JPH02262243A - Positive electrode for lithium secondary battery and manufacture thereof - Google Patents

Positive electrode for lithium secondary battery and manufacture thereof

Info

Publication number
JPH02262243A
JPH02262243A JP1083480A JP8348089A JPH02262243A JP H02262243 A JPH02262243 A JP H02262243A JP 1083480 A JP1083480 A JP 1083480A JP 8348089 A JP8348089 A JP 8348089A JP H02262243 A JPH02262243 A JP H02262243A
Authority
JP
Japan
Prior art keywords
powder
positive electrode
weight
mno2
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1083480A
Other languages
Japanese (ja)
Inventor
Junichi Yamaura
純一 山浦
Yoshiaki Nitta
芳明 新田
Takafumi Fujii
隆文 藤井
Teruyoshi Morita
守田 彰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1083480A priority Critical patent/JPH02262243A/en
Publication of JPH02262243A publication Critical patent/JPH02262243A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To stabilize discharge capacity at all times regardless of a cycle progress by fixing a carbon fine powder having the predetermined mean grain size ratio against the MnO2 grain of an active material to the surface of the MnO2 grain for forming a complex grain powder, and using the material so formed as a positive electrode. CONSTITUTION:For the MnO2 grain of an active material, a carbon material fine powder having a mean grain size ratio of 10<-1> to 10<-5> is fixed onto the MnO2 grain surface, thereby forming a positive electrode having a complex grain powder. Furthermore, a granulated graphite powder or an activated carbon powder as a conductive material is contained in the aforesaid positive electrode, in addition to the carbon material fine powder contained in the complex grain powder. Moreover, the carbon material fine powder in the aforesaid complex grain is carbon black or fibrous graphite. When the carbon black is used, the amount thereof fixed to the surface of MnO2 is taken at 2 to 5wt% for MnO2. Also, when the fibrous graphite is used, the amount thereof fixed to the surface of MnO2 is taken at 1 to 3wt.% for MnO2. In addition, the granulated graphite powder or the activated carbon powder is taken at 2 to 5wt.% for MnO2.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム(Li)を負極とした高エネルギ密度
を有するリチウム二次電池、特に正極及びその製造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a lithium secondary battery having a high energy density using lithium (Li) as a negative electrode, particularly to a positive electrode and a method for manufacturing the same.

従来の技術 リチウム電池として正極に二酸化マンガン(MnO2)
を用いた一次電池はよく知られている。また、再充電可
能なリチウム二次電池の開発が活発に進められており、
この二次電池の正極活物質としてもMnO2は充放電可
逆性、容量、電圧ともに優れた正極活物質として期待さ
れている。周知のように正極活物質はMnO2粒子から
なる粉末であり、リチウム電池用のMnO2正極は、導
電剤にカーボンブラックや黒鉛等の炭素材粉末、また結
着剤にポリ四フッ化エチレン等のフッ素樹脂を用いてい
る。
Conventional technology lithium batteries use manganese dioxide (MnO2) as the positive electrode.
Primary batteries using are well known. In addition, the development of rechargeable lithium secondary batteries is actively progressing.
MnO2 is also expected to be a positive electrode active material for this secondary battery that has excellent charge/discharge reversibility, capacity, and voltage. As is well known, the positive electrode active material is a powder consisting of MnO2 particles, and the MnO2 positive electrode for lithium batteries uses carbon material powder such as carbon black or graphite as a conductive agent, and fluorine such as polytetrafluoroethylene as a binder. It uses resin.

そしてこれらを混合した粉末合剤をプレス成形したり、
水等の分散媒を加えて粘土状またはペースト状等にして
、ステンレス網等の極板芯体に充填し、極板として用い
ている。また、M n O2を活物質とする電池には、
乾電池、アルカリマンガン電池、リチウム−次電池が既
存電池としであるが、用途に応じて、導電剤にアセチレ
ンブラック(AB)に代表されるようなカーボンブラッ
ク、粒状黒鉛または繊維状黒鉛のような結晶性炭素材粉
末などを用いる提案がなされてきた。また混合法に関し
ては、単に混合機を用いて混ぜる方法が一般的であるが
、他にMnO2粒子と導電剤の一つである黒鉛粒子に各
々相反する静電荷を帯電させ、MnO2粒子表面に帯電
吸着作用により黒鉛層を形成し合剤とする方法等が提案
されている(特開昭61−214362号)。さらに、
金属酸化物粒子表面に炭素微粉末を埋め込み固定する方
法(特願昭62−27710号)やMnO2粒子表面に
繊維状黒鉛を固定化する方法(特願昭62−22430
3号)が提案されている。特に、これらの提案は一次電
池における活物質利用率の向上が主な目的であった。
Then, press molding the powder mixture by mixing these,
It is made into a clay-like or paste-like form by adding a dispersion medium such as water, and is filled into an electrode plate core such as a stainless steel mesh and used as an electrode plate. In addition, in a battery using M n O2 as an active material,
Existing batteries include dry batteries, alkaline manganese batteries, and rechargeable lithium batteries, but depending on the application, the conductive agent may be carbon black such as acetylene black (AB), crystals such as granular graphite or fibrous graphite. Proposals have been made to use carbon material powder and the like. Regarding the mixing method, it is common to simply mix using a mixer, but there is also a method in which MnO2 particles and graphite particles, which are one of the conductive agents, are charged with opposite static charges, and the surface of the MnO2 particles is charged. A method of forming a graphite layer by adsorption to form a mixture has been proposed (Japanese Patent Application Laid-open No. 214362/1983). moreover,
A method of embedding and fixing fine carbon powder on the surface of metal oxide particles (Japanese Patent Application No. 62-27710) and a method of fixing fibrous graphite on the surface of MnO2 particles (Japanese Patent Application No. 62-22430)
No. 3) has been proposed. In particular, the main purpose of these proposals was to improve the utilization rate of active materials in primary batteries.

