JPH02262343A - Compound semiconductor device and manufacture thereof - Google Patents

Compound semiconductor device and manufacture thereof

Info

Publication number
JPH02262343A
JPH02262343A JP8144089A JP8144089A JPH02262343A JP H02262343 A JPH02262343 A JP H02262343A JP 8144089 A JP8144089 A JP 8144089A JP 8144089 A JP8144089 A JP 8144089A JP H02262343 A JPH02262343 A JP H02262343A
Authority
JP
Japan
Prior art keywords
compound semiconductor
semiconductor device
thin film
conductive layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8144089A
Other languages
Japanese (ja)
Inventor
Masami Nagaoka
正見 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8144089A priority Critical patent/JPH02262343A/en
Publication of JPH02262343A publication Critical patent/JPH02262343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To make a Schottky barrier formed on the surface of a compound semiconductor substrate higher in height so that the compound semiconductor device formed by using the barrier can exert a larger operation margin as compared with the conventional one when the semiconductor device is applied to a DCFL circuit by provided a thin film of aluminum nitride on the semiconductor substrate. CONSTITUTION:This compound semiconductor device is equipped with a first conductivity type conductive layer 2 formed on the surface of a compound semiconductor substrate 1, thin film 3 of aluminum nitride formed on the first conductivity type conductive layer 2, and electrode 4 of tungsten or its compound formed on the thin film 3. For example, after an n-type conductive layer 2 having a thickness of about 500Angstrom is formed on a GaAs substrate 1, an AlN film 3 having a thickness of 100Angstrom and a gate electrode 4 of a WNx film are successively formed on the n-type conductive layer 2. In addition, a source and drain areas 5 and 6 are formed by implanting ions into the substrate 1 by using the electrode 4 as a mask and AuGe electrodes 7 and 8 are respectively formed on the source and drain areas 5 and 6.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、化合物半導体の製造方法、特にGaAs  
電界効果トランジスタ(GaAs FET)の構造及び
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the invention] (Industrial application field) The present invention relates to a method for manufacturing a compound semiconductor, particularly a GaAs
The present invention relates to the structure and manufacturing method of a field effect transistor (GaAs FET).

(従来の技術) 近年、スーパコンビエータや高周波通信用の通信機器に
は、シリコンよりも常温での電子移動度が倍から数倍高
いG a A s等の化合物半導体を形成母材に採用し
た高速型の電界効果トランジスタ(FET)が多用され
ている。このGaAsFIT  としては、絶縁ゲート
型FET(MIS FET)と金属/GaAs界面に生
じるショットキ障壁を利用したショットキゲート型FE
T(MESFBT)  がある。
(Conventional technology) In recent years, super combinators and communication equipment for high-frequency communications have adopted compound semiconductors such as GaAs, which have an electron mobility twice to several times higher than silicon at room temperature, as a base material. High-speed field effect transistors (FETs) are often used. This GaAsFIT includes an insulated gate FET (MIS FET) and a Schottky gate FE that utilizes the Schottky barrier that occurs at the metal/GaAs interface.
There is T (MESFBT).

このうちMISFETについては、安定で良質な絶縁膜
が形成しにくいことによシその開発は非常に遅れておシ
、現在はMESFBTが主流を占めている。
Among these, the development of MISFETs has been extremely slow due to the difficulty of forming stable and high-quality insulating films, and currently, MESFBTs are the mainstream.

第3図に従来のMESFETの構造を示す。GaAs基
板21上にはn型導電層22が形成されている。
FIG. 3 shows the structure of a conventional MESFET. An n-type conductive layer 22 is formed on the GaAs substrate 21 .

このn型導電層22上には、p+型のゲート領域23が
形成され、更にその上には窒化タングステンからなるゲ
ート電極24が設けられている。また、ゲート電極24
に対して自己整合的にソース。
A p+ type gate region 23 is formed on this n-type conductive layer 22, and a gate electrode 24 made of tungsten nitride is further provided thereon. In addition, the gate electrode 24
Source self-consistently against.

ドレイン25.26のn型層が形成され更にソース・ド
レイン領域25.26上にAuGeから成る電極が形成
されている。
An n-type layer of the drain 25.26 is formed, and furthermore, an electrode made of AuGe is formed on the source/drain region 25.26.

