JPH0225975B2 - - Google Patents

Info

Publication number
JPH0225975B2
JPH0225975B2 JP59096044A JP9604484A JPH0225975B2 JP H0225975 B2 JPH0225975 B2 JP H0225975B2 JP 59096044 A JP59096044 A JP 59096044A JP 9604484 A JP9604484 A JP 9604484A JP H0225975 B2 JPH0225975 B2 JP H0225975B2
Authority
JP
Japan
Prior art keywords
steel
strength
toughness
resistance
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59096044A
Other languages
Japanese (ja)
Other versions
JPS60238452A (en
Inventor
Shingo Sato
Takuichi Imanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9604484A priority Critical patent/JPS60238452A/en
Publication of JPS60238452A publication Critical patent/JPS60238452A/en
Publication of JPH0225975B2 publication Critical patent/JPH0225975B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 石油精製プラント、石油化学プラント、石炭液
化プラントなどの高温、高圧の水素雰囲気中で操
業される装置用材料の開発成果に関してこの明細
書で述べる技術内容は、とくにじん性、耐SR割
れ性及び耐水素侵食特性を向上した圧力容器用
Cr−Mo鋼を提案するところにある。 (背景技術) 高温、高圧の水素雰囲気中で操業される上記の
プラントの装置用材料としてCr−Mo鋼が多用さ
れている。 これらのプラントにおいては効率化のために操
業条件を高温、高圧化するとともに装置を大型化
する傾向にあり、高温強度の優れたCr−Mo鋼が
必要になつてきている。 (従来技術) 高温強度を高めるためには析出強化型元素の添
加が有効で、たとえば特開昭51−69422号公報に
はV.Nbの添加、また特開昭55−82752号公報に
はV添加が示されている。 またこれらの元素は、水素との反応に対して安
定な炭化物を形成するために高温、高圧の水素中
で生じる材質劣化すなわち水素侵食に対する抵抗
性も高める効果がある。 しかしV.Nbなどの元素は炭窒化物を形成し析
出強化を呈するが故にじん性や溶接性を劣化す
る。したがつて単にこれらの元素を添加する従来
の方法では強度、じん性、溶接性、耐水素侵食特
性などの総合特性のレベルでみるとまだ改善の余
地があり、他の特性に悪影響を及ぼすことなく対
象とした特性を改善することにより安定して総合
特性を向上することが必要であつた。 (発想の端緒及び発明目的) 以上のような欠点を解決するため、とくに低Si
−V−Nbをベースとした高強度Cr−Mo鋼にい
てSを著しく減少することによりじん性、耐SR
割れ特性及び耐水素侵食特性を著しく改善し得る
ことが見出された。この知見に基いて上記の諸特
性を綜合的に向上させることがこの発明の目的で
ある。 (発明の構成) この発明は C:0.08〜0.18wt% Si:0.10wt%未満 Mn:0.05〜1.0wt% Cr:2.0〜5.0wt% Mo:0.8〜1.5wt% V:0.20〜0.50wt%及び Nb:0.005〜0.050wt%を含み S:0.0010wt%未満であつて残部はFeと不純
物よりなるじん性、耐SR割れ特性及び耐水素侵
食特性に優れる、圧力容器用Cr−Mo鋼である。 まずこの発明で高強度Cr−Mo鋼の成分範囲を
限定する理由は次のとおりである。 C:強度確保のために最低0.08%は必要である
が、じん性、溶接性を劣化させるので0.18%以下
とする。 Si:引張強度を高めるがクリープ破断強度、耐
焼もどしぜい化特性、耐水素侵食特性を劣化させ
るので0.10%未満とした。 Mn:焼入性を高め強度を高めるために最低
0.05%は必要であるが、焼もどしぜい化感受性を
高めるので1.0%以下とした。 Cr:強度、耐酸化性、耐水素侵食特性を改善
するために最低2.0%は必要であるが、クリープ
破断強度を低下するので5.0%以下とした。 Mo:強度を高めるために最低0.8%は必要であ
るが、溶接性やじん性を劣化するので1.5%以下
とした。 V:高温強度を高めるために最低0.20%は必要
であるが、じん性や溶接性を劣化するので0.50%
以下とした。 Nb:SR割れ感受性を高めることなく高温強度
を増加するために0.005〜0.050%の添加が必要で
ある。0.005%未満の場合は上記の効果が得られ
ず、0.050%をこえて添加しても高温強度の増加
はそれほど期待できず、じん性とくに、HAZの
じん性が劣化する。また大型鋼塊の製作時に巨大
なNbの炭窒化物が晶出してじん性を劣化させる。 上記のV及びNbにつき、クリープ破断強度の
低下しやすいCrを多く含む鋼に対しては、より
多量に添加するのが好ましい。 S:従来からSを減少するとじん性が改善され
ることは知られている。しかし従来Sについては
0.001%程度までの調査例しかなく更にSを減少
した時にどのような効果が現われるか不明であつ
た。 この点に関してV.Nbを含む高強度Cr−Mo鋼
を用いて調査した結果、Sを0.0010%未満に減少
することにより、じん性を著しく改善できるとと
もに高強度鋼でとくに問題となるSR割れを抑制
すること及び耐水素侵食特性も改善できることが
判つたのである。 この発明の圧力容器用Cr−Mo鋼は次の段階を
経て製造する。 綱塊 ↓ 熱間圧延あるいは熱間鍛造 ↓ 焼ならし、焼ならし+焼もどし、焼入れ+焼も
どし、焼ならし+焼入れ+焼もどし、あるいは焼
ならし+焼もどし+焼入れ+焼もどし この発明の鋼は鋼塊を熱間圧延あるいは熱間鍛
造あるいは両者により加工した後、必要に応じて
焼ならしや焼もどしなどを含む前処理を施し、最
終的に焼ならし、焼ならし−焼もどし、焼入れ−
焼もどしなどの調質処理を行う通常の圧力容器用
鋼材に施される製造工程を経た場合にすぐれた特
性を有する。 次にこの発明の実施例をあげて従来鋼と性能を
対比する。 (実施例) 表1に示す供試鋼に下記条件で試験を行つた後
の結果を表1に併記した。