一方、リチウム二次電池の場合、負極は金属Liを用い
るが、一般にその充填容量は正極の容量に対して数倍と
なるように構成している。これは、この電池の充放電反
応に負極Liの消耗反応が含まれるためであり、予め過
剰に負極を充填し、サイクル寿命を確保している。
On the other hand, in the case of a lithium secondary battery, metal Li is used for the negative electrode, and its filling capacity is generally configured to be several times the capacity of the positive electrode. This is because the charging/discharging reaction of this battery includes a consumption reaction of the negative electrode Li, and the negative electrode is filled in advance in excess to ensure a long cycle life.

例えば、−収約な単に混合機でMnO2と炭素材粉末を
混ぜる方法で調製した正極を用い金属Li負極と組み合
わせてリチウム二次電池を試作し充放電を行うと、第2
図のような容量−サイクル特性を示す。このようにサイ
クルが進むにつれて充放電容量が少しずつ低下し、ある
時点く図中A点)で太き(容量低下を起こし寿命に達す
る。上記のごと(負極容量は過剰にあり、その容量比か
らみても負極の枯渇による寿命到達点は、第2図のA点
と考えられ、それ以前は正極に起因する容量低下と考え
られる。
For example, if a lithium secondary battery is prototyped by combining a metal Li negative electrode with a positive electrode prepared by simply mixing MnO2 and carbon powder in a mixer, and then charged and discharged, the second
The capacity-cycle characteristics are shown as shown in the figure. As the cycle progresses, the charge/discharge capacity gradually decreases, and at a certain point (point A in the figure), the capacity decreases and reaches the end of its life. From this point of view, the point at which the life span is reached due to depletion of the negative electrode is considered to be point A in FIG. 2, and before that point, it is considered that the capacity decrease is due to the positive electrode.

発明が解決しようとする課題 本発明の目的はサイクルの進行に係わらず、常に安定し
た放電容量を有するリチウム二次電池を提供することで
ある。そして、本発明の課題は、上記のような正極に起
因する充放電容量の低下を抑えるために正極に改良を加
えることである。
Problems to be Solved by the Invention An object of the present invention is to provide a lithium secondary battery that always has a stable discharge capacity regardless of the progress of the cycle. An object of the present invention is to improve the positive electrode in order to suppress the decrease in charge and discharge capacity caused by the positive electrode as described above.

課題を解決するための手段 活物質のMnO2粒子に対し10−1〜10−5の平均
粒径比を持つ炭素材微粉末をMnO2粒子表面に固定化
した複合粒子粉末を有する正極とし、さらに好ましくは
正極中に複合粒子中の炭素材微粉末以外に導電剤として
粒状黒鉛粉末または活性炭粉末を含む正極とするもので
ある。
Means for Solving the Problems More preferably, the positive electrode has a composite particle powder in which carbon material fine powder having an average particle size ratio of 10-1 to 10-5 to the MnO2 particles of the active material is immobilized on the surface of the MnO2 particles. The positive electrode contains granular graphite powder or activated carbon powder as a conductive agent in addition to the carbon material fine powder in the composite particles.

さらに上記複合粒子中の炭素材微粉末がカーボンブラッ
クまたは繊維状黒鉛であり、カーボンブラックを用いた
場合、その表面固定量を好ましくはMnO2に対して2
重量%以上、5重量%以下とするものであり、また、繊
維状黒鉛を用いた場合、その表面固定量を好ましくはM
nO2に対して1重量%以上、3重量%以下とするもの
である。さらに、上記粒状黒鉛粉末または活性炭粉末が
好ましくはMnO2に対し2重量%以上、5重量%以下
とするものである。
Further, the carbon material fine powder in the composite particles is carbon black or fibrous graphite, and when carbon black is used, the amount of the carbon material fixed on the surface is preferably 2 relative to MnO2.
The amount should be at least 5% by weight, and when fibrous graphite is used, the amount fixed on the surface is preferably M
The content should be 1% by weight or more and 3% by weight or less based on nO2. Furthermore, the above-mentioned granular graphite powder or activated carbon powder preferably accounts for 2% by weight or more and 5% by weight or less based on MnO2.

また、上記正極の製造法は以下のとおりである。まず上
記複合粒子は、MnO2粉末と炭素材微粉末を気相分散
させながら撹拌し、接触摩擦による帯電吸着作用でMn
O2粒子上に炭素微粉末を吸着させた後、これを高速気
流中衝撃法(高速回転中の回転体を有する気流中に粉末
を投入し、粉末粒子を互いに強く衝突させる方法)で処
理し、炭素材微粉末をMnO2表面に打ち込み固定化し
て製造する。さらに、この複合粒子粉末に粒状黒鉛粉末
または活性炭粉末を添加混合する場合、好ましくは上記
帯電吸着作用を利用して行うものである。
Moreover, the manufacturing method of the above-mentioned positive electrode is as follows. First, the above-mentioned composite particles are made by stirring MnO2 powder and carbon material fine powder while dispersing them in a gas phase.
After adsorbing carbon fine powder onto O2 particles, this is treated with a high-speed airflow impact method (a method in which the powder is thrown into an airflow with a rotating body rotating at high speed and the powder particles are strongly collided with each other), It is produced by implanting and fixing carbon material fine powder onto the MnO2 surface. Further, when granular graphite powder or activated carbon powder is added to and mixed with the composite particle powder, it is preferably carried out by utilizing the above-mentioned charge adsorption effect.

以上の手段により、上述した従来技術の課題を解決する
ことができる。
With the above means, the problems of the prior art described above can be solved.

作用 従来のMnO2正極は、活物質であるMnO2自体に電
子電導性がないため、導電剤のアセチレンブラック等の
炭素粉末を加えて集電を行っている。さらに活物質粒子
と導電剤粒子とは結着剤で固定され、極板の圧延などに
よって強く接触させられているが、これは単に機械的な
接触である。
Function In the conventional MnO2 positive electrode, since the active material MnO2 itself has no electronic conductivity, current collection is performed by adding carbon powder such as acetylene black as a conductive agent. Further, the active material particles and the conductive agent particles are fixed with a binder and brought into strong contact by rolling the electrode plate, but this is merely mechanical contact.

