JPH02260466A - Semiconductor radiation detector - Google Patents

Semiconductor radiation detector

Info

Publication number
JPH02260466A
JPH02260466A JP1080347A JP8034789A JPH02260466A JP H02260466 A JPH02260466 A JP H02260466A JP 1080347 A JP1080347 A JP 1080347A JP 8034789 A JP8034789 A JP 8034789A JP H02260466 A JPH02260466 A JP H02260466A
Authority
JP
Japan
Prior art keywords
detectors
single crystal
radiation
semiconductor
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1080347A
Other languages
Japanese (ja)
Inventor
Yoshio Mito
三戸 美生
Masatoshi Kitagawa
雅俊 北川
Takashi Hirao
孝 平尾
Yoshitaka Yasuno
安野 僖剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1080347A priority Critical patent/JPH02260466A/en
Priority to US07/483,872 priority patent/US5070027A/en
Publication of JPH02260466A publication Critical patent/JPH02260466A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To integrate a detector part, to eliminate irregularity in sensitivities of detectors and to improve isolation measuring accuracy by forming a plurality of semiconductor detectors on the same single crystalline semiconductor sub strate. CONSTITUTION:Three independent radiation detectors each having a depleted layer extended in a single crystalline semiconductor substrate 1 under metal electrodes 3a-3c at the side of an amorphous semiconductor layer 2 as a radia tion sensing region are provided in one single crystalline semiconductor substrate 1. Thus, detecting parts can be integrated, the detectors can be reduced in size, and the detectors manufactured under the same conditions are employed. Accordingly, there is no irregularity in sensitivity among the detectors as detectors for a detecting apparatus for isolating and measuring radioactive rays 7, gamma, beta, n to improve isolation measuring accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、X線、γ線、β線、中性子線などの放射線を
検出する半導体放射線検出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor radiation detector that detects radiation such as X-rays, γ-rays, β-rays, and neutrons.

従来の技術 従来、複数の半導体放射線検出器を使って放射線検出装
置を構成する場合、独立した単品の半導体放射線検出器
を組合せていた。例えば、β線とγ線の混在基でβ線を
分離して測定するような放射線検出装置の場合、γ線に
対する感度のそろった2個の単品半導体放射線検出器を
使用して、1つの検出器はβ線とγi両方に感度を持つ
ように、もう1つの検出器はγ線にのみ感度を持つよう
にしておき、それらの感度の差し引きによってβ線のみ
の感度を求めるようにしていた。また、放射線の環境モ
ニタリングに使用するサーベイメータやエリアモニタの
場合、線量率(μSv/hr)を広範囲で精度良く測定
する仁めに放射線感度の異なる2個の単品半導体放射線
検出器で構成して、線量率の小さい場合は感度の大きな
検出器を使用して線量率の大きい場合は測定回路での飽
和現象を避けるために感度の小さな検出器を使用してい
た。
BACKGROUND ART Conventionally, when constructing a radiation detection apparatus using a plurality of semiconductor radiation detectors, independent single semiconductor radiation detectors were combined. For example, in the case of a radiation detection device that separates and measures β rays in a mixed group of β rays and γ rays, two single semiconductor radiation detectors with the same sensitivity to γ rays are used to perform one detection. One detector was sensitive to both β rays and γi, and the other detector was sensitive only to γ rays, and by subtracting these sensitivities, the sensitivity for only β rays was determined. In addition, in the case of survey meters and area monitors used for environmental monitoring of radiation, they are configured with two single semiconductor radiation detectors with different radiation sensitivities to accurately measure the dose rate (μSv/hr) over a wide range. When the dose rate was low, a detector with high sensitivity was used, and when the dose rate was high, a detector with low sensitivity was used to avoid saturation in the measurement circuit.

発明が解決しようとする課題 しかしながらこれらの場合は検出器が単品であるため、
検出装置が大型となることや、放射線を分離測定する検
出装置の場合検出器間の感度のバラツキが大きくなり分
離測定精度が悪いという問題点があった。
Problems to be Solved by the Invention However, in these cases, since the detector is a single item,
There are problems in that the detection device becomes large, and in the case of a detection device that separates and measures radiation, there is a large variation in sensitivity between detectors, resulting in poor separation measurement accuracy.

本発明は上記問題点を解決し得る半導体放射線検出器を
提供することを目的とする。
An object of the present invention is to provide a semiconductor radiation detector that can solve the above problems.