(Technical field) The technical content described in this specification regarding the development results of materials for equipment operated in high temperature, high pressure hydrogen atmospheres such as oil refining plants, petrochemical plants, and coal liquefaction plants is particularly focused on toughness and SR resistance. For pressure vessels with improved crackability and hydrogen corrosion resistance.
This is where we propose Cr-Mo steel. (Background Art) Cr-Mo steel is often used as a material for equipment in the above-mentioned plants operated in a high-temperature, high-pressure hydrogen atmosphere. In these plants, in order to improve efficiency, there is a trend to increase operating conditions at higher temperatures and pressures, and to increase the size of equipment, and Cr-Mo steel with excellent high-temperature strength is becoming necessary. (Prior art) In order to increase high-temperature strength, it is effective to add precipitation-strengthening elements; for example, in JP-A-51-69422, V.Nb is added, and in JP-A-55-82752, V.Nb is added. Addition is indicated. Furthermore, these elements form carbides that are stable against reactions with hydrogen, so they have the effect of increasing resistance to material deterioration, that is, hydrogen attack, that occurs in high temperature, high pressure hydrogen. However, elements such as V.Nb form carbonitrides and exhibit precipitation strengthening, which deteriorates toughness and weldability. Therefore, with the conventional method of simply adding these elements, there is still room for improvement in overall properties such as strength, toughness, weldability, and hydrogen corrosion resistance, and other properties may be adversely affected. It was necessary to stably improve the overall characteristics by improving the targeted characteristics. (The origin of the idea and the purpose of the invention) In order to solve the above-mentioned drawbacks, we developed
-V-Nb-based high-strength Cr-Mo steel with significantly reduced S content to improve toughness and SR resistance.
It has been found that cracking properties and hydrogen attack resistance properties can be significantly improved. Based on this knowledge, it is an object of the present invention to comprehensively improve the above-mentioned properties. (Structure of the Invention) This invention includes C: 0.08 to 0.18wt% Si: Less than 0.10wt% Mn: 0.05 to 1.0wt% Cr: 2.0 to 5.0wt% Mo: 0.8 to 1.5wt% V: 0.20 to 0.50wt% and It is a Cr-Mo steel for pressure vessels that contains Nb: 0.005 to 0.050wt% and S: less than 0.0010wt%, with the balance being Fe and impurities, and has excellent toughness, SR cracking resistance, and hydrogen corrosion resistance. First, the reason why the composition range of the high-strength Cr-Mo steel is limited in this invention is as follows. C: A minimum content of 0.08% is necessary to ensure strength, but it should be kept at 0.18% or less as it deteriorates toughness and weldability. Si: Although it increases tensile strength, it degrades creep rupture strength, tempering embrittlement resistance, and hydrogen corrosion resistance, so it was set to less than 0.10%. Mn: Minimum to improve hardenability and increase strength