例えば−次電池の場合、放電を一回行うだけなので、こ
の集電方法でも性能を引き出せた。ところが、二次電池
の場合は充放電の繰り返し、即ちMnO2結品中へのL
iの挿入−放出の繰り返しが行われるので、MnO2粒
子は常に膨張収縮を繰り返すことになる。そのため、M
nO2粒子と導電剤粒子との間の集電ネットワークが緩
み、集電効率が低下して正極に起因するところの容量低
下が起こるものと考えられる。
For example, in the case of secondary batteries, since the battery only needs to be discharged once, performance can be brought out even with this current collection method. However, in the case of secondary batteries, charging and discharging are repeated, that is, L into the MnO2
Since the insertion and release of i is repeated, the MnO2 particles constantly expand and contract. Therefore, M
It is thought that the current collection network between the nO2 particles and the conductive agent particles becomes loose, resulting in a decrease in current collection efficiency and a decrease in capacity caused by the positive electrode.

本発明は、この集電ネットワークを強化することを目的
としたもので、まず第一にMnO2粒子に導電剤の一部
を固定した複合粒子を用いてMnO2粒子−導電剤間の
集電を確実にするものである。第二に正極中にMnO2
粒子に固定された導電剤以外の導電剤を加え、これによ
って補助ネットワークを形成し、さらに集電ネットワー
クを充実させるというものである。
The present invention aims to strengthen this current collection network, and first of all, it uses composite particles in which a part of a conductive agent is fixed to MnO2 particles to ensure current collection between the MnO2 particles and the conductive agent. It is something to do. Second, MnO2 in the positive electrode
A conductive agent other than the conductive agent fixed to the particles is added, thereby forming an auxiliary network and further enriching the current collection network.

実施例 以下、本発明の実施例を示す。Example Examples of the present invention will be shown below.

実施例1 本発明に係るところの複合粒子は、乾燥したM n 0
2粒子と炭素材微粉末に各々相反する静電荷を与え、帯
電吸着作用を利用して予めMnOx粒子上に炭素材微粉
末を吸着させ、次いで高速気流中に投入し粒子間衝突を
させて炭素材微粉末をMnO2粒子表面に打ち込み、固
定して得られる。ところが、帯電吸着過程における気相
は、相対湿度が30%以上であると、水分のため静電荷
が消滅し、帯電吸着作用が効かなかった。また、高速気
流中におけるMnO2粒子表面への炭素材微粉末の打ち
込み過程においても相対湿度が30%以上であると0、
同種粒子間で二次凝集が発生し、均一な分散が成立しな
かった。そこで、上記工程は、その雰囲気を相対湿度3
0%未満にして行う必要がある。
Example 1 Composite particles according to the present invention were prepared by drying M n 0
The two particles and the carbon material fine powder are given opposite electrostatic charges, and the carbon material fine powder is adsorbed onto the MnOx particles using the charge adsorption effect, and then the carbon material fine powder is introduced into a high-speed air flow to cause collisions between the particles. It is obtained by injecting and fixing raw material fine powder onto the surface of MnO2 particles. However, when the relative humidity of the gas phase in the charge adsorption process is 30% or more, the electrostatic charge disappears due to moisture, and the charge adsorption effect is not effective. Also, in the process of implanting carbon material fine powder onto the surface of MnO2 particles in high-speed airflow, if the relative humidity is 30% or more, 0,
Secondary aggregation occurred between particles of the same type, and uniform dispersion was not achieved. Therefore, in the above process, the atmosphere is adjusted to a relative humidity of 3
It is necessary to do this at less than 0%.

また、帯電吸着過程において、MnO2粒子に対する炭
素材微粉末の平均粒径比を10−1以下としなければ実
験的に吸着作用は成立しなかった。
Furthermore, in the charged adsorption process, the adsorption effect was not established experimentally unless the average particle size ratio of the carbon material fine powder to the MnO2 particles was set to 10<-1> or less.

また平均粒径比が10−5以下となる炭素材微粉末を用
いると、互いが凝集して粒子群を形成するため、事実上
平均粒径比が太き(なったものとほとんど大差なくなっ
てしまった。従って、上記平均粒径比は10−1〜10
−5の範囲とすることが好ましいことがわかった。
In addition, if carbon material fine powder with an average particle size ratio of 10-5 or less is used, the particles will aggregate together to form a particle group, so the average particle size ratio will actually become thicker (there will be almost no difference from what it became). Therefore, the above average particle size ratio is 10-1 to 10
It was found that a range of −5 is preferable.

MnO2粒子に炭素材微粉末を確実に固定させることは
帯電吸着作用だけでは得られず、後工程である高速気流
中衝撃法による機械的なエネルギを利用することで得ら
れた。一般にこの方法を用いる場合、活物質や導電剤の
種類に合わせるため、機械的な操作は各々の比重や粒径
のバランスを考慮してコントロールされる。例えば、本
発明に係るところの固定化炭素材微粉末であるカーボン
ブラックについて検討したところ、高速気流中衝撃法に
おける回転体の回転速度は1500〜15000 r 
pmの範囲で均一な固定化状態が得られた。1500 
rpm以下の場合は固定化が不十分であり、かつ固定化
にむらがある不均一な状態となる。一方15000 r
pm以上の場合、衝撃力が強すぎるため、MnO2粒子
の破壊が進み、材微粉末の剥離や炭素材微粉末の吸着し
ていない新しいMnO2表面が現出するため、かえって
逆効果であった。また、固定化炭素材微粉末に繊維黒鉛
を用いる場合は、検討の結果、11000rp〜100
00 rpmの範囲で均一な固定化状態が得られた。以
上の固定化状態の観察は電子顕微鏡を用いて行ったもの
である。
Reliably fixing the carbon material fine powder to the MnO2 particles could not be achieved only by the electrostatic adsorption effect, but was achieved by utilizing mechanical energy by the high-speed air impact method, which is a subsequent process. Generally, when using this method, mechanical operations are controlled by considering the balance of specific gravity and particle size of each material in order to match the type of active material and conductive agent. For example, when carbon black, which is the immobilized carbon material fine powder according to the present invention, was studied, the rotational speed of the rotating body in the high-speed air impact method was 1500 to 15000 r.
A uniform immobilization state was obtained within the pm range. 1500
If the speed is below rpm, immobilization will be insufficient and the immobilization will be uneven and non-uniform. Meanwhile 15000 r
When the impact force is more than pm, the impact force is too strong, and the destruction of the MnO2 particles progresses, resulting in peeling of the material fine powder and the appearance of a new MnO2 surface on which the carbon material fine powder is not adsorbed, which has the opposite effect. In addition, when using fiber graphite as the fixed carbon material fine powder, as a result of study, it was found that
A uniform immobilization state was obtained in the range of 0.00 rpm. The above observation of the immobilized state was performed using an electron microscope.