課題を解決するための手段 上記問題点を解決するため、本発明は1つの単結晶半導
体基板と、前記基板上に堆積された非晶質半導体層と、
前記非晶質半導体層上に形成された金属電極と、前記基
板の非晶質半導体層を堆積しない面に設けられた金属電
極とを含み、前記非晶質半導体層側の金属電極下の前記
単結晶半導体基板内に広がる空乏層を放射線有感領域と
する、少なくとも2個以上の独立した放射線検出器を前
記1つの単結晶半導体基板に備えた半導体放射線検出器
を提供する。
Means for Solving the Problems In order to solve the above problems, the present invention provides a single crystal semiconductor substrate, an amorphous semiconductor layer deposited on the substrate,
a metal electrode formed on the amorphous semiconductor layer; and a metal electrode provided on the surface of the substrate on which the amorphous semiconductor layer is not deposited; The present invention provides a semiconductor radiation detector comprising at least two or more independent radiation detectors on one single crystal semiconductor substrate, each of which has a radiation sensitive region as a depletion layer extending within the single crystal semiconductor substrate.

作用 本発明の半導体放射線検出器は複数の検出器を同一の単
結晶半導体基板に形成するため検出部の集積化ができ、
検出装置の小型化ができる。また、同じ条件で製作され
た検出器を使用するため放射線を分離測定する検出装置
用の検出器としては検出器間の感度のバラツキがな(分
離測定精度を向上できる。
Function: Since the semiconductor radiation detector of the present invention has a plurality of detectors formed on the same single crystal semiconductor substrate, the detection parts can be integrated.
The detection device can be made smaller. In addition, since detectors manufactured under the same conditions are used, there is no variation in sensitivity between detectors (separation measurement accuracy can be improved) as a detector for a detection device that separates and measures radiation.

実施例 以下図面に基づき、本発明の詳細な説明する。Example The present invention will be described in detail below based on the drawings.

実施例1 第1図は、γ(X)線φββ線中中性子線分離測定型半
導体放射線検出器の断面構成図を示すものである。まず
、単結晶半導体基板としてシリコン単結晶基板(P型、
lOkΩam) lを用いてその上部全面に非晶質シリ
コンカーバイト層2を平行平板型プラズマCVD装置に
よって以下の条件で形成する。
Embodiment 1 FIG. 1 shows a cross-sectional configuration diagram of a semiconductor radiation detector of neutron beam separation measurement type in γ(X) rays, φββ rays, and neutron beams. First, a silicon single crystal substrate (P type,
An amorphous silicon carbide layer 2 is formed on the entire upper surface of the amorphous silicon carbide layer 2 using a parallel plate type plasma CVD apparatus under the following conditions.

基板温度  200℃ 使用ガス  モノシラン(100%)、メタン(100
%)ガス流量  モノシラン 70SCCMメタン  
 30SCCM 0.8Torr’ 50n− ガス圧力 膜   厚 RF電力  12W 次に、非晶質シリコンカーバイト層2を堆積した面上に
3個の同面積のアルミニウム電極3 a。
Substrate temperature 200℃ Gas used Monosilane (100%), Methane (100%)
%) Gas flow rate Monosilane 70SCCM Methane
30SCCM 0.8Torr' 50n- Gas pressure film thickness RF power 12W Next, on the surface on which the amorphous silicon carbide layer 2 was deposited, three aluminum electrodes 3a with the same area were placed.

3 b+  3 cをメタルマスクを使用して抵抗加熱
蒸着装置によ、り約300n鵬形成する。また、シリコ
ン単結晶基板1の非晶質シリコンカーバイト層を堆積し
ない面の全面にアルミニウム電極4を抵抗加熱蒸着装置
により約300nm形成する。更に、アルミニウム電極
3c上にリード線取り出し用の部分を残してI@Bを高
濃度に含む非晶質BN層5を平行平板型プラズマCVD
装置を用いて以下の条件で形成する。
3B+3C is formed in a thickness of about 300 nm using a resistance heating evaporation apparatus using a metal mask. Further, an aluminum electrode 4 of about 300 nm is formed on the entire surface of the silicon single crystal substrate 1 on which the amorphous silicon carbide layer is not deposited using a resistance heating evaporation device. Furthermore, an amorphous BN layer 5 containing a high concentration of I@B is formed by parallel plate plasma CVD, leaving a part for lead wire extraction on the aluminum electrode 3c.
It is formed using an apparatus under the following conditions.

