JPH02262071A - Conduction inspecting method - Google Patents

Conduction inspecting method

Info

Publication number
JPH02262071A
JPH02262071A JP1083304A JP8330489A JPH02262071A JP H02262071 A JPH02262071 A JP H02262071A JP 1083304 A JP1083304 A JP 1083304A JP 8330489 A JP8330489 A JP 8330489A JP H02262071 A JPH02262071 A JP H02262071A
Authority
JP
Japan
Prior art keywords
inspected
layer
conductive part
conductive
discolored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1083304A
Other languages
Japanese (ja)
Inventor
Takeshi Inoue
健 井上
Tomohiro Fujisaka
朋弘 藤坂
Toshihiro Koremoto
敏宏 是本
Minoru Suezaki
穣 末崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP1083304A priority Critical patent/JPH02262071A/en
Publication of JPH02262071A publication Critical patent/JPH02262071A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PURPOSE:To make it possible to inspect the state of conduction by forming an electrochromic layer on a surface, and recognizing the coloring degrees of the surface of a material before and after electrochemical reaction occurs in the electrochromic layer. CONSTITUTION:The solution of an electrochromic (EC) material wherein poly- substituted acetylene and the like are uniformly dispersed and dissolved is attached on the surface of a material 1 to be inspected. A voltage is applied between a conducting part 1a of the material 1 and a counter electrode 3 and a symmetric electrode 5 which are immersed in electrolyte solution 2 with a potentiostat 4 and the like. Thus, the conducting part 1a on the surface of the material which undergoes electrochemical action is discolored. An insulating part 1b other than the conducting part 1a is under the non-discolored state. The difference in colors can be recognized with the naked eyes. The minute parts can be recognized by the observation through a microscope. Therefore, the conducting state can be inspected based on the degrees of discoloration.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、導電性材料の欠陥部分の検査、あるいは電気
回路の導電性試験など、少なくとも導電部を有する材料
表面の導通検査方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for testing the surface of a material having at least a conductive portion, such as inspecting a defective portion of a conductive material or testing the conductivity of an electric circuit.

(従来の技術) 回路基板等に対する導通検査には、特開昭62−524
73号公報に示されるように、多数の金属端子を直接回
路基板上に形成されている回路パターンの格子点に接触
させ、接触点間の電気抵抗を測定する方法が採用されて
いる。
(Prior art) For continuity testing of circuit boards, etc., Japanese Patent Application Laid-Open No. 62-524
As shown in Japanese Patent No. 73, a method is adopted in which a large number of metal terminals are brought into direct contact with grid points of a circuit pattern formed on a circuit board, and the electrical resistance between the contact points is measured.

(発明が解決しようとする課題) 従来の導通検査方法を利用した、自動装置が市販されて
いるが、回路基板の大きさや回路樽成などといった被検
査材料の形態が規定されているために、それら形態の異
なった回路パターンの導通検査を行なうことが難しいと
いった欠点がある。
(Problems to be Solved by the Invention) Automatic devices using conventional continuity testing methods are commercially available, but because the form of the material to be tested, such as the size of the circuit board and the structure of the circuit barrel, is specified, There is a drawback that it is difficult to conduct continuity tests on circuit patterns having different shapes.

また、上記方法では被検査材料の表面に金属端子を直接
接触させるために、被検査材料の表面に傷などの欠陥部
分を生じさせるおそれがある。さらに、金属端子の太さ
によって測定間隔に限界があるので、最高性能の装置に
おいても0.1 mm程度の間隔でしか導通検査を行な
うことができないという欠点があった。
Furthermore, in the above method, since the metal terminal is brought into direct contact with the surface of the material to be inspected, there is a risk that defects such as scratches may be generated on the surface of the material to be inspected. Furthermore, since there is a limit to the measurement interval depending on the thickness of the metal terminal, there is a drawback in that even the highest performance equipment can only perform continuity tests at intervals of about 0.1 mm.

本発明は上記従来の欠点を解決するものであり、その目
的とするところは、被検査材料の表面形態等によって制
約されることがなく、しかも平板状材料だけでなく任意
の凹凸や曲面を有する材料においても表面欠陥が生じる
ことなく高性能に検査できる電通検査方法を提供するこ
とにある。
The present invention is intended to solve the above-mentioned conventional drawbacks, and its purpose is not to be restricted by the surface form of the material to be inspected, and moreover, it can be used not only for flat materials but also for materials having arbitrary irregularities and curved surfaces. It is an object of the present invention to provide an electrical conductivity inspection method that can perform high-performance inspection of materials without causing surface defects.