Although 0.05% is necessary, it increases the susceptibility to temper brittleness, so it is set to 1.0% or less. Cr: A minimum content of 2.0% is necessary to improve strength, oxidation resistance, and hydrogen corrosion resistance, but it is set to 5.0% or less because it reduces creep rupture strength. Mo: A minimum of 0.8% is necessary to increase strength, but it is set to 1.5% or less because it deteriorates weldability and toughness. V: A minimum of 0.20% is necessary to increase high temperature strength, but 0.50% is required as it deteriorates toughness and weldability.
The following was made. Nb: 0.005-0.050% addition is required to increase high temperature strength without increasing SR cracking susceptibility. If it is less than 0.005%, the above effects cannot be obtained, and if it is added in excess of 0.050%, no significant increase in high temperature strength can be expected, and the toughness, especially the HAZ toughness, deteriorates. Also, during the production of large steel ingots, huge Nb carbonitrides crystallize and deteriorate toughness. It is preferable to add a larger amount of V and Nb to steel containing a large amount of Cr, which tends to reduce creep rupture strength. S: It has been known that reducing S content improves toughness. However, regarding conventional S
There have only been cases of investigation of S content down to about 0.001%, and it was unclear what kind of effect would appear if S was further reduced. As a result of investigating this point using high-strength Cr-Mo steel containing V.Nb, it was found that reducing S to less than 0.0010% can significantly improve toughness and eliminate SR cracking, which is a particular problem with high-strength steel. It has been found that hydrogen corrosion resistance and hydrogen corrosion resistance can also be improved. The Cr-Mo steel for pressure vessels of this invention is manufactured through the following steps. Rope lump ↓ Hot rolling or hot forging ↓ Normalizing, normalizing + tempering, quenching + tempering, normalizing + quenching + tempering, or normalizing + tempering + quenching + tempering This invention After processing the steel ingot by hot rolling, hot forging, or both, pretreatment including normalizing and tempering is performed as necessary, and the final process is normalizing, normalizing, and tempering. Reconstitution, quenching
It has excellent properties when subjected to the manufacturing process normally applied to steel materials for pressure vessels, which involves tempering and other refining treatments. Next, examples of the present invention will be given and performance will be compared with conventional steel. (Example) Table 1 also shows the results of testing the test steel shown in Table 1 under the following conditions.