以上の様な構造のMESFETにおいては、ショットキ
障壁の高さはO,S Vと低いため、このMESFET
  を用いてG a A sディジタル集積回路の高速
論理回路方式として主流をなすDi rect−cou
pledFBT Logic (DCFL)  を構成
する場合、動作マージンが非常に小さくなり実用上問題
があった。
In the MESFET with the above structure, the height of the Schottky barrier is as low as O, SV, so this MESFET
Direct-cou, which is the mainstream high-speed logic circuit method for GaAs digital integrated circuits, uses
When configuring pledFBT Logic (DCFL), the operating margin becomes extremely small, which poses a practical problem.

(発明が解決しようとする課題) 以上の様に、従来のGaAs MES FETを用いて
DCFL@路を構成すると充分に大きな動作マージンが
得られず実用上問題があった。
(Problems to be Solved by the Invention) As described above, when a DCFL circuit is constructed using conventional GaAs MES FETs, a sufficiently large operating margin cannot be obtained, which poses a practical problem.

本発明はこの様な課題を解決する高いシmツキー障壁を
有するGaAs MESFETの構造及びその製造方法
を提供することを目的とする。
An object of the present invention is to provide a structure of a GaAs MESFET having a high Schittsky barrier and a method for manufacturing the same, which solves the above-mentioned problems.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、上記事情に鑑みて為されたもので、第1の発
明は、化合物半導体基板表面に形成された第1導電型の
導電層と、この第1導電型の導電層上に形成された窒化
アルミニウム薄膜と、この窒化アルミニウム薄膜上に形
成されたタングステンまたはその化合物からなる電極と
を具備したことを特徴とする化合物半導体装置を提供す
る。
(Means for Solving the Problems) The present invention has been made in view of the above circumstances, and the first invention includes a conductive layer of a first conductivity type formed on the surface of a compound semiconductor substrate, Provided is a compound semiconductor device comprising an aluminum nitride thin film formed on a conductive layer of a conductive type, and an electrode made of tungsten or a compound thereof formed on the aluminum nitride thin film.

また、第2の発明は、化合物半導体上にアルミニウム薄
膜を堆積する工程と、このアルミニウムして電極を形成
する工程とを具備したことを特徴とする化合物半導体装
置の製造方法を提供する。
Further, a second invention provides a method for manufacturing a compound semiconductor device, comprising the steps of depositing an aluminum thin film on a compound semiconductor, and forming an electrode using the aluminum.

(作用) クショットキ障壁を高くすることが可能となシ、これを
用いて形成された化合物半導体装置をDCFL回路に適
用した場合、従来と比べ大きな動作マージンが得られ集
積回路の歩留シを向上することが可能となる。
(Function) It is possible to increase the Kuschottky barrier, and when a compound semiconductor device formed using this is applied to a DCFL circuit, a larger operating margin can be obtained compared to conventional ones, improving the yield of integrated circuits. It becomes possible to do so.

(実施例) 以下、本発明の実施例について図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明のGaAs MES FETの断面図で
ある。G a A s基板1上には、500Aの厚さを
有するn型導電層2が形成されている。このn型溝れ、
更にその上にはWNx膜(窒化タングステン膜)よ構成
るゲート電極4が形成されている。また、このゲート電
極4をマスクにしてイオン注入を行なうことによシソー
ス・ドレイン領域5,6が形成されている。このソース
・ドレイン領域5,6上にA u G eからなる電極
7,8が形成されている。
FIG. 1 is a cross-sectional view of a GaAs MES FET of the present invention. On the GaAs substrate 1, an n-type conductive layer 2 having a thickness of 500A is formed. This n-type groove,
Furthermore, a gate electrode 4 made of a WNx film (tungsten nitride film) is formed thereon. Furthermore, source and drain regions 5 and 6 are formed by performing ion implantation using this gate electrode 4 as a mask. Electrodes 7 and 8 made of AuGe are formed on the source/drain regions 5 and 6.