(課題を解決するための手段) 本発明の導通検査方法は、導電部を有する材料表面にエ
レクトロクミック(以下ECと略す)層を・形成する工
程と、該EC層に対して導電部を作用電極として機能さ
せる工程と、を含有しており、そのことにより上記目的
が達成される。
(Means for Solving the Problems) The continuity testing method of the present invention includes the steps of forming an electrochromic (hereinafter abbreviated as EC) layer on the surface of a material having a conductive part, and forming a conductive part on the EC layer. and a step of causing the electrode to function as a working electrode, thereby achieving the above object.

被検査材料の表面に形成されたEC層のうち、導電部上
のEC層は、導電部が該EC層の作用電極として機能す
ることにより、電気化学的に酸化又は還元されて変色す
る。これに対し、導電部以外の部分に形成さたEC層は
、作用電極による電気化学的反応を受けないために変色
しない。従って、EC層が電気化学的反応を起こす前後
における材料表面の変色程度を識別することによって、
材料表面における導通状態を検査することこができる。
Among the EC layers formed on the surface of the material to be inspected, the EC layer on the conductive part is electrochemically oxidized or reduced and changes color due to the conductive part functioning as a working electrode of the EC layer. On the other hand, the EC layer formed on parts other than the conductive part does not undergo discoloration because it is not subjected to electrochemical reaction by the working electrode. Therefore, by identifying the degree of discoloration of the material surface before and after the EC layer causes an electrochemical reaction,
The conductivity state on the material surface can be inspected.

本発明の導通検査方法では、まず被検査材料表面にEC
層を形成するべくEC材料を積層する。
In the continuity testing method of the present invention, first, EC is applied to the surface of the material to be tested.
EC materials are laminated to form layers.

EC材料としては酸化タングステン、酸化バナジウムの
ような還移金属酸化物、プルシアンブルー金属フタロシ
アニンのような染料系化合物、あるいはポリチオフェン
、ポリフェニルアセチレンのような共役系化合物などが
挙げられる。
Examples of the EC material include reduced metal oxides such as tungsten oxide and vanadium oxide, dye compounds such as Prussian blue metal phthalocyanine, and conjugated compounds such as polythiophene and polyphenylacetylene.

EC材料の積層方法は特に限定されていないが、用いる
EC材料に応じてその方法が異なる。例えば、酸化タン
グステンのような無機材料の場合は、蒸着あるいはスパ
ッタリング等の物理的方法を用いることができる。その
他、ゾルゲル法、LB模膜法どを必要に応じて用いるこ
とができる。より簡便には、有機溶剤あるいは水のよう
な液体に溶解あるいは均一に分散し得るIEC材料を、
溶液として塗布あるいは浸漬法等によって被検査材料の
表面に付着させる方法が好ましい。このようなEC材料
としては、ポリ置換アセチレン、例えば特開昭63−9
2619号公報に示されるポリ(0−トリメチルシリル
フェニルアセチレン)、あるいは(o−トリフルオロメ
チルフェニルアセチレン)、ポリ(0−メチルフェニル
アセチレン)、ポリ(ブチルフェニルアセチレン)、ポ
リ(2,6−ジメチル4−t−ブチルフェニルアセチレ
ン)などが挙げられる。また、海外高分子研究、 32
.24. (1986)に示されるポリ(N−ビニルカ
ルバゾール)等、可溶性の材料であれば、その構造は特
に限定されるものではない。
The method of laminating the EC materials is not particularly limited, but the method differs depending on the EC material used. For example, in the case of an inorganic material such as tungsten oxide, physical methods such as vapor deposition or sputtering can be used. In addition, sol-gel method, LB model method, etc. can be used as needed. More conveniently, an IEC material that can be dissolved or uniformly dispersed in a liquid such as an organic solvent or water,
Preferably, it is applied as a solution to the surface of the material to be inspected by coating or dipping. Such EC materials include polysubstituted acetylenes, such as JP-A-63-9
Poly(0-trimethylsilylphenylacetylene) shown in Publication No. 2619, or (o-trifluoromethylphenylacetylene), poly(0-methylphenylacetylene), poly(butylphenylacetylene), poly(2,6-dimethyl 4 -t-butylphenylacetylene). Also, overseas polymer research, 32
.. 24. (1986), the structure is not particularly limited as long as it is a soluble material such as poly(N-vinylcarbazole).

