豊 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8355189A priority Critical patent/JPH02262385A/en
Publication of JPH02262385A publication Critical patent/JPH02262385A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • H01S3/1095Frequency multiplication, e.g. harmonic generation self doubling, e.g. lasing and frequency doubling by the same active medium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To facilitate the generation of a laser beam and to contrive the simplification of the constitution of the title laser and a reduction in the size of the laser by a method wherein an impurity to excite the laser beam is doped to at least one side of a waveguide part and a clad part by light irradiation, the generation of the fundamental wave of the laser beam is performed by an external excitation and this wave is simultaneously converted its wavelength to generate the short-wavelength laser beam. CONSTITUTION:First, a semi-circular recessed part 22 is provided in the central part of the upper surface of a flat plate 21 consisting of a nonlinear optical material. The plate 21 having this recessed part 22 is dipped into a solution, in which KPO3 is used as a basic flux and 7 molar % of Nd is contained to the amount of the KPO3 as a light excitation impurity. This solution is cooled for two days at the rate of 1 deg.C/day from 900 deg.C, for example, and a KXRb1-XTiOPO4 thin film 23 containing the Nd as an impurity is grown and formed on the plate 21. Then, the film 23 is etched by a chemical etching method or the like and the film 23 is left only on the recessed part 22. A growth of KTP is further performed on the plate 21. Hereafter, a light emitting part of a clad part 12 is processed according to the need. Moreover, a mirror processing is performed on the end face of a waveguide part 11.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、光情報処理や光計n1等に用いる短波長の光
源を得るための波長変換光学素子に係わり、特に外部励
起によりレーザ光を発生する波長変換型固体レーザに関
する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a wavelength conversion optical element for obtaining a short wavelength light source used in optical information processing, photometer n1, etc. This invention relates to a wavelength-converting solid-state laser that generates laser light through excitation.

(従来の技術) 近年、高密度光ディスクシステム、計測及び表示システ
ム等への応用を目的として、短波長のコヒーレント光源
の開発が進められている。
(Prior Art) In recent years, short-wavelength coherent light sources have been developed for application to high-density optical disk systems, measurement and display systems, and the like.

光デイスクシステムでは、ディスク面上に絞られる光の
スポット径が光源の波長に比例するため、高密度化を実
現するには短波長の光源が必須である。短波長の光源と
して、半導体レーザは小型、軽量、低消費電力という利
点を持つため、新しい材料を用いた短波長のレーザの開
発が進められており、既に0.6μm帯(赤色)に発振
波長を持つInGaAIP系半導体レーザは実用化のレ
ベルに至っている。しかしながら、さらに短波長の緑色
或いは青色のレーザについては研究は行われているもの
の、室温で連続発振するレーザは得られておらず、実用
化の見通しは未だついていない。
In an optical disk system, the spot diameter of the light focused on the disk surface is proportional to the wavelength of the light source, so a short wavelength light source is essential to achieve high density. As a short-wavelength light source, semiconductor lasers have the advantages of being small, lightweight, and low power consumption, so the development of short-wavelength lasers using new materials is progressing, and the oscillation wavelength is already in the 0.6 μm band (red). InGaAIP-based semiconductor lasers with the following characteristics have reached the level of practical use. However, although research has been carried out on green or blue lasers with shorter wavelengths, a laser that continuously oscillates at room temperature has not been obtained, and there is still no prospect of practical use.