実施例2 Mn02粒子に対する固定化炭素材微粉末の表面固定量
に関する検討を行った。固定化の導電剤としてABを用
い、上記帯電吸着作用と高速気流中衝撃法を併用して、
表面固定量をMnO2に対して1重量%、2重量%、3
重量%、4重量%。
Example 2 A study was conducted regarding the amount of immobilized carbon material fine powder fixed on the surface of Mn02 particles. Using AB as a conductive agent for immobilization, using the above-mentioned charge adsorption effect and high-speed air impact method,
The surface fixed amount is 1% by weight, 2% by weight, 3% by weight based on MnO2.
% by weight, 4% by weight.

5重量%、6重量%、7重量%となる7種類の複合粒子
からなる合剤を用意した。さらに比較のために単にMn
O2とABをミキサーで混合した従来の正極合剤も用意
した。従来の正極合剤の場合、予備検討の結果、MnO
2に対して5重量%のABを含むものが比較的良好な電
池特性を示したので、これを用いた。また、各々の合剤
には結着剤としてM n O2に対して5重量%のポリ
四フッ化エチレン樹脂粉末を加えである。
A mixture consisting of seven types of composite particles of 5% by weight, 6% by weight, and 7% by weight was prepared. For further comparison, simply Mn
A conventional positive electrode mixture made by mixing O2 and AB in a mixer was also prepared. In the case of the conventional positive electrode mixture, as a result of preliminary studies, MnO
A battery containing 5% by weight of AB based on 2% showed relatively good battery characteristics, so this was used. Furthermore, polytetrafluoroethylene resin powder was added to each mixture as a binder in an amount of 5% by weight based on MnO2.

この検討における試験用電池には第3図のようなボタン
形電池を用いた。第3図において正極3は、正極ケース
4内側にスポット溶接で固定したチタンネット5上に0
.2gのMnO2を含む上記正極合剤をプレス成形した
ものである。そして、ポリプロピレン製のセパレータ6
、封口板7に圧着した金属リチウムの負極8及び電解液
9(1モル/eのLiAsF5を炭酸プロピレンと炭酸
エチレンの混合溶媒中に溶かしたもの)と共にポリプロ
ピレン製のガスケット10を介して密封し、直径20I
1111、高さ1.6mmの電池としている。また、こ
の電池は正極の特性を比較するためのものなので、正極
の容量に対し負極の容量を約4倍充填しており、充放電
特性に負極の欠乏等による影響が現れないようにしてい
る。
A button-shaped battery as shown in FIG. 3 was used as the test battery in this study. In Fig. 3, the positive electrode 3 is placed on a titanium net 5 fixed by spot welding inside the positive electrode case 4.
.. The positive electrode mixture containing 2 g of MnO2 was press-molded. And a polypropylene separator 6
, sealed together with a metallic lithium negative electrode 8 and an electrolyte 9 (1 mol/e LiAsF5 dissolved in a mixed solvent of propylene carbonate and ethylene carbonate) pressed to a sealing plate 7 via a polypropylene gasket 10, Diameter 20I
1111, the battery has a height of 1.6 mm. Additionally, since this battery is used to compare the characteristics of the positive electrode, the capacity of the negative electrode is filled to about four times the capacity of the positive electrode, so that the charging and discharging characteristics are not affected by the lack of the negative electrode. .

充放電試験は、2■Aの定電流充放電を充電終止電圧を
3.8V、放電終止電圧を2.OVと設定して行った。
The charge/discharge test was conducted at a constant current charge/discharge of 2 A, with a charge end voltage of 3.8V and a discharge end voltage of 2. I set it to OV.

第4図はそれぞれの電池の充放電容量−サイクル特性図
で、100サイクルまでプロットしてありMnO2粒子
に導電剤を固定化した各々の電池の特性(実線で表示、
11:1重量%、12:2重量%、13;3重量%、1
4:4重量%、15;5重量%、16:6重量%、1’
/ニア重量%)と従来の正極を用いた電池の特性(破線
18で表示)を示している。この図から導電剤の固定化
がサイクルに伴う容量低下率の低減に効果を有すること
がわかる。しかし、表面固定量が1重量%の電池の特性
を見ると容量が小さい。すなわち、活物質利用率が低い
。また、活物質利用率、容量低下率のいずれも導電剤量
が増えるにつれて向上し、さらに表面固定量が5重量%
から7重量%にいたる電池では、利用率、容量低下率の
いずれも優れているが、優位差が見られな(なる。従っ
て、導電剤量が多いほどかさ高くなることを考えると、
ABの場合、表面固定量は2重量%以上、5重量%以下
の範囲が実用上有効であるといえる。
Figure 4 is a charge/discharge capacity-cycle characteristic diagram of each battery, plotted up to 100 cycles, and shows the characteristics of each battery with a conductive agent immobilized on MnO2 particles (shown as a solid line,
11:1% by weight, 12:2% by weight, 13:3% by weight, 1
4: 4% by weight, 15: 5% by weight, 16: 6% by weight, 1'
/near weight %) and the characteristics of a battery using a conventional positive electrode (indicated by a broken line 18). From this figure, it can be seen that immobilization of the conductive agent is effective in reducing the capacity reduction rate accompanying cycles. However, when looking at the characteristics of a battery with a surface-immobilized amount of 1% by weight, its capacity is small. That is, the active material utilization rate is low. In addition, both the active material utilization rate and capacity reduction rate improved as the amount of conductive agent increased, and the amount of surface immobilization increased by 5% by weight.
In batteries ranging from 7% by weight, both the utilization rate and the rate of capacity decline are excellent, but no significant difference can be seen.
In the case of AB, it can be said that a range of 2% by weight or more and 5% by weight or less for the surface fixed amount is practically effective.