以上の様な構造のMESFETにおいては、ショットキ
障壁はleV以上の値が得られる。即ち、タングステン
またはその化合物の堆積によシ擬似的なMIS構造とな
シ、障壁高さとして見かけ上1eV以上の値となる。従
って、上記構造のMESFETを用いてDCFL回路を
構成することによシ、従来の金属/ G a A s接
合を有するFETに比較して、大きな動作マージンが得
られ、集積回路の歩留シを向上することが可能となる。
In the MESFET having the above structure, a Schottky barrier value of leV or more can be obtained. That is, a pseudo MIS structure is created by depositing tungsten or its compound, and the barrier height has an apparent value of 1 eV or more. Therefore, by constructing a DCFL circuit using MESFETs with the above structure, a large operating margin can be obtained compared to conventional FETs having metal/GaAs junctions, and the yield rate of integrated circuits can be reduced. It becomes possible to improve.

第2図は、本発明OGaAs MES FETの製造工
程を示す断面図である。
FIG. 2 is a cross-sectional view showing the manufacturing process of the OGaAs MES FET of the present invention.

GaAs基板1上に、シリコンイオンを加速電圧15Q
keV、  ドーズ量3 X 1012/c114で注
入し、n型導電層2を形成する。このn型導電層2上に
10″Pa以下の高真空中でCVD法にて厚さ30A程
度のM膜9を堆積する。(第2図(a))次に、真空を
破らずにN!又は、NHsガスを用いて、n膜9のプラ
ズマ窒化を行ないAIR膜3を形成する。んα[3は非
単結晶状態として形成される。この際、窒化の進行はA
t/GaAs界面付近で止ま’) 、G a A s基
板1の窒化は、わずかしか生じない。これは、室温では
尤αの生成熱ΔHfは−57,7kcal’mol  
に対し、GaN (窒化ガリウム)ノ生成熱ΔHfは、
−25,9kcal’mol  と大きいため、紅に比
較してGaAsの窒化は生じにくいからである。
Silicon ions are accelerated on the GaAs substrate 1 at a voltage of 15Q.
keV and a dose of 3×1012/c114 to form an n-type conductive layer 2. On this n-type conductive layer 2, an M film 9 with a thickness of about 30A is deposited by CVD in a high vacuum of 10"Pa or less. (Fig. 2(a)) Next, an N film 9 is deposited without breaking the vacuum. !Alternatively, the n film 9 is plasma nitrided using NHs gas to form the AIR film 3.Nα[3 is formed in a non-single crystal state.At this time, the progress of nitridation is A
Since the nitridation of the GaAs substrate 1 stops near the t/GaAs interface, only a slight amount of nitridation occurs. This means that at room temperature, the heat of formation ΔHf of α is -57.7 kcal'mol
On the other hand, the heat of formation ΔHf of GaN (gallium nitride) is
This is because GaAs is less likely to be nitrided than red because of its large -25.9 kcal'mol.

よって、GaAsチャネル層に影響を与えずに制御性良
く窒化を行なうことができる。(第2図(b))次に、
WNx膜10(窒化タングステン膜)を厚さaoooX
程度CVD法によシ堆積した後、パターニングしたレジ
スト(図示せず)をマスクにしてドライエツチングによ
1)WNx膜lO及び尤a膜3をパターニングしてゲー
ト電極4を形成する。
Therefore, nitriding can be performed with good controllability without affecting the GaAs channel layer. (Figure 2(b)) Next,
WNx film 10 (tungsten nitride film) with thickness aoooX
After being deposited by the CVD method, 1) the WNx film 1O and the a film 3 are patterned by dry etching using a patterned resist (not shown) as a mask to form the gate electrode 4.

(第2図(C)) 次にこのゲート電極4をマスクにしてシリコンのイオン
注入を加速エネルギー100keV、  ドーズ量3 
X I Q”ms ”の条件で行なった後、AsH,と
Ar の混合ガス中で800℃、20分間のアニール処
理を行ない、ソース・ドレイン領域5,6を形成する。
(Fig. 2 (C)) Next, using this gate electrode 4 as a mask, silicon ion implantation is performed at an acceleration energy of 100 keV and a dose of 3.
After performing the process under the conditions of X I Q "ms", annealing is performed at 800° C. for 20 minutes in a mixed gas of AsH and Ar to form source/drain regions 5 and 6.