一方、短波長の光源を実現する他の手段として、非線形
光学結晶を用いた光第2高調波発生(SHG)があり、
従来より多くの研究が行われている。小型、低消費電力
を実現させるため、基本波光源として半導体レーザを用
い、非線形光学結晶を導波路化する試みが行われており
、例えば第4図に示したようなプロトン交換LiNb0
.導波路を用いて、80mWの半導体レーザの光第2高
調波として1mWの青色光源が得られている(谷内能:
昭和62年秋季応用物理学会、 19p−ZG−4(1
987)) 、なお、図中41はマウント、42は半導
体レーザ、43は1/2波長板、44は集光レンズ、4
5はLiNBOi光導波路、46は青色SHG光を示し
ている。この方式は、チェレンコフ放射により光第2高
調波を導波路基板内へ放射させるもので、従来のSHG
方式に比べ、角度制御、温度制御による位相整合が不要
であるという利点を持つ。
On the other hand, as another means of realizing a short wavelength light source, there is optical second harmonic generation (SHG) using a nonlinear optical crystal.
More research has been conducted than ever before. In order to realize compactness and low power consumption, attempts have been made to use a semiconductor laser as a fundamental wave light source and to turn a nonlinear optical crystal into a waveguide. For example, proton exchange LiNb0 as shown in Fig.
.. Using a waveguide, a 1 mW blue light source has been obtained as the optical second harmonic of an 80 mW semiconductor laser (Noh Taniuchi:
Autumn 1986 Japan Society of Applied Physics, 19p-ZG-4 (1
987)) In the figure, 41 is a mount, 42 is a semiconductor laser, 43 is a 1/2 wavelength plate, 44 is a condensing lens, 4
5 indicates a LiNBOi optical waveguide, and 46 indicates blue SHG light. This method uses Cerenkov radiation to radiate optical second harmonics into the waveguide substrate.
This method has the advantage of not requiring phase matching through angle control or temperature control.

しかしながら、第4図に示す例では、基本波の入射光源
を必要とし、集光レンズ等を複数個必要とするため、デ
バイス構造が複雑になると共にコンパクト化が困難であ
る。さらに、基本波を先導波路に正確に入射する必要が
あり、光路の調整が必須となり、構造が益々大型化する
問題が残る。
However, the example shown in FIG. 4 requires a fundamental wave incident light source and a plurality of condensing lenses, making the device structure complicated and difficult to make compact. Furthermore, it is necessary to accurately input the fundamental wave into the leading waveguide, making it necessary to adjust the optical path, and the problem remains that the structure becomes increasingly large.

(発明が解決しようとする課題) このように従来、位相整合が不要のチェレンコフ放射を
利用するSHGでは、基本波を正確に導波路に入射する
必要がある。このため、基本波を入射端部で集光し、さ
らに精密な位置合わせが必要となり、構造が複雑化及び
大型化する問題があった。
(Problems to be Solved by the Invention) As described above, in the conventional SHG that uses Cerenkov radiation that does not require phase matching, it is necessary to accurately input the fundamental wave into the waveguide. For this reason, it is necessary to collect the fundamental wave at the incident end and to perform more precise positioning, resulting in a problem that the structure becomes complicated and large.

本発明は、上記事情を考慮してなされたもので、その目
的とするところは、波長変換により短波長レーザ光を容
易に発生することができ、且つ構成の簡略化及び小型化
をはかり得る波長変換型固体レーザ及びその製造方法を
提供することにある。
The present invention has been made in consideration of the above-mentioned circumstances, and its purpose is to easily generate a short wavelength laser beam by wavelength conversion, and to obtain a wavelength that can simplify and miniaturize the configuration. An object of the present invention is to provide a conversion solid-state laser and a method for manufacturing the same.

[発明の構成コ (課題を解決するための手段) 本発明の骨子は、チェレンコフ放射型の波長変換素子に
おいて、基本波の入射機構を省き、基本波発生部分を先
導波路内に配置することにある。
[Structure of the Invention (Means for Solving the Problems) The gist of the present invention is to omit the fundamental wave incidence mechanism in a Cerenkov radiation type wavelength conversion element and to arrange the fundamental wave generation part in the leading wave path. be.

即ち本発明は、導波部及びクラッド部の少なくとも一方
が非線形光学材料で形成され、基本波が導波モード、光
第2高調波がチェレンコフ放射光となるように設定され
た光導波路型の波長変換光学素子からなり、導波部及び
クラッド部の少なくとも一方に光照射によりレーザ光を
励起する不純物が添加された波長変換型固体レーザであ
り、外部励起により基本波を発生し、この基本波を波長
変換して短波長レーザ光を発生するようにしたものであ
る。
That is, the present invention provides an optical waveguide type wavelength set in which at least one of the waveguide part and the cladding part is formed of a nonlinear optical material, and the fundamental wave is set in the waveguide mode and the optical second harmonic is set as Cerenkov radiation light. This is a wavelength conversion solid-state laser that consists of a conversion optical element and has impurities added to at least one of the waveguide part and the cladding part to excite the laser beam by light irradiation, and generates a fundamental wave by external excitation. It converts the wavelength and generates short wavelength laser light.