基板温度  300℃以下 使用ガス  BgHa(”870%以上、水素希釈)ガ
ス圧力  0.8Torr 膜   厚   500nm RF電力  50W その後、パッケージのステム6a上に銀ペーストで検出
器をマウントし3個の検出器からのそれぞれの信号R+
、  Ri−Riを後段のプリアンプ回路へ送るために
リード線の取り付けを行なう・ 最後に、パッケージの
フタ8b(Fes  約200μm)を取り付ける。こ
の時、アルミニウム電極3a上の部分のみ遮光のために
30μm程度のアルミニウム蒸着をしたポリエチレンフ
ィルム7を張った構造とする。これらの半導体検出器に
逆バイアス電圧を同電圧印加しγ(X)線・β線番中性
子線(n)の混在基で使用した時のそれぞれの放射線に
よって発生する信号をSγ、Sβ、snとするとR1゜
R2,Riとの間に R、= Sγ+Sβ  ・・・・・・(1)Re =S
γ     ・・・・・・(2)R3=Sγ+Sn  
・・・・・・(3)の関係がある。即ち、飛程の長いγ
(X)線に対してはそれぞれの半導体検出器で検出され
単結晶半導体基板内に広がる放射線有感領域である空乏
層の大きさが等しいため感度が等しい。ところが、飛程
の短いβ線は薄い入射窓下の検出器でのみ検出される。
Substrate temperature: 300°C or less Gas used: BgHa (over 870%, diluted with hydrogen) Gas pressure: 0.8 Torr Film thickness: 500 nm RF power: 50 W After that, the detector was mounted on the stem 6a of the package with silver paste, and the three detectors were each signal R+
, Attach the lead wire to send Ri-Ri to the subsequent preamplifier circuit.Finally, attach the package lid 8b (Fes approximately 200 μm). At this time, a polyethylene film 7 on which aluminum is vapor-deposited to a thickness of about 30 μm is stretched to shield only the portion above the aluminum electrode 3a from light. When the same reverse bias voltage is applied to these semiconductor detectors and used in a mixed group of γ (X) rays and β neutron beams (n), the signals generated by each radiation are expressed as Sγ, Sβ, and sn. Then, between R1゜R2 and Ri, R = Sγ + Sβ ... (1) Re = S
γ ・・・・・・(2) R3=Sγ+Sn
...There is the relationship (3). In other words, γ with a long range
For (X) rays, the sensitivities are equal because the sizes of the depletion layers, which are radiation sensitive regions detected by the respective semiconductor detectors and spread within the single crystal semiconductor substrate, are equal. However, β-rays, which have a short range, can only be detected by a detector below the thin entrance window.

また、中性子線はBN層を被膜された検出器でのみ”B
(n+  α)反応によって放出されたα線が検出され
る。
In addition, neutron beams can only be detected by detectors coated with a BN layer.
The α rays emitted by the (n+α) reaction are detected.

(1)〜(3)式からγ(X)線・β線・中性子線の信
号は、 Sγ”R2・・・・・・(4) Sβ”Rl−Ra    ・・・・・・(5)S n 
=Rs−Re    ”” (8)となる。
From equations (1) to (3), the signals of γ(X) rays, β rays, and neutron rays are: Sγ"R2...(4) Sβ"Rl-Ra...(5) Sn
=Rs-Re"" (8).

3個の半導体検出器が同一の単結晶半導体基板に形成で
きるため検出部の集積化ができ検出装置の小型化ができ
る。また、3個の半導体放射線検出器はγ(X)線に対
する感度が揃っているため、検出装置のγ(X)線・β
線・中性子線の分離測定精度が向上する。
Since three semiconductor detectors can be formed on the same single crystal semiconductor substrate, the detection section can be integrated and the detection device can be downsized. In addition, since the three semiconductor radiation detectors have the same sensitivity to γ(X) rays, the detection device's γ(X) rays and β
Improves the accuracy of separating and measuring radiation and neutron beams.

なお、単結晶半導体基板と□してテルル化カドミウムや
ガリウムヒ素を使用してもよく、非晶質半導体層として
非晶質シリコンを使用してもよい。
Note that cadmium telluride or gallium arsenide may be used as the single crystal semiconductor substrate, and amorphous silicon may be used as the amorphous semiconductor layer.