更に、このソース・ドレイン領域上KAuGeから成る
電極7,8を形成することによシ、GaAsFET が
完成する。(第2図(d))以上の製造工程によυ形成
されたGaAs PETと紅膜の堆積及び窒化の工程を
除いて形成された従来のGaAs FETの特性を比較
したところ、実施例のGaAa FETでは、ショット
キ障壁は1.2eV程度に対し、従来例のGaAs F
ETでは0.8eV程度となシ、実施例の方がDCFL
回路等へ適用した場合、よシ大きな動作マージンが得ら
れる。
Further, electrodes 7 and 8 made of KAuGe are formed on the source/drain regions to complete the GaAsFET. (Figure 2(d)) Comparing the characteristics of the GaAs PET formed by the above manufacturing process and the conventional GaAs FET formed without the red film deposition and nitriding process, it was found that the GaAs PET of the example In the FET, the Schottky barrier is about 1.2 eV, whereas the conventional GaAs FET has a Schottky barrier of about 1.2 eV.
In ET, it is about 0.8 eV, but in the example, DCFL
When applied to circuits, etc., a much larger operating margin can be obtained.

また、紅の堆積・窒化の工程の付加によってもFET特
性の均一性は保たれ、再現性も良好であった0 なお、本発明は上記実施例に限らない。例えば、基板は
GaAsに限らず他の化合物半導体であってもよい。A
JLJlliの窒化方法についても、上記実施例に限ら
ず、雰囲気としてN!あるいはN、またはNH。
Furthermore, even with the addition of the red deposition and nitriding steps, the uniformity of the FET characteristics was maintained and the reproducibility was also good. Note that the present invention is not limited to the above embodiments. For example, the substrate is not limited to GaAs, but may be other compound semiconductors. A
The nitriding method of JLJlli is not limited to the above example, and the atmosphere is N! Or N, or NH.

を含む混合ガスを用いてもよく、また低温のプラズマ処
理にかえて、高温処理を行なってもよい。
A mixed gas containing the above may be used, and high-temperature treatment may be performed instead of low-temperature plasma treatment.

また、窒化を行なったM膜の上層に堆積される材料もW
Nxに限らず、W、WSix、WSixNy、WAtな
どWまたは、その化合物であればよい。また、ゲート電
極形成後の熱処理についてもAsH,雰囲気中でのキャ
ップレスアニール法に限らず、sio、 。
Furthermore, the material deposited on the upper layer of the nitrided M film is also W.
The material is not limited to Nx, but may be W, such as W, WSix, WSixNy, WAt, or a compound thereof. In addition, the heat treatment after forming the gate electrode is not limited to capless annealing in an AsH atmosphere, but also sio,.

SiN、5iON  などを被覆膜として用いたΦヤッ
プアニール法を用いてもよい。
A ΦYapp annealing method using SiN, 5iON, or the like as a coating film may also be used.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に、本発明によればGaAs基板上にん■
膜を形成することによシシ曹ット障壁が従来に比べて高
いGaAs FETを得ることができる。
As described above, according to the present invention,
By forming the film, it is possible to obtain a GaAs FET with a higher carbon barrier than the conventional one.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例の化合物半導体装置を示す断
面図、第2図は、本発明の実施例の化合物半導体装置の
製造工程を示す断面図、第3図は、従来例の化合物半導
体装置を示す断面図である。 図において、 1・・・GaAs基板、2・・・n型導電層、3・・・
九へ膜、4・・・ゲート電極、5,6・・・ソース・ド
レイン領域、7.8・・・電極、9・・・n膜、10・
・・WNx膜、21・・・G a A s基板、22・
・・n型導電層、23・・・pゲート領域、24・・・
ゲート電極、25,26・・・ソース・ドレイン領域、
27.28・・・電極。 第3図 (N
FIG. 1 is a cross-sectional view showing a compound semiconductor device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the manufacturing process of a compound semiconductor device according to an example of the present invention, and FIG. 3 is a cross-sectional view showing a compound semiconductor device according to an example of the present invention. FIG. 2 is a cross-sectional view showing a semiconductor device. In the figure, 1...GaAs substrate, 2...n-type conductive layer, 3...
9. Film, 4... Gate electrode, 5, 6... Source/drain region, 7.8... Electrode, 9... N film, 10.
... WNx film, 21... Ga As substrate, 22.
...n-type conductive layer, 23...p gate region, 24...
Gate electrode, 25, 26... source/drain region,
27.28...electrode. Figure 3 (N