また本発明は、上記波長変換型固体レーザの製造方法に
おいて、先導波路型の波長変換素子のクラッド部の一部
となる平板の表面に直線上に凹部を設けたのち、この平
板上に波長変換素子の導波部となり且つ光照射によりレ
ーザ光を励起する不純物が添加された薄膜を形成し、次
いでこの薄膜をエツチングし平板の凹部にのみ該薄膜を
残し、しかるのち平板上に波長変換素子のクラッド部の
一部となる薄膜を形成するようにした方法である。
The present invention also provides a method for manufacturing a wavelength conversion solid-state laser, in which a recess is provided in a straight line on the surface of a flat plate that becomes a part of a cladding part of a waveguide type wavelength conversion element, and then a wavelength conversion A thin film doped with impurities that becomes the waveguide of the device and excites the laser beam when irradiated with light is formed, then this thin film is etched, leaving the thin film only in the recesses of the flat plate, and then the wavelength conversion element is placed on the flat plate. This method forms a thin film that becomes part of the cladding part.

(作用) 本発明によれば、チェレンコフ放射方式による光導波路
と、基本波を発生するレーザ発生部とを同時に兼ね備え
た素子を作成することが可能となり、レーザ発生部で発
生されたレーザ光を光導波路で波長変換して短波長のレ
ーザ光を出力することができる。従っ・て、従来必要で
あった入射波を光導波路に入射するためのレンズや精密
調整機構等が不要になり、小型の短波長固体レーザを得
ることが可能となる。
(Function) According to the present invention, it is possible to create an element that simultaneously has an optical waveguide based on the Cherenkov radiation method and a laser generating section that generates a fundamental wave, and the laser beam generated by the laser generating section can be optically guided. It is possible to output short wavelength laser light by converting the wavelength in the wave path. Therefore, a lens, a precision adjustment mechanism, etc. for inputting an incident wave into an optical waveguide, which were conventionally necessary, are no longer necessary, and it becomes possible to obtain a compact short-wavelength solid-state laser.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例に係わる波長変換型固体レー
ザの概略構成を示す断面図である。
FIG. 1 is a sectional view showing a schematic configuration of a wavelength conversion solid-state laser according to an embodiment of the present invention.

図中11は非線形材料に例えばNdを添加した導波部で
あり、この導波部11は非線形光学単結晶からなるクラ
ッド部12で被覆されている。
In the figure, reference numeral 11 denotes a waveguide section made of a nonlinear material doped with, for example, Nd, and this waveguide section 11 is covered with a cladding section 12 made of a nonlinear optical single crystal.

ここで、導波部11の断面形状は円形であり、クラッド
部12の断面形状は矩形である。
Here, the cross-sectional shape of the waveguide section 11 is circular, and the cross-sectional shape of the cladding section 12 is rectangular.

導波部11はレーザ励起不純物(例えばNd)を多量に
含んでいるため、外部励起光13の照射により、波長約
1μmのレーザ光(基本波)14を発光する。これと同
時に、クラッド12にはレーザ光14に対する光第2高
調波15(波長約0.5μmの緑色レーザ)が発生する
Since the waveguide section 11 contains a large amount of laser excitation impurities (for example, Nd), upon irradiation with the external excitation light 13, it emits a laser beam (fundamental wave) 14 with a wavelength of about 1 μm. At the same time, an optical second harmonic 15 (green laser with a wavelength of about 0.5 μm) relative to the laser beam 14 is generated in the cladding 12 .

レーザ光14は、ミラー加工しである導波部11の端部
から基本波16として出力される。
The laser beam 14 is outputted as a fundamental wave 16 from the end of the mirrored waveguide section 11 .

