JPH02258969A - Production of substrate having hydrophobic film - Google Patents

Production of substrate having hydrophobic film

Info

Publication number
JPH02258969A
JPH02258969A JP1077814A JP7781489A JPH02258969A JP H02258969 A JPH02258969 A JP H02258969A JP 1077814 A JP1077814 A JP 1077814A JP 7781489 A JP7781489 A JP 7781489A JP H02258969 A JPH02258969 A JP H02258969A
Authority
JP
Japan
Prior art keywords
target
substrate
hydrophobic
neutral
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1077814A
Other languages
Japanese (ja)
Inventor
Teruaki Katsube
勝部 昭明
Hideichiro Yamaguchi
秀一郎 山口
Naoto Uchida
直人 内田
Takeshi Shimomura
猛 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP1077814A priority Critical patent/JPH02258969A/en
Priority to EP19900400864 priority patent/EP0390692A3/en
Publication of JPH02258969A publication Critical patent/JPH02258969A/en
Priority to US07/837,873 priority patent/US5296122A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a hydrophobic film with superior reproducibility without damaging a target by irradiating the target with ions of a sputtering gas accelerated and converted into neutral atoms when a hydrophobic org. thin film is formed on a substrate by sputtering. CONSTITUTION:The vacuum vessel 1 of a sputtering device is evacuated to <=10<-4>Torr pressure. Ions of gaseous Ar as a sputtering gas are accelerated with a high voltage power source 2 of 0.1-100KV and converted into neutral Ar atoms. A target 5 made of hydrophobic fluorinated carbon resin such as polytetrafluoroethylene resin is rotated and the surface of the rotating target 5 is irradiated with a beam 3 of the neutral Ar atoms at 15-60 deg. angle. A hydrophobic org. thin film of a hydrophobic compd. is efficiently formed on the surface of a glass substrate 6 positioned on the normal line of the irradiation point of the target 5.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は疎水性膜を有する基体の製造方法に係り、特に
中性原子ビームスバッタリング法により疎水性膜を有す
る基体を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a substrate having a hydrophobic film, and more particularly to a method for manufacturing a substrate having a hydrophobic film by a neutral atom beam battering method.

[従来の技術] 一般に、イオンセンサ等では、基準電位発生用に基準電
極が用いられているが、最近、この基準電極の作製にあ
たって、疎水性のフッ素樹脂、特にポリテトラフルオル
エチレン(登録商標:テフロン)からなる疎水性の有機
薄膜を蒸着法。
[Prior Art] Generally, in ion sensors and the like, a reference electrode is used to generate a reference potential.Recently, in the production of this reference electrode, hydrophobic fluororesins, particularly polytetrafluoroethylene (registered trademark), have been used to produce reference electrodes. : Vapor deposition method of a hydrophobic organic thin film made of (Teflon).

スパッタリング法などのドライプロセスにより作成する
試みが数多くなされている。
Many attempts have been made to create them by dry processes such as sputtering.

[発明が解決しようとする課題] しかしながら、従来のスパッタリング法等により基準電
極の薄膜を形成する方法では、膜組成、膜の配向性およ
び重合度等の制御が極めて困難であり、基板上に設計通
りの有機薄膜を形成することができなかった。また、ス
パッタリング法にあっては、加速ビームによりターゲッ
トに熱が蓄積され、ターゲットに熱的損傷を与えるとい
う問題があった。この分野は未だ緒についたばかりで、
有機薄膜の種類とそのときのドライプロセスの選択が、
膜の良否と、目的とする機能性膜の特性が定まるといっ
ても過言ではない。
[Problems to be Solved by the Invention] However, in the conventional method of forming a thin film of the reference electrode by sputtering, etc., it is extremely difficult to control the film composition, film orientation, degree of polymerization, etc. It was not possible to form a standard organic thin film. Furthermore, the sputtering method has a problem in that heat is accumulated in the target due to the accelerated beam, causing thermal damage to the target. This field is still in its infancy,
The type of organic thin film and the selection of the dry process are
It is no exaggeration to say that the quality of the membrane and the characteristics of the desired functional membrane are determined.

本発明はかかる問題点に鑑みてなされたものであって、
中性原子ビームスバッタリング法を用いるとともに、タ
ーゲットに熱的損傷を与えることがなく、しかもターゲ
ットに対して膜組成、膜配向性等の再現性に優れた疎水
性膜を有する基体の製造方法を提供することを目的とす
る。
The present invention has been made in view of such problems, and includes:
In addition to using the neutral atom beam scattering method, we developed a method for producing a substrate that does not cause thermal damage to the target and has a hydrophobic film that has excellent reproducibility of film composition, film orientation, etc. with respect to the target. The purpose is to provide.

[課題を解決するための手段] 上記従来の課題を解決するために、本発明の疎水性膜を
有する基体の製造方法においては、反応室内の所定の位
置に疎水性化合物からなるターゲットを設置する工程と
、前記反応室内に希ガスを導入し、当該希ガスをイオン
化して加速電圧0.1〜100KVの範囲で加速すると
ともに中性原子化し、その中性原子ビームを前記ターゲ
ットに照射してスパッタリングを行い、所定の基体表面
に疎水性化合物を成長させて疎水性膜を有する基体を製
造する工程とを備えたことを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned conventional problems, in the method for manufacturing a substrate having a hydrophobic film of the present invention, a target made of a hydrophobic compound is installed at a predetermined position in a reaction chamber. Introducing a rare gas into the reaction chamber, ionizing the rare gas, accelerating it at an acceleration voltage in the range of 0.1 to 100 KV and converting it into neutral atoms, and irradiating the target with the neutral atomic beam. The method is characterized by comprising a step of performing sputtering to grow a hydrophobic compound on the surface of a predetermined substrate to produce a substrate having a hydrophobic film.