実施例2 第2図は、γ(X)線用サーベイメータに使用する半導
体放射線検出器の斜視構成図を示すものである。まず、
単結晶半導体基板としてシリコン単結晶基板(P型、1
OkOcs) 8を用いてその上部全面に非晶質シリコ
ン層9を平行平板型プラズマCVD装置によって以下の
条件で形成する。
Embodiment 2 FIG. 2 shows a perspective configuration diagram of a semiconductor radiation detector used in a γ(X)-ray survey meter. first,
A silicon single crystal substrate (P type, 1
Using OkOcs) 8, an amorphous silicon layer 9 is formed on the entire upper surface thereof using a parallel plate plasma CVD apparatus under the following conditions.

基板温度  200”C 使用ガス  モノシラン(100%) ガス流量  11005CC ガス圧力  0.8Torr 膜   厚   夏μm RF電力  12W 次に、非晶質シリコン層9を堆積した面上に2個の異な
る面積のアルミニウム電極10a (小面積)、10b
(大面積)をメタルマスクを使用して抵抗加熱蒸着装置
により約300om形成する。また、非晶質シリコン層
を堆積しない面の全面にアルミニウム電極11を抵抗加
熱蒸着装置により約300I1m形成する。2個の検出
器からのそれぞれの信号R□、R1,は線量率の大小に
よって使い分ける。
Substrate temperature 200”C Gas used Monosilane (100%) Gas flow rate 11005CC Gas pressure 0.8 Torr Film thickness Summer μm RF power 12W Next, two aluminum electrodes with different areas were placed on the surface on which the amorphous silicon layer 9 was deposited. 10a (small area), 10b
(large area) is formed with a thickness of about 300 ohm using a resistance heating evaporation device using a metal mask. Further, an aluminum electrode 11 having a thickness of about 300 I1 is formed on the entire surface on which the amorphous silicon layer is not deposited using a resistance heating vapor deposition apparatus. The respective signals R□ and R1 from the two detectors are used depending on the magnitude of the dose rate.

即ち、γ(X)線の線量率の高い場合はR+ +の信号
を採用し、線量率の低い場合は感度を向上し測定精度を
向上させるためにR12の信号を採用する。
That is, when the dose rate of γ(X) rays is high, the R+ signal is used, and when the dose rate is low, the R12 signal is used to improve sensitivity and measurement accuracy.

この半導体放射線検出器によってγ(X)線の線量率が
広範囲で高精度に測定できるサーベイメータが小型化で
きる。
With this semiconductor radiation detector, it is possible to miniaturize a survey meter that can measure the dose rate of γ(X) rays over a wide range with high precision.

なお、単結晶半導体基板としてテルル化カドミウムやガ
リウムヒ素を使用してもよく、非晶質半導体層として非
晶質シリコンカーバイトを使用してもよい。
Note that cadmium telluride or gallium arsenide may be used as the single crystal semiconductor substrate, and amorphous silicon carbide may be used as the amorphous semiconductor layer.

発明の効果 上記本発明によれば、複数の半導体検出器が同一の単結
晶半導体基板に形成できるため検出部の集積化ができ、
同じ条件で製作できるため放射線を分離測定する検出装
置用の検出器としては検出器間の感度のバラツキがなく
分離測定精度を向上でき実用上極めて有効である。
Effects of the Invention According to the present invention, since a plurality of semiconductor detectors can be formed on the same single crystal semiconductor substrate, the detection section can be integrated.
Since it can be manufactured under the same conditions, it is extremely effective in practice as a detector for a detection device that separates and measures radiation, as there is no variation in sensitivity between detectors, improving the accuracy of separation and measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1のγ(X)線・β線e中性子
線の分離測定型半導体放射線検出器の断面構成図、第2
図は実施例2のγ(X)線用サーベイメータに使用する
半導体放射線検出器の斜視構成図である。 1.8・・・・シリコン単結晶基板、2・・・・非晶質
シリコンカーバイト層、 3a+3b+3c+4+10
a、10b、11・・・・アルミニウム!極、5・・・
・BNm、8 a・・・・パッケージ(ステム)、8b
・・・・パッケージ(フタ)、7・・・・ポリエチレン
フィルム、9・・・・非晶質シリコン層。
FIG. 1 is a cross-sectional configuration diagram of a semiconductor radiation detector that separately measures γ (X) rays, β rays, and neutron beams according to Embodiment 1 of the present invention, and FIG.
The figure is a perspective configuration diagram of a semiconductor radiation detector used in the γ(X)-ray survey meter of Example 2. 1.8...Silicon single crystal substrate, 2...Amorphous silicon carbide layer, 3a+3b+3c+4+10
a, 10b, 11...aluminum! Extreme, 5...
・BNm, 8a...Package (stem), 8b
...Package (lid), 7..Polyethylene film, 9..Amorphous silicon layer.