また、光第2高調波15はクラッド部12の端部から短
波長光17として出力される。
Further, the optical second harmonic 15 is output from the end of the cladding section 12 as short wavelength light 17.

次に、第1図のレーザの製造方法について第2図を参照
して説明する。
Next, a method for manufacturing the laser shown in FIG. 1 will be explained with reference to FIG. 2.

まず、m2図(a)に示す如く、非線形光学材料、例え
ばKT P (KT i OP 04 )の平板21の
上面中央部に半円形状の凹部22を設ける。次いで、こ
の凹部22を有する平板21をKPO,を基本のフラッ
クスとした溶液に浸す。
First, as shown in Fig. m2 (a), a semicircular recess 22 is provided in the center of the upper surface of a flat plate 21 of a nonlinear optical material, for example, KT P (KT i OP 04 ). Next, the flat plate 21 having the recesses 22 is immersed in a solution containing KPO as a basic flux.

この溶液には、屈折率を考慮してRbPO3をKPO,
に対して3〜5モル%含ませである。
In this solution, considering the refractive index, RbPO3, KPO,
The content is 3 to 5 mol%.

さらに、光励起不純物としてNdをKPO,に対して7
モル%含ませである。該溶液を900℃から1℃/da
yの割合で例えば2日間冷却し、第2図(b)に示す如
く、平板21上にNdを不純物として含んだKxRb、
xT i OPO,の薄膜23を成長形成する。このと
き、平板21に凹部22を設けたことにより、偏析され
た不純物Ndは凹部22に成長した層に多量に添加され
る。
Furthermore, Nd was added as a photoexcited impurity to KPO,
The mole percentage is included. The solution was heated from 900°C to 1°C/da
y for two days, and as shown in FIG. 2(b), KxRb containing Nd as an impurity is placed on the flat plate 21,
A thin film 23 of xT i OPO is grown. At this time, by providing the recesses 22 in the flat plate 21, a large amount of the segregated impurity Nd is added to the layer grown in the recesses 22.

次いで、化学エツチング法等により薄膜23をエツチン
グし、第2図(C)に示す如く薄膜23を凹部22上に
のみ残す。この残った薄膜23は断面円形となり、これ
が導波部11を構成することになる。次いで、光第2高
調波の取出し効率を向上させる目的で、平板21上にさ
らにKTPの成長を行い、第2図(d)に示すような構
造を作成する。これにより、導波部11をクラッド部1
2で被覆した前記第1図に示す構造が実現されることに
なる。これ以降は、必要に応じてクラッド部12の光出
射部を加工する。また、導波部11の端面にはミラー加
工を施す。
Next, the thin film 23 is etched by a chemical etching method or the like, leaving the thin film 23 only on the recess 22 as shown in FIG. 2(C). This remaining thin film 23 has a circular cross section, which constitutes the waveguide section 11. Next, for the purpose of improving the extraction efficiency of the optical second harmonic, KTP is further grown on the flat plate 21 to create a structure as shown in FIG. 2(d). This allows the waveguide section 11 to be connected to the cladding section 1.
The structure shown in FIG. 1 coated with 2 is realized. After this, the light emitting portion of the cladding portion 12 is processed as necessary. Further, the end face of the waveguide section 11 is mirror-processed.