次いで、固定化の導電剤としてAB以外のカーボンブラ
ック、活性炭2粒状黒鉛、繊維状黒鉛等についても同様
の検討を行った。カーボンブラックでは、いずれも上記
ABの場合と同じく表面固定量は2M量%以上、5重量
%以下の範囲が好ましいことがわかった。繊維状黒鉛で
は、表面固定量は1重量%以上、3重量%以下で好まし
い結果が得られたが、カーボンブラックに比べ利用率が
わずかに低(,3重量%を越えると逆に利用率が低下し
ていく傾向があった。これは、繊維状黒鉛がMnO2表
面に被りすぎてしまったため、電解液に対する濡れ性が
低下したためだと考えられる。また、活性炭2粒状黒鉛
では、利用率も低(、容量低下に関しても効果は得られ
なかった。
Next, similar studies were conducted on carbon black other than AB, activated carbon granular graphite, fibrous graphite, etc. as conductive agents for immobilization. For carbon black, it has been found that the amount fixed on the surface is preferably in the range of 2M% or more and 5% by weight or less, as in the case of AB. For fibrous graphite, favorable results were obtained when the amount fixed on the surface was 1% by weight or more and 3% by weight or less, but the utilization rate was slightly lower than that of carbon black (on the contrary, if it exceeded 3% by weight, the utilization rate decreased This is thought to be due to the fact that the fibrous graphite covered the MnO2 surface too much, reducing its wettability to the electrolyte.Also, in the case of activated carbon granular graphite, the utilization rate was also low. (Also, no effect was obtained regarding capacity reduction.

これは、活性炭2粒状黒鉛が硬い材質の炭素材料である
ため、正極の緩みに対して柔軟に対応できないことによ
るものと推測される。
This is presumed to be because the activated carbon 2-grain graphite is a hard carbon material and cannot flexibly respond to loosening of the positive electrode.

以上のように、Mn0zに固定化して用いる炭素材微粉
末としては、カーボンブラックまたは繊維状黒鉛が適し
ている。
As described above, carbon black or fibrous graphite is suitable as the carbon material fine powder fixed on Mn0z.

実施例3 実施例2で示したMnO2への炭素材微粉末の固定化に
よる集電ネットワークをさらに充実させるための補助ネ
ットワークを形成する目的で、固定化炭素材微粉末以外
にさらに導電剤を加える検討を行った。
Example 3 In order to form an auxiliary network to further enhance the current collection network by immobilizing carbon material fine powder to MnO2 shown in Example 2, a conductive agent was added in addition to the immobilized carbon material fine powder. Study was carried out.

MnO2に対してABを5重量%固定化した複合粒子か
らなる合剤を用い、補助ネットワーク用の導電剤として
、カーボンブラック、繊維状黒鉛、活性炭9粒状黒鉛等
をそれぞれMnO2に対し3重量%添加し、ミキサーで
混合した合剤を調製し、各々について実施例2と同様の
電池を構成し、比較検討した。その結果、カーボンブラ
ックと繊維状黒鉛を加えたものは、ただかさ高くなるだ
けで、活物質利用率、容量低下率は加えない場合とほと
んど変わらず、効果がないことがわかった。ところが、
活性炭と粒状黒鉛を添加混合すると、活物質利用率に対
する効果はみられないが、容量低下率に対して効果が見
られた。
Using a mixture consisting of composite particles in which 5% by weight of AB is immobilized with respect to MnO2, carbon black, fibrous graphite, activated carbon 9 granular graphite, etc. are each added in an amount of 3% by weight relative to MnO2 as a conductive agent for the auxiliary network. A mixture was prepared by mixing the mixture in a mixer, and batteries similar to those in Example 2 were constructed from each mixture and compared and studied. As a result, it was found that the addition of carbon black and fibrous graphite only increased the bulk, but the active material utilization rate and capacity reduction rate were almost the same as when they were not added, and were therefore ineffective. However,
When activated carbon and granular graphite were added and mixed, no effect was observed on the active material utilization rate, but an effect was observed on the capacity reduction rate.

そこで、補助ネットワーク用の導電剤として効果のあっ
た粒状黒鉛の添加量に関する検討を行った。MnO2に
対し5重量%のABを固定化した複合粒子からなる上記
粉末にそれぞれ粒状黒鉛をMnO2に対し1重量%、2
重量%、3重量%。
Therefore, we investigated the amount of granular graphite added, which is effective as a conductive agent for the auxiliary network. Granular graphite was added to the above powder consisting of composite particles in which AB was immobilized in an amount of 5% by weight based on MnO2, respectively.
% by weight, 3% by weight.

4重量%、5重量%、6重量%、7重量%添加混合した
7種類の合剤を用意し、各々について上記と同様の電池
を構成し充放電試験を行った。
Seven types of mixtures containing 4% by weight, 5% by weight, 6% by weight, and 7% by weight were prepared, and batteries similar to those described above were constructed for each mixture and a charge/discharge test was conducted.

第5図はそれぞれの電池の充放電容量−サイクル特性図
で、100サイクルまでプロットしてあり、補助ネット
ワーク用の粒状黒鉛を添加混合した各々電池の特性(実
線で表示19:1重量%。
FIG. 5 is a charge/discharge capacity-cycle characteristic diagram of each battery, plotted up to 100 cycles, and shows the characteristics of each battery to which granular graphite for the auxiliary network was added and mixed (19:1 weight % indicated by the solid line).

20:2重量%、21:3重量%、22:4重量%、2
3:5重量%、24:6重量%、25ニア重量%)とM
nO2に5重量%のABを固定化した複合粒子のみから
なる電池の特性(破線26で表示)を示している。この
図から補助ネットワーク用の導電剤の添加混合がサイク
ルに伴う容量低下率の低減に効果を有することがわかる
。しかし、添加混合量が1重量%の電池では容量低下率
に関して、改善がほとんど見られなかった。また、容量
低下率は添加混合量が増、えるにつれて向上するが、5
重量%から7重量%にいたる電池では、容量低下率はい
ずれも優れているが、優位差が見られなくなる。従って
、添加混合量が多いほどかさ高(なることを考えると、
粒状黒鉛の添加混合量は2重量%以上、5重量%以下の
範囲が実用上有効であるといえる。
20:2% by weight, 21:3% by weight, 22:4% by weight, 2
3:5% by weight, 24:6% by weight, 25% by weight) and M
It shows the characteristics (indicated by a broken line 26) of a battery made only of composite particles in which 5% by weight of AB is immobilized on nO2. From this figure, it can be seen that the addition and mixing of the conductive agent for the auxiliary network is effective in reducing the rate of capacity decrease due to cycles. However, in the case of a battery in which the amount of added mixture was 1% by weight, little improvement was observed in terms of capacity reduction rate. In addition, the capacity reduction rate improves as the amount of added mixture increases, but 5
For batteries ranging from 7% to 7% by weight, the capacity reduction rate is excellent, but no significant difference can be seen. Therefore, the larger the amount of mixture added, the higher the bulk (considering that
It can be said that it is practically effective for the amount of granular graphite added to be in the range of 2% by weight or more and 5% by weight or less.