Claims (3)

【特許請求の範囲】[Claims] (1)化合物半導体基板表面に形成された第1導電型の
導電層と、この第1導電型の導電層上に形成された窒化
アルミニウム薄膜と、この窒化アルミニウム薄膜上に形
成されたタングステンまたはその化合物からなる電極と
を具備したことを特徴とする化合物半導体装置。
(1) A first conductive type conductive layer formed on the surface of a compound semiconductor substrate, an aluminum nitride thin film formed on the first conductive type conductive layer, and a tungsten or aluminum nitride thin film formed on the aluminum nitride thin film. 1. A compound semiconductor device comprising an electrode made of a compound.
(2)前記電極はショットキトランジスタのゲート電極
である請求項1記載の化合物半導体装置。
(2) The compound semiconductor device according to claim 1, wherein the electrode is a gate electrode of a Schottky transistor.
(3)化合物半導体上にアルミニウム薄膜を堆積する工
程と、このアルミニウム薄膜を窒化する工程と、この窒
化されたアルミニウム薄膜上にタングステンまたはその
化合物からなる膜を堆積する工程と、この膜と前記窒化
されたアルミニウム薄膜をパターニングして電極を形成
する工程とを具備したことを特徴とする化合物半導体装
置の製造方法。
(3) A step of depositing an aluminum thin film on a compound semiconductor, a step of nitriding this aluminum thin film, a step of depositing a film made of tungsten or its compound on this nitrided aluminum thin film, and this film and the nitriding step. 1. A method for manufacturing a compound semiconductor device, comprising the step of patterning the aluminum thin film formed to form an electrode.
JP8144089A 1989-04-03 1989-04-03 Compound semiconductor device and manufacture thereof Pending JPH02262343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8144089A JPH02262343A (en) 1989-04-03 1989-04-03 Compound semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8144089A JPH02262343A (en) 1989-04-03 1989-04-03 Compound semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02262343A true JPH02262343A (en) 1990-10-25

Family

ID=13746455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8144089A Pending JPH02262343A (en) 1989-04-03 1989-04-03 Compound semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02262343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335828A (en) * 2003-05-09 2004-11-25 Mitsubishi Electric Corp Method for stabilizing surface and method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335828A (en) * 2003-05-09 2004-11-25 Mitsubishi Electric Corp Method for stabilizing surface and method for manufacturing semiconductor device
JP4620333B2 (en) * 2003-05-09 2011-01-26 三菱電機株式会社 Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US7190037B2 (en) Integrated transistor devices
KR20030027018A (en) Metal sulfide semiconductor transistor devices
US4997779A (en) Method of making asymmetrical gate field effect transistor
WO2002015283A2 (en) Metal sulfide-oxide semiconductor transistor devices
JPH05299441A (en) Manufacture of field effect transistor
JPS5932173A (en) Manufacture of field effect transistor
KR20030027017A (en) Integrated transistor devices
JPH02262343A (en) Compound semiconductor device and manufacture thereof
JPH04282841A (en) Manufacture of semiconductor device
JPH01251665A (en) Manufacture of iii-v compound semiconductor field effect transistor
JPH09172163A (en) Manufacture of semiconductor device
JP2844963B2 (en) Semiconductor device and manufacturing method thereof
JPH0352238A (en) Manufacture of compound semiconductor device
Ren et al. Fabrication of Y‐gate, submicron gate length GaAs metal–semiconductor field effect transistors
JPH0387024A (en) Manufacture of electrode for semiconductor device
JPH01189960A (en) Manufacture of compound semiconductor device
JPH03280552A (en) Manufacture of field effect transistor
JPS62130567A (en) Manufacture of schottky gate field effect transistor
JPS59165460A (en) Semiconductor device and manufacture thereof
JPS6158274A (en) Manufacture of semiconductor device
JPS61163662A (en) Manufacture of field-effect transistor
JPS58147168A (en) Manufacture of semiconductor device
JPS62206885A (en) Manufacture of schottky gate type field-effect transistor
JPH0373542A (en) Manufacture of ga-as field effect transistor
JPS599971A (en) Insulated gate field effect transistor