かくして得られる波長変換型固体レーザに励起光13を
照射すると、Ndが添加された導波部11で波長約1μ
mのレーザ光14が発生し、このレーザ光14は導波部
11の端面から放射される。このとき励起光13の照射
は、第1図に示すように導波部11に対して直交する方
向から照射しtもよいし、また導波部11の端面に照射
するようにしてもよい。一方、導波部11からクラッド
部12にチェレンコフ放射光として出力された光第2高
調波15はクラッド部12の端面から放射される。これ
により、本実施例レーザの端面から、波長約1μmの基
本波16と波長約0.5μmの緑色レーザ光17とを同
時に得ることが可能となる。
When the wavelength-converting solid-state laser thus obtained is irradiated with excitation light 13, the Nd-doped waveguide 11 has a wavelength of about 1μ.
m laser beams 14 are generated, and this laser beams 14 are emitted from the end face of the waveguide section 11. At this time, the excitation light 13 may be irradiated from a direction perpendicular to the waveguide 11 as shown in FIG. 1, or may be irradiated onto the end face of the waveguide 11. On the other hand, the optical second harmonic 15 output from the waveguide section 11 to the cladding section 12 as Cherenkov radiation is emitted from the end face of the cladding section 12. This makes it possible to simultaneously obtain the fundamental wave 16 with a wavelength of about 1 μm and the green laser beam 17 with a wavelength of about 0.5 μm from the end face of the laser of this embodiment.

このように本実施例によれば、導波部11に励起光を照
射するのみで短波長のレーザ光(緑色)を発生すること
ができ、この場合には従来のようにレーザ光源と導波路
との位置合わせを必要としない。従って、位置合わせの
ための光学系が不要となり、構成の簡略化及び小型化を
はかり得る。また、励起光はレーザ光に限らずランプ等
による白色光でもよいので、汎用性が高い。さらに、従
来の導波路型波長変換素子の導波路にNdを添加するの
みの簡易な構成で実現し得る等の利点がある。
As described above, according to this embodiment, it is possible to generate short wavelength laser light (green) by simply irradiating the waveguide section 11 with excitation light, and in this case, the laser light source and the waveguide are connected as in the prior art. No alignment required. Therefore, an optical system for positioning is not required, and the configuration can be simplified and downsized. Further, the excitation light is not limited to laser light, but may be white light from a lamp or the like, so it is highly versatile. Furthermore, it has the advantage that it can be realized with a simple configuration simply by adding Nd to the waveguide of a conventional waveguide type wavelength conversion element.

第3図は本発明の他の実施例の概略構成を示す断面図で
ある。なお、第1図と同一部分には同一符号を付して、
その詳しい説明は省略する。
FIG. 3 is a sectional view showing a schematic configuration of another embodiment of the present invention. The same parts as in Fig. 1 are given the same reference numerals.
A detailed explanation thereof will be omitted.

この実施例が先に説明した実施例と異なる点は、クラッ
ド部の光出射端面をテーパ加工し、平行光を得ることに
ある。即ち、クラッド部12の光出射端面部には端面側
が細くなるテーパが設けられており、光第2高調波15
の波長とクラッド部12の屈折率との関係に基づき端面
から出射される光第2高調波37が平行光となるように
、テーパの角度が設定されている。
This embodiment differs from the previously described embodiments in that the light emitting end face of the cladding portion is tapered to obtain parallel light. That is, the light emitting end face of the cladding part 12 is provided with a taper that becomes narrower on the end face side, and the second harmonic of the light 15
The angle of the taper is set so that the optical second harmonic 37 emitted from the end face becomes parallel light based on the relationship between the wavelength and the refractive index of the cladding part 12.

このテーパの形成方法としては、例えばテーパ加工すべ
き端面側をエツチング溶液に浸し、徐々に引き上げるよ
うにすればよい。引上げ速度を速くするとテーパ角θは
大きくなり、引上げ速度を遅くするとテーパ角θは小さ
くなる。さらに、引上げ速度を可変することによりテー
パ部に曲率を持たせることができ、これにより光第2高
調波37を集光することも可能となる。
As a method for forming this taper, for example, the end surface side to be tapered may be immersed in an etching solution and gradually pulled up. As the pulling speed increases, the taper angle θ increases, and as the pulling speed decreases, the taper angle θ decreases. Furthermore, by varying the pulling speed, the tapered portion can have a curvature, which also makes it possible to focus the optical second harmonic 37.

このような構成であれば、先の実施例と同様の効果が得
られるのは勿論のこと、光第2高調波を平行光又として
出力できる利点がある。平行光であれば通常のレンズ等
で集光させることが容易であり、各種の用途に対する汎
用性が増すことになる。
With such a configuration, not only can the same effects as in the previous embodiment be obtained, but also there is an advantage that the optical second harmonic can be output as parallel light. If it is parallel light, it is easy to focus it with a normal lens or the like, which increases its versatility for various uses.