EC材料の積層方法に関しても、前記方法はその一例で
あり、被検査材料表面にEC材料を比較的均一に積層で
きる方法であれば、他の公知の積層方法も用いることが
できる。
As for the method of laminating the EC material, the method described above is one example, and other known lamination methods may be used as long as the method allows the EC material to be laminated relatively uniformly on the surface of the material to be inspected.

被検査材料の形状は、平滑でかつ平面であるほうが検査
が容易であるが、本発明の検査方法はその形状を限定す
るものではな(、少なくとも導電部を有するものであれ
ば任意形状の材料表面に適用することができる。
It is easier to inspect the shape of the material to be inspected if it is smooth and flat; however, the inspection method of the present invention does not limit the shape (the material can be of any shape as long as it has at least a conductive part). Can be applied to surfaces.

被検査材料表面にEC層が形成されると、次に、EC層
に対して導電部を作用電極として機能させる。
Once the EC layer is formed on the surface of the material to be inspected, the conductive portion is then made to function as a working electrode for the EC layer.

EC材料は本来、電気的もしくは電気化学的に酸化ある
いは還元を受けることによって、その材料の光吸収特性
が変化する性質を有するものである。
EC materials originally have the property that their light absorption characteristics change when they are electrically or electrochemically oxidized or reduced.

本発明の検査方法では、被検査材料表面の導電部を作用
電極として使用する。すなわち、導電部に通電を行なう
ことにより、導電部上に積層されたEC層に電気化学的
酸化あるいは還元を生じさせ、これにより導電部上のE
C層の光吸収特性を変化させ、非作用電極すなわち被検
査材料表面の絶縁部上に積層されたEC層の無変色部分
の光吸収特性と比較することによって、導電部と絶縁部
とを識別するのである。
In the inspection method of the present invention, a conductive portion on the surface of the material to be inspected is used as a working electrode. That is, by supplying current to the conductive part, electrochemical oxidation or reduction occurs in the EC layer stacked on the conductive part, thereby reducing the E on the conductive part.
The conductive part and the insulating part are distinguished by changing the light absorption property of the C layer and comparing it with the light absorption property of the non-discolored part of the EC layer laminated on the non-working electrode, that is, the insulating part on the surface of the material to be inspected. That's what I do.

EC層に対する電気化学的操作方法としては、IEcセ
ルを作製するように被検査材料表面にEC層と、電解質
層と、対極とをこの順で積層し、被検査材料の導電部と
上記対極との間に電圧を印加するごとにより、被検査材
料の導電部に被覆されたEC層に酸化あるいは還元を起
こさせる方法が挙げられる。より簡便には、第1図に示
すように被検査材料1を電解質溶液2中に浸漬し、被検
査材料1の導電部1aと、電解質溶液2中に浸漬した対
極3との間にポテショスタット4等で電圧を印加するこ
とによって、導電部1aの上に積層されたEC層にのみ
酸化あるいは還元を起こさせる方法が挙げられる。電圧
の印加方法は特に限定するものではないが、参照電極5
を用いた三極法で行なうのが望ましい。
As an electrochemical operation method for the EC layer, an EC layer, an electrolyte layer, and a counter electrode are laminated in this order on the surface of the material to be tested so as to create an IEc cell, and the conductive part of the material to be tested and the counter electrode are stacked in this order. An example of a method is to cause oxidation or reduction in the EC layer covering the conductive portion of the material to be inspected by applying a voltage during the test. More simply, as shown in FIG. 1, the material to be inspected 1 is immersed in an electrolyte solution 2, and a potentiometer is placed between the conductive part 1a of the material to be inspected 1 and the counter electrode 3 immersed in the electrolyte solution 2. One example is a method in which oxidation or reduction occurs only in the EC layer laminated on the conductive part 1a by applying a voltage with the stud 4 or the like. The voltage application method is not particularly limited, but the reference electrode 5
It is preferable to use the three-electrode method using