次いで、補助ネットワーク用の導電剤として活性炭を用
いた場合の添加量に関する検討も行ったが、この場合も
容量低下率に対する効果を有し、その実用上有効な添加
混合量は上記粒状黒鉛と同様に2重量%以上、5重量%
であった。
Next, we also investigated the amount of activated carbon added when using it as a conductive agent for the auxiliary network, but this case also has an effect on the capacity reduction rate, and the practically effective mixing amount is the same as that of granular graphite mentioned above. 2% by weight or more, 5% by weight
Met.

実施例4 上述のように、補助ネットワークの形成は容量低下率の
低減に有効であったが、さらにネットワークを充実させ
るために補助ネットワーク用の導電剤を添加混合する工
程に帯電吸着作用を利用してより均一な混合を行う検討
を行った。一般に、単なる混合に比べ帯電吸着作用を利
用すると、粉末の粒子分散性が均一になるといわれてい
る。
Example 4 As mentioned above, the formation of the auxiliary network was effective in reducing the capacity reduction rate, but in order to further enrich the network, the charge adsorption effect was used in the process of adding and mixing the conductive agent for the auxiliary network. A study was conducted to achieve more uniform mixing. Generally, it is said that the particle dispersibility of the powder becomes more uniform when the charge adsorption effect is used compared to simple mixing.

そこで、MnO2に対し5重量%のABを固定化した複
合粒子からなる粉末と、MnO2に対し5重量%の粒状
黒鉛粉末を気相分散させながら撹拌し、接触摩擦による
帯電吸着作用で複合粒子上に粒状黒鉛粉末を吸着させた
合剤を調製した。そして、粒状黒鉛粉末を単にミキサー
で混合した同じ組成の合剤と上記と同様の電池を用いて
比較検討した。
Therefore, a powder consisting of composite particles in which 5% by weight of AB is immobilized with respect to MnO2 and granular graphite powder with 5% by weight relative to MnO2 are stirred while being dispersed in the vapor phase, and the charged adsorption effect due to contact friction is applied to the composite particles. A mixture was prepared in which granular graphite powder was adsorbed on. A comparative study was then conducted using a battery similar to the one described above and a mixture of the same composition made by simply mixing granular graphite powder in a mixer.

第6図は上記2種の電池の容量−サイクル特性図で、1
00サイクルまでプロットしてあり、補助ネットワーク
用の粒状黒鉛の添加混合に帯電吸着作用を利用した電池
の特性(実線27で表示)と、単にミキサーを用いた電
池の特性(破線28で表示)を示している。この図から
補助ネットワーク用の導電剤の添加混合に帯電吸着作用
を利用すると、サイクルに伴う容量低下率の低減がさら
に促進されることがわかる。
Figure 6 is a capacity-cycle characteristic diagram of the two types of batteries mentioned above.
The graph is plotted up to 00 cycles, and shows the characteristics of a battery that uses a charge adsorption effect to add and mix granular graphite for the auxiliary network (indicated by a solid line 27), and the characteristics of a battery that simply uses a mixer (indicated by a broken line 28). It shows. From this figure, it can be seen that if the charge adsorption effect is used to add and mix the conductive agent for the auxiliary network, the reduction in the rate of capacity decrease due to cycles is further promoted.

また、補助ネットワーク用の導電剤として活性炭を用い
た場合も同様の効果が確認された。
A similar effect was also confirmed when activated carbon was used as a conductive agent for the auxiliary network.

上述のように、補助ネットワーク用の導電剤の添加混合
に帯電吸着作用を利用することが有効であったので、こ
れに加えて高速気流中衝撃法を併用すると、さらに補助
ネットワークを充実させうると考えた。
As mentioned above, it was effective to use the charge adsorption effect to add and mix the conductive agent for the auxiliary network, and we believe that the use of the high-speed air impact method in addition to this can further enrich the auxiliary network. Thought.

そこで、上記帯電吸着作用により調製した合剤を高速気
流中衝撃法で処理した後、電池に構成し検討した。
Therefore, after treating the mixture prepared by the above-mentioned charge adsorption effect by a high-speed air impact method, it was constructed into a battery and studied.

しかし、この場合、第6図中の曲線29(高速気流中衝
撃法処理品〉のように極めて利用率が悪くなってしまっ
た。これは、一般に吸液性に乏しいといわれる粒状黒鉛
が強固にMnO2表面に固定されてしまい、電解液に対
する濡れ性が低下したためと考えられる。従って、補助
ネットワーク用の導電剤の混合添加法としては、むしろ
ミキサーによる一般的な混合、好ましくは帯電吸着作用
を用いた方法が適している。
However, in this case, the utilization rate became extremely poor as shown in curve 29 (product treated by impact method in high-speed air flow) in Figure 6.This is because granular graphite, which is generally said to have poor liquid absorption, is strong. This is thought to be because the conductive agent is fixed on the MnO2 surface and its wettability with the electrolyte is reduced.Therefore, as a method of mixing and adding the conductive agent for the auxiliary network, general mixing using a mixer, preferably charging adsorption, is preferable. The previous method is suitable.