なお、本発明は上述した各実施例に限定されるものでは
ない。例えば、前記導波部にレーザ励起不純物を添加す
る代わりに、クラッド部にレーザ励起不純物を添加する
ようにしてもよい。
Note that the present invention is not limited to the embodiments described above. For example, instead of adding laser-excited impurities to the waveguide section, laser-excited impurities may be added to the cladding section.

さらに、導波部及びクラッド部の双方にレーザ励起不純
物を添加するようにしてもよい。また、レーザ励起不純
物としてはNdに限るものではなく、他の材料を用いる
ことができる。また、第3図に示した実施例では光第2
高調波を平行光として出力したが、クラッド部の光出射
端面の形状により、光第2高調波を集束光或いは球面波
として出力することも可能である。その他、本発明の要
旨を逸脱しない範囲で、種々変形して実施することがで
きる。
Furthermore, laser excitation impurities may be added to both the waveguide section and the cladding section. Further, the laser excitation impurity is not limited to Nd, and other materials can be used. Furthermore, in the embodiment shown in FIG.
Although the harmonics are output as parallel light, it is also possible to output the optical second harmonics as focused light or spherical waves depending on the shape of the light output end face of the cladding part. In addition, various modifications can be made without departing from the gist of the present invention.

[発明の効果] 以上詳述したように本発明によれば、導波部及びクラッ
ド部の少なくとも一方に光照射によリレーザ光を励起す
る不純物を添加し、基本波の発生を外部励起により行い
、これを同時に波長変換して短波長レーザ光を発生する
ようにしているので、波長変換により短波長レーザ光を
容易に発生することができ、且つ構成の簡略化及び小型
化をはかることができる。
[Effects of the Invention] As detailed above, according to the present invention, at least one of the waveguide portion and the cladding portion is doped with an impurity that excites the laser beam by light irradiation, and the fundamental wave is generated by external excitation. Since this is wavelength-converted at the same time to generate short-wavelength laser light, short-wavelength laser light can be easily generated by wavelength conversion, and the configuration can be simplified and miniaturized. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係わる波長変換型固体レー
ザの概略構成を示す断面図、第2図は上記レーザの製造
工程を示す斜視図、第3図は本発明の他の実施例の概略
構成を示す断面図、第4図は従来装置の概略構成を示す
$1=1図である。 11・・・導波部 12・・・クラッド部 13・・・励起光 14.16・・・基本波 15.17.37・・・光第2高調波(短波長光)21
・・・平板 22・・・四部 23・・・薄膜 出願人代理人 弁理士 鈴 江 武 彦1E3j!1
FIG. 1 is a sectional view showing a schematic configuration of a wavelength conversion solid-state laser according to an embodiment of the present invention, FIG. 2 is a perspective view showing the manufacturing process of the laser, and FIG. 3 is another embodiment of the present invention. FIG. 4 is a $1=1 diagram showing the schematic structure of the conventional device. 11... Waveguide part 12... Clad part 13... Excitation light 14.16... Fundamental wave 15.17.37... Optical second harmonic (short wavelength light) 21
... Flat plate 22 ... Part 4 23 ... Thin film applicant's agent Patent attorney Suzue Takehiko 1E3j! 1

Claims (3)