電解質溶液の溶媒としては、水あるいは有機溶剤を用い
ることができるが、被検査材料表面の導電部が腐食性の
金属からなる場合は、有機溶剤が好ましい。有機溶剤と
しては、具体的にはアセトニトリル、プロピレンカーボ
ネート、メタノール、ニトロメタン等が挙げられる。可
溶性EC材料を用いる場合は、EC材料を溶解させない
溶剤を用いなければならない。また、電解質物質として
は、金属塩化物、プロトン酸等を用いることもできるが
腐食を避けるためにLiCl0n、LiBF4、LiP
F、、Et4NBF4、Et、NPF6、n−Bu4N
BF4、n−BuJPF6等の非水溶剤系電解質が好適
である。
Water or an organic solvent can be used as the solvent for the electrolyte solution, but when the conductive portion on the surface of the material to be inspected is made of a corrosive metal, an organic solvent is preferable. Specific examples of the organic solvent include acetonitrile, propylene carbonate, methanol, and nitromethane. If a soluble EC material is used, a solvent must be used that does not dissolve the EC material. In addition, metal chlorides, protonic acids, etc. can be used as electrolyte materials, but to avoid corrosion, LiCl0n, LiBF4, LiP
F,, Et4NBF4, Et, NPF6, n-Bu4N
Non-aqueous electrolytes such as BF4 and n-BuJPF6 are suitable.

このようにしてEC層に対する電気化学的操作を終えた
被検査材料の表面は、電解質を含まない溶剤で洗浄して
乾燥させた方が光学的な識別が容易になる。
Optical identification becomes easier if the surface of the material to be inspected after electrochemical manipulation of the EC layer is washed with a solvent that does not contain an electrolyte and dried.

電気化学的操作を受けたEC層は、被検査材料表面の導
電部においては変色し、導電部以外の絶縁部においては
未変色状態にある。この色の差異は肉眼で識別すること
ができる。さらに、より微細な部分は顕微鏡観察により
識別が可能になる。被検査材料表面が大面積で、且つ回
路パターンのように複雑なパターンを有する場合はコン
ピューターによる処理を施すことによって簡便に検査が
行える。すなわち、光源と光検出器とが、一対になった
駆動部分を設け、被検査材料表面が平面の場合は、X、
Yの2軸で、曲面の場合はx、y、zの3軸で駆動部の
座標を決め、任意の点で光特性を入力することによって
、2次元的あるいは3次元的に変色と未変色とを識別す
ることができる。
The EC layer subjected to electrochemical manipulation changes color in the conductive parts on the surface of the material to be inspected, and remains uncolored in the insulating parts other than the conductive parts. This color difference can be discerned with the naked eye. Furthermore, finer parts can be identified by microscopic observation. When the surface of the material to be inspected has a large area and a complex pattern such as a circuit pattern, the inspection can be easily performed by processing it with a computer. That is, if a driving part is provided in which a light source and a photodetector are paired, and the surface of the material to be inspected is flat, X,
By determining the coordinates of the drive unit on the two axes of Y, or on the three axes of x, y, and z in the case of a curved surface, and inputting the optical characteristics at any point, it is possible to determine whether or not the color changes two-dimensionally or three-dimensionally. can be identified.

この場合、被検査材料が透光性の高い材料であれば、光
源と光検出器との間に材料を設置し、材料を透過した光
の吸光度を測定することによって変色部と未変色部とを
識別すことができる。また、被検査材料が透明であって
も、球状の如く光源と光検出器との間に材料を位置させ
ることができない場合、あるいは被検査材料が不透明で
ある場合は、被検査材料の被検査側に光源および光検出
器を設け、その材料表面で反射する光の吸光度あるいは
反射率等の光特性を測定することによって変色部と未変
色部との識別が可能になる。
In this case, if the material to be inspected is highly translucent, the material is placed between a light source and a photodetector, and the absorbance of the light transmitted through the material is measured to distinguish between discolored and undiscolored areas. can be identified. In addition, even if the material to be inspected is transparent, if the material cannot be placed between the light source and the photodetector, such as a spherical material, or if the material to be inspected is opaque, By providing a light source and a photodetector on the side and measuring optical characteristics such as absorbance or reflectance of light reflected on the surface of the material, it becomes possible to distinguish between discolored areas and non-discolored areas.