発明の効果 本発明の正極ならびにその製造法を用いることにより、
正極に起因する充放電容量の低下をより一層抑えること
ができ、サイクルの進行に係わらず、きわめて安定した
放電容量を有するリチウム二次電池を提供することがで
きる。
Effects of the invention By using the positive electrode of the present invention and its manufacturing method,
It is possible to further suppress a decrease in charge/discharge capacity due to the positive electrode, and to provide a lithium secondary battery having an extremely stable discharge capacity regardless of the progress of the cycle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る複合粒子の模式図、第2図、第4
図、第5図、第6図は本発明の効果を示す容量サイクル
特性の比較図であり、第3図は実施例に用いた電池の縦
断面図である。 1・・・・・・二酸化マンガン粒子、2・・・・・・炭
素材微粉末、3・・・・・・正極、4・・・・・・正極
ケース、5・・・・・・チタンネット、6・・・・・・
セパレータ、7・・・・・・封口板、8・・・・・・負
極、9・・・・・・電解液、10・・・・・・ガスケッ
ト、11〜29・・・・・・充放電−サイクル特性曲線
。 代理人の氏名 弁理士 粟野重孝 はか1名第1図 ず−・−=Hsとマンfシ米立) 2−−−炭素ぶオ■ズ妃ミ米 梁層ψ拗− L6  b  >  閃 択眞−拗W− ICI−f菫iり 2o−2tt% 2f−j皇t% 22−4 tty 23−・−ytt!+ 2φ−6斐ty 2!;−1首tz 2cm−−ネソ冶4肯壬の々− 第 6 図 27一−−fr4結iDhミ〕1イ實戸手]ア巨否L2
8−−−ミャす一僕序品 29−・−高氷氏5罠キ廚V汁廻式品 ザイクル汐、
Figure 1 is a schematic diagram of composite particles according to the present invention, Figures 2 and 4.
5 and 6 are comparative diagrams of capacity cycle characteristics showing the effects of the present invention, and FIG. 3 is a longitudinal cross-sectional view of a battery used in an example. 1...Manganese dioxide particles, 2...Carbon material fine powder, 3...Positive electrode, 4...Positive electrode case, 5...Titanium Net, 6...
Separator, 7... Sealing plate, 8... Negative electrode, 9... Electrolyte, 10... Gasket, 11-29... Charge Discharge-cycle characteristic curve. Agent's name: Patent attorney Shigetaka Awano (1 person) 1st figure - - = Hs and man fshi rice stand) 2 - - carbon buozui mi rice beam layer ψ - L6 b > flash selection Makoto W- ICI-f Sumiri 2o-2tt% 2f-j Emperort% 22-4 tty 23-・-ytt! + 2φ-6 斐ty 2! ;-1 head tz 2cm--Nesoji 4 Kenmi-no-no-6 Fig. 271--fr4 knot iDhmi] 1 Ijidote] A giant nai L2
8--Myasu Ichiboku Introduction Product 29--Takahigashi 5 Trap Reception V Juice Carry Type Product Zaikuru Shio,

Claims (7)

【特許請求の範囲】[Claims] (1)活物質の二酸化マンガン、と導電剤の炭素材を主
構成材料とする正極で、上記導電剤の一部が二酸化マン
ガン粒子に対し10^−^1〜10^−^5の平均粒径
比を持つ炭素材微粉末であり、かつ二酸化マンガン粒子
1の表面に上記炭素材微粉末2が固定化された複合粒子
を有することを特徴とするリチウム二次電池用正極。
(1) A positive electrode whose main constituent materials are manganese dioxide as an active material and carbon material as a conductive agent, in which a part of the conductive agent has an average particle size of 10^-^1 to 10^-^5 with respect to the manganese dioxide particles. A positive electrode for a lithium secondary battery, characterized in that it is a carbon material fine powder having a diameter ratio, and has composite particles in which the carbon material fine powder 2 is immobilized on the surface of manganese dioxide particles 1.
(2)上記複合粒子粉末中の炭素材微粉末以外の導電材
として粒状黒鉛粉末または活性炭粉末を含むことを特徴
とする特許請求の範囲第1項記載のリチウム二次電池用
正極。
(2) The positive electrode for a lithium secondary battery according to claim 1, wherein the composite particle powder contains granular graphite powder or activated carbon powder as a conductive material other than the carbon material fine powder.
(3)上記複合粒子の炭素材微粉末がカーボンブラック
であり、その表面固定量が二酸化マンガンに対して2重
量%以上、5重量%以下であることを特徴とする特許請
求の範囲第1項記載のリチウム二次電池用正極。
(3) Claim 1, characterized in that the carbon material fine powder of the composite particles is carbon black, and the amount of the carbon material fixed on the surface is 2% by weight or more and 5% by weight or less based on manganese dioxide. The positive electrode for a lithium secondary battery described above.
(4)上記複合粒子の炭素材微粉末が繊維状黒鉛であり
、その表面固定量が二酸化マンガンに対して1重量%以
上、3重量%以下であることを特徴とする特許請求の範
囲第1項記載のリチウム二次電池用正極。
(4) The carbon material fine powder of the composite particles is fibrous graphite, and the amount of the carbon material fixed on the surface is 1% by weight or more and 3% by weight or less based on manganese dioxide. A positive electrode for a lithium secondary battery as described in .
(5)上記粒状黒鉛粉末または活性炭粉末が二酸化マン
ガンに対し2重量%以上、5重量%以下であることを特
徴とする特許請求の範囲第2項記載のリチウム二次電池
用正極。
(5) The positive electrode for a lithium secondary battery according to claim 2, wherein the granular graphite powder or activated carbon powder is present in an amount of 2% by weight or more and 5% by weight or less based on manganese dioxide.
(6)特許請求の範囲第1項記載の複合粒子粉末を粒状
黒鉛粉末または活性炭粉末とともに気相分散させながら
撹拌し、接触摩擦による帯電吸着作用で複合粒子上に粒
状黒鉛粉末または活性炭粉末を吸着させることを特徴と
するリチウム二次電池用正極の製造法。
(6) The composite particles described in claim 1 are stirred together with granular graphite powder or activated carbon powder while being dispersed in a gas phase, and the granular graphite powder or activated carbon powder is adsorbed onto the composite particles by the electrostatic adsorption effect caused by contact friction. A method for producing a positive electrode for a lithium secondary battery, characterized by:
(7)二酸化マンガン粉末と炭素材微粉末を気相分散さ
せながら撹拌し、接触摩擦による帯電吸着作用で予め二
酸化マンガン粒子上に炭素微粉末を吸着させた後、これ
を高速気流中衝撃法(高速回転中の回転体を有する気流
中に粉末を投入し、粉末粒子を互いに強く衝突させる方
法)を用いて炭素材微粉末を二酸化マンガン表面に打ち
込み固定化することを特徴とする特許請求の範囲第6項
記載のリチウム二次電池用正極の製造法。
(7) Manganese dioxide powder and carbon material fine powder are stirred while being dispersed in a gas phase, and the carbon fine powder is adsorbed onto the manganese dioxide particles by the charge adsorption effect caused by contact friction. Claims characterized in that carbon material fine powder is implanted and fixed on the surface of manganese dioxide using a method in which the powder is introduced into an air stream having a rotating body rotating at high speed and the powder particles are strongly collided with each other. The method for producing a positive electrode for a lithium secondary battery according to item 6.
JP1083480A 1989-03-31 1989-03-31 Positive electrode for lithium secondary battery and manufacture thereof Pending JPH02262243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1083480A JPH02262243A (en) 1989-03-31 1989-03-31 Positive electrode for lithium secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1083480A JPH02262243A (en) 1989-03-31 1989-03-31 Positive electrode for lithium secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02262243A true JPH02262243A (en) 1990-10-25