Claims (6)

【特許請求の範囲】[Claims] (1)1つの単結晶半導体基板と、前記基板上に堆積さ
れた非晶質半導体層と、前記非晶質半導体層上に形成さ
れた金属電極と、前記基板の非晶質半導体層を堆積しな
い面に設けられた金属電極とを含み、前記非晶質半導体
層側の金属電極下の前記単結晶半導体基板内に広がる空
乏層を放射線有感領域とする、少なくとも2個以上の独
立した放射線検出器を前記1つの単結晶半導体基板に備
えた半導体放射線検出器。
(1) One single crystal semiconductor substrate, an amorphous semiconductor layer deposited on the substrate, a metal electrode formed on the amorphous semiconductor layer, and the amorphous semiconductor layer of the substrate at least two or more independent radiation sources, including a metal electrode provided on a non-crystalline surface, and whose radiation-sensitive region is a depletion layer that spreads within the single crystal semiconductor substrate under the metal electrode on the amorphous semiconductor layer side. A semiconductor radiation detector comprising a detector on the one single crystal semiconductor substrate.
(2)単結晶半導体基板としてシリコンを使用し、非晶
質半導体層として非晶質シリコンまたは非晶質シリコン
カーバイトを使用することを特徴とする請求項1に記載
の半導体放射線検出器。
(2) The semiconductor radiation detector according to claim 1, wherein silicon is used as the single crystal semiconductor substrate, and amorphous silicon or amorphous silicon carbide is used as the amorphous semiconductor layer.
(3)単結晶半導体基板としてテルル化カドミウムを使
用し、非晶質半導体層として非晶質シリコンまたは非晶
質シリコンカーバイトを使用することを特徴とする請求
項1に記載の半導体放射線検出器。
(3) The semiconductor radiation detector according to claim 1, wherein cadmium telluride is used as the single crystal semiconductor substrate, and amorphous silicon or amorphous silicon carbide is used as the amorphous semiconductor layer. .
(4)単結晶半導体基板としてガリウムヒ素を使用し、
非晶質半導体層として非晶質シリコンまたは非晶質シリ
コンカーバイトを使用することを特徴とする請求項1に
記載の半導体放射線検出器。
(4) Using gallium arsenide as a single crystal semiconductor substrate,
2. The semiconductor radiation detector according to claim 1, wherein amorphous silicon or amorphous silicon carbide is used as the amorphous semiconductor layer.
(5)検出目的とする放射線線種が異なる少なく、とも
2個以上の独立した放射線検出器を1つの単結晶半導体
基板に備えた請求項1から4のいずれかに記載の半導体
放射線検出器。
(5) The semiconductor radiation detector according to any one of claims 1 to 4, wherein one single crystal semiconductor substrate is provided with at least two or more independent radiation detectors that detect different types of radiation rays.
(6)放射線有感領域の大きさの異なる少なくとも2個
以上の独立した放射線検出器を1つの単結晶半導体基板
に備えた請求項1から4のいずれかに記載の半導体放射
線検出器。
(6) The semiconductor radiation detector according to any one of claims 1 to 4, wherein one single crystal semiconductor substrate is provided with at least two or more independent radiation detectors having different sizes of radiation-sensitive regions.
JP1080347A 1989-02-23 1989-03-30 Semiconductor radiation detector Pending JPH02260466A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1080347A JPH02260466A (en) 1989-03-30 1989-03-30 Semiconductor radiation detector
US07/483,872 US5070027A (en) 1989-02-23 1990-02-23 Method of forming a heterostructure diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1080347A JPH02260466A (en) 1989-03-30 1989-03-30 Semiconductor radiation detector

Publications (1)