光源としては白色光、単色光、レーザー光等を利用でき
、集光を行なうことにより、より微細なパターン識別も
可能になる。このような識別方法によれば、従来の金属
端子接触による方法とは比較にならない数μmオーダー
の識別が可能であり、特殊レーザー等を用いることによ
って1μm以下の識別も可能になる。
As a light source, white light, monochromatic light, laser light, etc. can be used, and by focusing the light, it is also possible to identify finer patterns. According to such an identification method, identification on the order of several μm is possible, which is incomparable to the conventional method using metal terminal contact, and by using a special laser or the like, identification on the order of 1 μm or less is also possible.

被検査材料表面に形成されたEC層は、導通検査の後も
必要であれば保護膜あるいは被覆膜として利用すること
ができる。EC層を除去する必要がある場合は、可溶性
のEC材料を用いるのが好ましく、例えばポリ(置換ア
セチレン)、すなわちポリ(0−)リメチルシリルフェ
ニルアセチレン)等を用いれば、導通検査終了後に有機
溶剤を用いてEC層を容易に除去することができる。
The EC layer formed on the surface of the material to be tested can be used as a protective film or a coating film if necessary even after the continuity test. If it is necessary to remove the EC layer, it is preferable to use a soluble EC material. The EC layer can be easily removed using a solvent.

(実施例) 以下、実施例により本発明を具体的に示すが、本発明は
これら実施例に限定されるものではない。
(Examples) Hereinafter, the present invention will be specifically illustrated by Examples, but the present invention is not limited to these Examples.

11皿上 ガラス基板(50mm x 50mm x 1皿)に、
透明導電材料であるインジウム・スズ酸化物(以下IT
Oと略す)をスパッタリングにより成膜した。ITO膜
の不要部分をエツチング処理により除去して第2図に示
すように導電部1a(ITO膜)および絶縁膜lb (
ガラス基板)が表面に露呈した被検査材料1を作製した
11 On a glass substrate (50mm x 50mm x 1 plate),
Indium tin oxide (hereinafter referred to as IT) is a transparent conductive material.
(abbreviated as O) was formed into a film by sputtering. Unnecessary parts of the ITO film are removed by etching to form a conductive part 1a (ITO film) and an insulating film lb (
A material to be inspected 1 in which a glass substrate) was exposed on the surface was prepared.

次いで、この被検査材料1の導電部1aおよび絶縁部1
bが露呈した面に、特開昭63−92619号公報に開
示される方法で合成したポリ(o−トリメチルシリルフ
ェニルアセチレン)0.1gをトルエン6 mlに溶解
させた溶液を滴下した。滴下された溶液をスピンコータ
ーを用いて均一に塗布して乾燥させ、0.2〜0.58
n厚のEC層とした。
Next, the conductive part 1a and the insulating part 1 of this material 1 to be inspected are
A solution prepared by dissolving 0.1 g of poly(o-trimethylsilylphenylacetylene) synthesized by the method disclosed in JP-A No. 63-92619 in 6 ml of toluene was dropped onto the exposed surface of b. The dropped solution is evenly applied using a spin coater and dried to give a coating of 0.2 to 0.58
The EC layer was n-thick.

表面にEC層が形成された被検査材料1の導電部1aに
端子を取り付けた後、第1図に示すように被検査材料1
を電解質溶液2に浸漬した。電解質溶液2の電解質には
LiCl04(0,1モル/I!、)を用い、溶媒には
アセトニトリルを用いた。そして、対極3と被検査材料
1の導電部1aとの間に参照電極5(Ag/AgC1)
に対して+1■の電圧を数秒間印加した。電圧印加後は
、被検査材料1を電解質溶液2から引き上げ、その表面
をアセトニトリルで洗浄し、80°Cで5分間乾燥させ
た。
After attaching a terminal to the conductive part 1a of the material to be inspected 1 having an EC layer formed on its surface, the material to be inspected 1 is attached as shown in FIG.
was immersed in electrolyte solution 2. LiCl04 (0.1 mol/I!) was used as the electrolyte of electrolyte solution 2, and acetonitrile was used as the solvent. A reference electrode 5 (Ag/AgC1) is connected between the counter electrode 3 and the conductive part 1a of the material 1 to be inspected.
A voltage of +1■ was applied for several seconds. After applying the voltage, the material to be tested 1 was pulled up from the electrolyte solution 2, its surface was washed with acetonitrile, and it was dried at 80° C. for 5 minutes.