Family

ID=13803632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1083480A Pending JPH02262243A (en) 1989-03-31 1989-03-31 Positive electrode for lithium secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02262243A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289658A (en) * 1991-03-19 1992-10-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
EP0978889A1 (en) * 1997-06-18 2000-02-09 Wilson Greatbatch Ltd. Conductive additive and discharge promotor mixture for reducing cell swelling in alkali metal electrochemical cells
JP2002507313A (en) * 1997-06-27 2002-03-05 エルジー・ケミカル・リミテッド Lithium ion secondary battery and method of manufacturing the same
JP2002367610A (en) * 2001-06-07 2002-12-20 Hitachi Maxell Ltd Nonaqueous secondary cell
JP2004296431A (en) * 2003-03-07 2004-10-21 Denso Corp Electrode for lithium secondary battery and lithium secondary battery
JP2005190831A (en) * 2003-12-25 2005-07-14 Tdk Corp Electrode, electrochemical element, manufacturing method of electrode, and manufacturing method of electrochemical element
US7662424B2 (en) 2003-08-29 2010-02-16 Tdk Corporation Method of making composite particle for electrode, method of making electrode, method of making electrochemical device, apparatus for making composite particle for electrode, apparatus for making electrode, and apparatus for making electrochemical device
US7754382B2 (en) 2003-07-30 2010-07-13 Tdk Corporation Electrochemical capacitor having at least one electrode including composite particles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195962A (en) * 1987-02-09 1988-08-15 Matsushita Electric Ind Co Ltd Battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195962A (en) * 1987-02-09 1988-08-15 Matsushita Electric Ind Co Ltd Battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289658A (en) * 1991-03-19 1992-10-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
EP0978889A1 (en) * 1997-06-18 2000-02-09 Wilson Greatbatch Ltd. Conductive additive and discharge promotor mixture for reducing cell swelling in alkali metal electrochemical cells
JP2002507313A (en) * 1997-06-27 2002-03-05 エルジー・ケミカル・リミテッド Lithium ion secondary battery and method of manufacturing the same
JP2002367610A (en) * 2001-06-07 2002-12-20 Hitachi Maxell Ltd Nonaqueous secondary cell
JP2004296431A (en) * 2003-03-07 2004-10-21 Denso Corp Electrode for lithium secondary battery and lithium secondary battery
US7754382B2 (en) 2003-07-30 2010-07-13 Tdk Corporation Electrochemical capacitor having at least one electrode including composite particles
US7662424B2 (en) 2003-08-29 2010-02-16 Tdk Corporation Method of making composite particle for electrode, method of making electrode, method of making electrochemical device, apparatus for making composite particle for electrode, apparatus for making electrode, and apparatus for making electrochemical device
JP2005190831A (en) * 2003-12-25 2005-07-14 Tdk Corp Electrode, electrochemical element, manufacturing method of electrode, and manufacturing method of electrochemical element

Similar Documents

Publication Publication Date Title
JP4319253B2 (en) Electrochemical battery zinc anode
US5077149A (en) Nickel/hydrogen storage battery and method of manufacturing the same
US5660953A (en) Rechargeable manganese dioxide cathode
JP2003308845A (en) Electrode for lithium secondary battery and lithium secondary battery using it
JP7252988B2 (en) Prelithiated negative electrode, method of making same, lithium ion battery containing prelithiated negative electrode, and supercapacitor
JPH02262243A (en) Positive electrode for lithium secondary battery and manufacture thereof
JP3399614B2 (en) Positive electrode mixture and battery using the same
JP2006092881A (en) Battery positive electrode material containing sulfur and/or sulfur compound having s-s bonding, and its manufacturing method
KR100345802B1 (en) Graphite powder for negative electrode of lithium ion secondary cell and method of production thereof
JPS63187570A (en) Battery
JP3653710B2 (en) Hydrogen storage electrode
JP4179648B2 (en) Polytetrafluoroethylene dispersion, method for producing the same, and method for producing a hydrogen storage alloy electrode using the dispersion
JPH11297352A (en) Alkaline storage battery
JP3186071B2 (en) Method for producing electrode plate for lead-acid battery and aggregated particles
JPH02239572A (en) Polyaniline battery
JPH02201872A (en) Plate for lead-acid battery
JP2937353B2 (en) Zinc chloride dry cell
JPH01267952A (en) Manganese dioxide-lithium battery
JPH06333568A (en) Sealed metal oxide-hydrogen battery, and its manufacture
CN1204637C (en) Mixture comprising metal and/or alloy particles and liquid medium and method for producing the same
JPH02177254A (en) Carbon fluoride-lithium cell
JP2734591B2 (en) Positive electrode for lithium secondary battery and method for producing the same
JP3614567B2 (en) Sealed nickel metal hydride battery
JPS5935360A (en) Zinc electrode
JPH0256857A (en) Alkaline manganese battery