【特許請求の範囲】[Claims] (1)導波部及びクラッド部の少なくとも一方が非線形
光学材料で形成され、基本波が導波モード、光第2高調
波がチェレンコフ放射光となるように設定された光導波
路型の波長変換光学素子からなり、前記導波部及びクラ
ッド部の少なくとも一方に光照射によりレーザ光を励起
する不純物を添加して構成され、外部励起により基本波
を発生し、この基本波を波長変換して短波長レーザ光を
発生することを特徴とする波長変換型固体レーザ。
(1) Optical waveguide-type wavelength conversion optics in which at least one of the waveguide part and the cladding part is formed of a nonlinear optical material, and the fundamental wave is set in the waveguide mode and the optical second harmonic is Cherenkov radiation light. It consists of an element in which at least one of the waveguide section and the cladding section is doped with an impurity that excites the laser beam by light irradiation, generates a fundamental wave by external excitation, and converts the wavelength of this fundamental wave to produce a shorter wavelength. A wavelength-converting solid-state laser that generates laser light.
(2)前記クラッド部の光出射側の端面形状が、円鍾波
を平面波又は球面波に変換するテーパ形状を有すること
を特徴とする請求項1記載の波長変換型固体レーザ。
(2) The wavelength converting solid-state laser according to claim 1, wherein the end face shape of the light emitting side of the cladding portion has a tapered shape that converts a circular wave into a plane wave or a spherical wave.
(3)光導波路型の波長変換素子のクラッド部の一部と
なる平板の表面に直線上に凹部を設ける工程と、前記平
板上に前記波長変換素子の導波部となり且つ光照射によ
りレーザ光を励起する不純物が添加された薄膜を形成す
る工程と、前記薄膜をエッチングし前記凹部にのみ該薄
膜を残す工程と、前記平板上に前記クラッド部の一部と
なる薄膜を形成する工程とを含むことを特徴とする波長
変換型固体レーザの製造方法。
(3) A step of providing a linear concave portion on the surface of a flat plate that will become a part of the cladding portion of an optical waveguide type wavelength conversion element, and a step of forming a concave portion on the flat plate to become a waveguide portion of the wavelength conversion element and emitting laser light by light irradiation. a step of forming a thin film doped with an impurity that excites a A method of manufacturing a wavelength conversion solid-state laser, comprising:
JP8355189A 1989-03-31 1989-03-31 Wavelength conversion type solid laser and its manufacture Pending JPH02262385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8355189A JPH02262385A (en) 1989-03-31 1989-03-31 Wavelength conversion type solid laser and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8355189A JPH02262385A (en) 1989-03-31 1989-03-31 Wavelength conversion type solid laser and its manufacture

Publications (1)

Publication Number Publication Date
JPH02262385A true JPH02262385A (en) 1990-10-25

Family

ID=13805648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8355189A Pending JPH02262385A (en) 1989-03-31 1989-03-31 Wavelength conversion type solid laser and its manufacture

Country Status (1)

Country Link
JP (1) JPH02262385A (en)

Similar Documents

Publication Publication Date Title
US4925263A (en) Proton-exchanged waveguides for sum-frequency generation
JPH05273624A (en) Optical wavelength conversion element, short wavelength laser beam source using the same, optical information processor using this short wavelength laser beam source and production of optical wavelength conversion element
US20060120415A1 (en) Blue laser beam oscillating method and system
JP3129028B2 (en) Short wavelength laser light source
US6807210B2 (en) Systems and a method for generating blue laser beam
JPH02254427A (en) Optical wavelength converter
US8098422B2 (en) Wavelength conversion device package
JP3156444B2 (en) Short wavelength laser light source and method of manufacturing the same
JPH09197457A (en) Light generator and its production
JPH0460524A (en) Light wavelength converter
JP2004295088A (en) Wavelength conversion element
JP2676743B2 (en) Waveguide type wavelength conversion element
JPH02262385A (en) Wavelength conversion type solid laser and its manufacture
JP2688102B2 (en) Optical wavelength converter
JP2658381B2 (en) Waveguide type wavelength conversion element
US5502590A (en) Harmonic wave generating element for coherent light having short wavelength
JP2921207B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP3555414B2 (en) Short wavelength light source, optical wavelength conversion element, and inspection method for optical wavelength conversion element
JPH02262132A (en) Wavelength converting optical element and its end surface working method
JPH0486815A (en) Wavelength converting optical element
JPH03197932A (en) Light wavelength converter
JP3448350B2 (en) Harmonic generator
JPH0497232A (en) Production of wavelength conversion element and incidence tapered optical waveguide
JPH02189527A (en) Waveguide type wavelength converting element
JP2666540B2 (en) Waveguide type wavelength conversion element