絶縁部lb上のEC層は赤紫色のまま変色しなかったが
、導電部la上ではEC層が酸化を受けて無色透明に変
化した。変色後の導電部1aおよび絶縁部1bの可視吸
収スペクトル6および7を第3図に示す。
The EC layer on the insulating part lb remained reddish-purple and did not change color, but on the conductive part la the EC layer was oxidized and changed to colorless and transparent. FIG. 3 shows visible absorption spectra 6 and 7 of the conductive portion 1a and the insulating portion 1b after discoloration.

1隻拠l 実施例1と同様のITOガラス基板上にフォトレジスト
膜を用いて第4図に示すくし型電極を形成した被検査材
料1を作製した。被検査材料lの表面に導電部1aを形
成するくし型電極の線幅および線間隔はそれぞれ50μ
mとした。被検査材料1の表面に実施例1と同様にして
ポリ(0−トリメチルシリルフェニルアセチレン)から
なるEC層を形成して電気化学的に酸化変色させた。変
色後の表面を顕微鏡で写真撮影した。くし型電極の部分
(導電部1a)とガラス基板の部分(絶縁部1b)との
線幅比は1.05であり、顕微鏡写真から測定された変
色部分(無色)と未変色部分(赤紫色)の線幅比は1.
10であった。
1 Material to be inspected 1 was prepared by forming interdigitated electrodes shown in FIG. 4 on an ITO glass substrate similar to that in Example 1 using a photoresist film. The line width and line spacing of the comb-shaped electrodes forming the conductive portion 1a on the surface of the material to be inspected 1 are each 50 μm.
It was set as m. An EC layer made of poly(0-trimethylsilylphenylacetylene) was formed on the surface of the material to be inspected 1 in the same manner as in Example 1, and the material was electrochemically oxidized and discolored. The surface after discoloration was photographed using a microscope. The line width ratio between the comb-shaped electrode part (conductive part 1a) and the glass substrate part (insulating part 1b) is 1.05, and the discolored part (colorless) and the undiscolored part (reddish-purple) measured from the micrograph are 1.05. ) line width ratio is 1.
It was 10.

(発明の効果) 本発明の導通検査方法は、回路基板の導通検査(短絡部
分の検出も含む)あるいは導電性材料の欠陥部分検出等
に用いることができる。
(Effects of the Invention) The continuity testing method of the present invention can be used for continuity testing of circuit boards (including detection of short-circuited parts), defective part detection of conductive materials, and the like.

本発明の導通検査方法は、平面材料の導通検査に限らず
曲面等の任意形状に対する検査が可能であり、且つ小面
積の材料から大面積の材料まで任意の大きさの材料に適
用できる。また、金属的接触を伴なわないので、材料表
面を損傷させるおそれがない。さらに、光学的測定であ
るので、1μmオーダーあるいはそれ以下の微細部分に
対しても検査可能であり、回路パターン等の検査に極め
て有用な方法である。
The continuity testing method of the present invention is not limited to testing the continuity of flat materials, but can test arbitrary shapes such as curved surfaces, and can be applied to materials of any size from small area materials to large area materials. Furthermore, since there is no metallic contact, there is no risk of damaging the material surface. Furthermore, since it is an optical measurement, it is possible to inspect minute parts on the order of 1 μm or less, making it an extremely useful method for inspecting circuit patterns and the like.

4、 ゛  の   なtU 第1図は本発明の導通検査方法における電気化学的操作
工程を説明するための模式図、第2図(a)は本発明の
実施例で用いた被検査材料の平面図、第2図(b)はそ
の断面図、第3図はその被検査材料が電気化学的操作を
受けた後の材料表面の可視吸収スペクトル図、第4図(
a)は別の被検査材料の平面図、第4図(b)はその断
面図である。
4. Figure 1 is a schematic diagram for explaining the electrochemical operation step in the continuity testing method of the present invention, and Figure 2 (a) is a plane view of the material to be tested used in the example of the present invention. Figure 2(b) is a cross-sectional view, Figure 3 is a visible absorption spectrum diagram of the material surface after the material to be inspected has undergone electrochemical manipulation, and Figure 4 (
4(a) is a plan view of another material to be inspected, and FIG. 4(b) is a sectional view thereof.