【表】 ↓
695℃×20hSR

SR割れ試験(断面割れ率)
[Table] ↓
695℃×20hSR

SR cracking test (section cracking rate)

【表】【table】

【表】 発明鋼は高い強度を有する上にじん性、耐SR
割れ特性及び耐水素侵食特性、全てに優れてい
る。 (発明の効果) この発明によれば圧力容器用Cr−Mo鋼のじん
性、耐SR割れ性及び、耐水素侵食特性の著しい
向上がもたらされる。
[Table] Invented steel has high strength, toughness, and SR resistance.
Excellent in both cracking and hydrogen corrosion resistance. (Effects of the Invention) According to the present invention, the toughness, SR cracking resistance, and hydrogen corrosion resistance of Cr-Mo steel for pressure vessels are significantly improved.

Claims (1)

【特許請求の範囲】 1 C:0.08〜0.18wt% Si:0.10wt%未満 Mn:0.05〜1.0wt% Cr:2.0〜5.0wt% Mo:0.8〜1.5wt% V:0.20〜0.50wt%及び Nb:0.005〜0.050wt%を含み S:0.0010wt%未満であつて、残部はFeと不
純物よりなるじん性、耐SR割れ特性及び耐水素
侵食特性にすぐれる、圧力容器用Cr−Mo鋼。
[Claims] 1 C: 0.08 to 0.18 wt% Si: Less than 0.10 wt% Mn: 0.05 to 1.0 wt% Cr: 2.0 to 5.0 wt% Mo: 0.8 to 1.5 wt% V: 0.20 to 0.50 wt% and Nb A Cr-Mo steel for pressure vessels, containing 0.005 to 0.050 wt% S: less than 0.0010 wt%, with the balance being Fe and impurities, which has excellent toughness, SR cracking resistance, and hydrogen corrosion resistance.
JP9604484A 1984-05-14 1984-05-14 Cr-mo steel for pressure vessel Granted JPS60238452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9604484A JPS60238452A (en) 1984-05-14 1984-05-14 Cr-mo steel for pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9604484A JPS60238452A (en) 1984-05-14 1984-05-14 Cr-mo steel for pressure vessel

Publications (2)

Publication Number Publication Date
JPS60238452A JPS60238452A (en) 1985-11-27
JPH0225975B2 true JPH0225975B2 (en) 1990-06-06

Family

ID=14154477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9604484A Granted JPS60238452A (en) 1984-05-14 1984-05-14 Cr-mo steel for pressure vessel

Country Status (1)

Country Link
JP (1) JPS60238452A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169422A (en) * 1974-12-12 1976-06-16 Nippon Steel Corp Cr mo keiteigokinko
JPS5732716A (en) * 1980-08-04 1982-02-22 Daido Steel Co Ltd Treating method for waste gas
JPS5741326A (en) * 1980-08-27 1982-03-08 Kawasaki Steel Corp Unidirectional silicon steel plate of extremely low iron loss and its production
JPS60184665A (en) * 1984-02-29 1985-09-20 Kobe Steel Ltd Low-alloy steel for pressure vessel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169422A (en) * 1974-12-12 1976-06-16 Nippon Steel Corp Cr mo keiteigokinko
JPS5732716A (en) * 1980-08-04 1982-02-22 Daido Steel Co Ltd Treating method for waste gas
JPS5741326A (en) * 1980-08-27 1982-03-08 Kawasaki Steel Corp Unidirectional silicon steel plate of extremely low iron loss and its production
JPS60184665A (en) * 1984-02-29 1985-09-20 Kobe Steel Ltd Low-alloy steel for pressure vessel

Also Published As

Publication number Publication date
JPS60238452A (en) 1985-11-27

Similar Documents

Publication Publication Date Title
JP2023515115A (en) Steel for mining chain and method for producing same
CN111270132B (en) Stainless steel for pressure-bearing material of petroleum and natural gas drilling equipment and preparation method thereof
JPS63230851A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
US20230167522A1 (en) High Strength, High-Temperature Corrosion Resistant Martensitic Stainless Steel and Manufacturing Method Therefor
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
CN111961976B (en) Steel, preparation method and application thereof
CN111593268B (en) Heat-resistant high-strength spring steel and production method thereof
JP2861024B2 (en) Martensitic stainless steel for oil well and its production method
JPS6318038A (en) Low-alloy steel excellent in creep resistance and hydrogen attack-resisting characteristic
US2826496A (en) Alloy steel
US4049430A (en) Precipitation hardenable stainless steel
US3492116A (en) Heat treatable alloy steels
US4400225A (en) Cr-Mo Steel for use as very thick plates of 75 mm or more for oil refinery, coal liquefaction and coal gasification equipment
US3326675A (en) Alloy steels
JP3887461B2 (en) Steel for non-tempered bolts
JPH0225975B2 (en)
JPH0247526B2 (en)
JPS6383248A (en) High-ni alloy for pipe of oil well having superior resistance to stress corrosion cracking and its manufacture
CN114086083A (en) 1100 MPa-grade sulfur-resistant high-pressure gas cylinder steel, high-pressure gas cylinder and manufacturing method thereof
JPH0225974B2 (en)
JPS61186419A (en) Production of drive shaft
CN114717472B (en) Low-hardness alloy seamless steel pipe and heat treatment method
US3453153A (en) Process for improving fatigue life of metal
KR900006688B1 (en) Method of steel for hot rolled forging
JPS63206449A (en) Low-carbon steel for cold forging