Publication Number Publication Date
JPH02260466A true JPH02260466A (en) 1990-10-23

Family

ID=13715723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1080347A Pending JPH02260466A (en) 1989-02-23 1989-03-30 Semiconductor radiation detector

Country Status (1)

Country Link
JP (1) JPH02260466A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208575A (en) * 1990-12-03 1992-07-30 Matsushita Electric Ind Co Ltd Hetero junction diode and radiation detector using the same
JP2007059551A (en) * 2005-08-23 2007-03-08 Fuji Electric Holdings Co Ltd Radiation detecting device
JP2016539324A (en) * 2013-12-20 2016-12-15 コリア アトミック エナジー リサーチ インスティテュートKorea Atomic Energy Research Institute Heterogeneous radiation measuring sensor and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893292A (en) * 1981-11-30 1983-06-02 Toshiba Corp Manufacture of semiconductor radiation detector
JPS59227168A (en) * 1983-06-08 1984-12-20 Fuji Electric Corp Res & Dev Ltd Semiconductor radioactive ray detector
JPS62293681A (en) * 1986-06-12 1987-12-21 Fuji Electric Co Ltd Semiconductor radiation detecting element
JPS6316675A (en) * 1986-07-09 1988-01-23 Matsushita Electric Ind Co Ltd Radiation detector
JPS6360978B2 (en) * 1981-07-02 1988-11-28

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360978B2 (en) * 1981-07-02 1988-11-28
JPS5893292A (en) * 1981-11-30 1983-06-02 Toshiba Corp Manufacture of semiconductor radiation detector
JPS59227168A (en) * 1983-06-08 1984-12-20 Fuji Electric Corp Res & Dev Ltd Semiconductor radioactive ray detector
JPS62293681A (en) * 1986-06-12 1987-12-21 Fuji Electric Co Ltd Semiconductor radiation detecting element
JPS6316675A (en) * 1986-07-09 1988-01-23 Matsushita Electric Ind Co Ltd Radiation detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208575A (en) * 1990-12-03 1992-07-30 Matsushita Electric Ind Co Ltd Hetero junction diode and radiation detector using the same
JP2007059551A (en) * 2005-08-23 2007-03-08 Fuji Electric Holdings Co Ltd Radiation detecting device
JP4678259B2 (en) * 2005-08-23 2011-04-27 富士電機ホールディングス株式会社 Radiation detection device
JP2016539324A (en) * 2013-12-20 2016-12-15 コリア アトミック エナジー リサーチ インスティテュートKorea Atomic Energy Research Institute Heterogeneous radiation measuring sensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6771730B1 (en) Boron-carbide solid state neutron detector and method of using the same
JPH053337A (en) Semiconductor radioactive detecting device, semiconductor radioactive detector, and its manufacture
Miller et al. Semiconductor particle detectors
US20170125625A1 (en) Particle detector and method of making the same
US3129329A (en) Fast neutron spectrometer using spaced semiconductors for measuring total energy of neutrons captured
WO1997041452A1 (en) Scintillator apparatus
Ahmad et al. Nuclear spectroscopy with Si PIN diode detectors at room temperature
Schieber et al. Novel mercuric iodide polycrystalline nuclear particle counters
JPH02260466A (en) Semiconductor radiation detector
US6512232B2 (en) Method and apparatus for improving the sensitivity of a gamma camera
CN112054087B (en) Graphene semiconductor radiation detection device and preparation method thereof
Gurov et al. Study of characteristics of CdZnTe detector
Agnetta et al. GREX/COVER_PLASTEX: an experiment to analyze the space-time structure of extensive air showers produced by primary cosmic rays of 1015 eV
O'Neill et al. Compton recoil electron tracking with silicon strip detectors
JPS6312179A (en) Radiation detector
WO2000033106A1 (en) Boron-carbide solid state neutron detector and method of using same
JPH01253683A (en) Neutron detector and neutron detector array
JP2005300245A (en) Radiation measuring instrument
JP2001255379A (en) Neutron detector
JPH0447993B2 (en)
JPS59114875A (en) Semiconductor radiation detector
Tamburrino et al. Thermal neutron detection by means of Timepix3
JPH07325157A (en) Semiconductor radiation detector
Adamiec et al. Response of a silicon PIN photodiode to an Am-Be neutron source
Dusi et al. Position-sensitive semiconductor detectors for 0.5-MeV gamma rays