1・・・被検査材、la・・・導電部、1b・・・絶縁
部、2・・・電解質溶液、3・・・対掻、4・・・ポテ
ンショスタ・ント、5・・・参照電極、6・・・導電部
の可視吸収スペクトル、7・・・絶縁部の可視吸収スペ
クトル。
DESCRIPTION OF SYMBOLS 1... Material to be inspected, la... Conductive part, 1b... Insulating part, 2... Electrolyte solution, 3... Opposite scratch, 4... Potentiostat, 5... Reference Electrode, 6... Visible absorption spectrum of conductive part, 7... Visible absorption spectrum of insulating part.

以上that's all

Claims (1)

【特許請求の範囲】 1、導電部を有する材料の表面にエレクトロクミック層
を形成する工程と、 該エレクトロクミック層に対して導電部を作用電極とし
て機能させる工程と、 を包含する導通検査方法。
[Claims] 1. A continuity test that includes the steps of: forming an electrochromic layer on the surface of a material having a conductive part; and making the conductive part function as a working electrode for the electrochromic layer. Method.
JP1083304A 1989-03-31 1989-03-31 Conduction inspecting method Pending JPH02262071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1083304A JPH02262071A (en) 1989-03-31 1989-03-31 Conduction inspecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1083304A JPH02262071A (en) 1989-03-31 1989-03-31 Conduction inspecting method

Publications (1)

Publication Number Publication Date
JPH02262071A true JPH02262071A (en) 1990-10-24

Family

ID=13798673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1083304A Pending JPH02262071A (en) 1989-03-31 1989-03-31 Conduction inspecting method

Country Status (1)

Country Link
JP (1) JPH02262071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526284A (en) * 2009-05-08 2012-10-25 コーニング インコーポレイテッド Non-contact testing of printed electronics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526284A (en) * 2009-05-08 2012-10-25 コーニング インコーポレイテッド Non-contact testing of printed electronics
US9360519B2 (en) 2009-05-08 2016-06-07 Corning Incorporated Non-contact testing of printed electronics

Similar Documents

Publication Publication Date Title
CA2056139C (en) Electrochromic thin film state-of-charge detector for on-the-cell application
KR100984999B1 (en) Matrix addressable electrochromic display device
JP3172167B2 (en) Electro-optical device and method of manufacturing electro-optical device
US4677373A (en) Sensor for detecting leaks of corrosive liquid
TW200304759A (en) Electrochromic display device
US20140146381A1 (en) Optically variable thin film with electrochemical capacitance property and use thereof
US7736489B2 (en) Process relating to polymers
Hara et al. Color-switchable glass and display devices fabricated by liquid processes with electrochromic nanoparticle “ink”
Kim et al. Contrast, switching speed, and durability of V2O5–TiO2 film-based electrochromic windows
JPH02262071A (en) Conduction inspecting method
WO2023202647A1 (en) Substance component inspection apparatus and method
JPH11337454A (en) Wiring pattern inspecting method and its device
EP0244259B1 (en) Method of detecting the presence or absence of defect of transparent circuit board having fine transparent electric conductive circuit
CN104569712B (en) Photoelectric detection system
Kaneko et al. Electro-deposited vanadium oxide as a counter-electrode for PProDOT-Me2 based electrochromic devices (ECDs)
JPS62287135A (en) Method for inspecting electrode pattern
CN218445114U (en) Online ellipsometry testing arrangement
CN116337784B (en) Photoelectric test system for electrochromic functional film
JPH0152690B2 (en)
JP2000214423A (en) Method and device for inspecting liquid crystal display device
JPH01122515A (en) Formation of electrode pattern
Dinh Electrochemical and structural studies of polyaniline film growth and degradation at different substrate surfaces
JPH0283582A (en) Inspection system for wiring board
Preston Intrinsically stretchable polymer based electrochromic devices for soft electronic displays
JPH04141982A (en) Manufacture of thin film electroluminescent panel