一般に、中性ビームによるスパッタリング法は、真空(
3x 10−’ Torr程度)の反応室内にスパッタ
率の高いアルゴン(Ar)等の希ガスを導入して、冷陰
極等でイオン化し、高電圧電場中で加速した後、電子雰
囲気中を通過させて中性化した高速中性粒子(中性ビー
ム)をターゲットに照射し、そのスパッタリング現象を
利用して目的とする基体上に薄膜を形成する方法である
In general, sputtering using a neutral beam is performed in a vacuum (
A rare gas such as argon (Ar) with a high sputtering rate is introduced into a reaction chamber (approximately 3x 10-' Torr), ionized with a cold cathode, etc., accelerated in a high voltage electric field, and then passed through an electron atmosphere. This is a method in which a target is irradiated with high-speed neutral particles (neutral beam) that have been neutralized by a process, and a thin film is formed on the target substrate using the sputtering phenomenon.

このスパッタリング法は、真空蒸着法やイオン注入法が
エネルギーの移動を利用するのに対して、希ガスの運動
エネルギーをじかにターゲットの原子や分子の運動エネ
ルギーに変換させるものであり、高融点材料や合金など
でも、緻密な薄膜を形成できる。中性ビームとしてはほ
とんどイオンを含んでいない(通常、1%未満)ビーム
が好ましい。イオンを含有するものは、絶縁物あるいは
有機物などではイオンによるチャージアップや放電、さ
らに分解等が発生するので好ましくない。特に、中性原
子ビームによるスパッタリング法は、イオン粒子を殆ど
含んでいないので、薄膜形成時のピンホールの形成や組
成変化が少なくて薄膜の再現性もよい。
This sputtering method directly converts the kinetic energy of rare gases into the kinetic energy of target atoms and molecules, whereas vacuum evaporation methods and ion implantation methods use energy transfer. Dense thin films can be formed even with alloys. The neutral beam is preferably a beam that contains few ions (usually less than 1%). Ion-containing materials are not preferable, such as insulators or organic materials, because they cause charge-up, discharge, and decomposition due to the ions. In particular, the sputtering method using a neutral atom beam contains almost no ion particles, so the formation of pinholes and compositional changes during thin film formation are small, and the reproducibility of the thin film is good.

本発明はフッ素化合物等の疎水性膜を基体上に形成する
に際し、上記中性原子ビームスバッタリング法を用いる
とともに、そのビーム照射条件、特に加速電圧を制御す
ることにより、C−F結合中のフッ素(F)含有率の比
率を高めることがテキ、よってほぼ設計構造通りのF/
C比に近づけることができ、また、ターゲットを回転さ
せることによりターゲットへの熱蓄積を防げることを見
出したものである。
In the present invention, when forming a hydrophobic film such as a fluorine compound on a substrate, the above-mentioned neutral atom beam scattering method is used, and by controlling the beam irradiation conditions, especially the accelerating voltage, The idea is to increase the ratio of fluorine (F) content, so the F/
It was discovered that it is possible to approach the C ratio, and that heat accumulation in the target can be prevented by rotating the target.

加速電圧としてはO,l〜100KVの範囲の電圧が好
ましく、特に1〜l0KVの範囲が好ましい。O,lK
V未溝の場合にはアルゴン(Ar)等の希ガスの中性原
子ビームでは十分なスパッタリングができず、また10
0KVより大きいと中性化したアルゴン等がターゲット
の内部に注入され、いずれもスパッタリングの効率が低
下する。
The accelerating voltage is preferably in the range of 0.1 to 100 KV, particularly preferably in the range of 1 to 10 KV. O,lK
In the case of V grooves, sufficient sputtering cannot be achieved with a neutral atom beam of a rare gas such as argon (Ar), and
If the voltage is higher than 0 KV, neutralized argon or the like will be injected into the target, resulting in a decrease in sputtering efficiency.

上記0.1〜100KVの範囲では、スパッタリング時
間との関係で任意の加速電圧を選択することができるが
、特に、スパッタリング時間を60分として、加速電圧
を8KVとすることが好ましい。また、スパッタリング
の効率を上げるために、中性原子ビームとターゲットの
面との角度が15〜60℃であることが好ましく、さら
に基板は中性原子ビームがターゲツト面に当った点の法
線上に配置することが好ましい。さらに、膜厚を均質に
するため、基板の平行移動を繰り返すようにするとよい
In the above range of 0.1 to 100 KV, any acceleration voltage can be selected in relation to the sputtering time, but it is particularly preferable to set the sputtering time to 60 minutes and set the acceleration voltage to 8 KV. In addition, in order to increase sputtering efficiency, it is preferable that the angle between the neutral atomic beam and the target surface is 15 to 60°C, and furthermore, the substrate should be placed on the normal line of the point where the neutral atomic beam hits the target surface. It is preferable to arrange. Furthermore, in order to make the film thickness uniform, it is preferable to repeat the parallel movement of the substrate.

上記スパッタリング時の真空度は10−’ Torr以
下であることが好ましく、また温度は、−20〜60℃
の範囲であることが好ましい。また、ターゲットのビー
ム照射による温度上昇とこれに伴う分解を防ぐために5
ターゲツトを回転させる等により冷却を行うことが好ま
しい。
The degree of vacuum during the sputtering is preferably 10-' Torr or less, and the temperature is -20 to 60°C.
It is preferable that it is in the range of . In addition, in order to prevent the temperature rise due to beam irradiation of the target and the accompanying decomposition, 5
It is preferable to perform cooling by rotating the target or the like.

また、疎水性化合物としては、ポリテトラフルオルエチ
レン、四フッ化エチレンーパーフロロアルキルビニルエ
ーテル共重合体、四フッ化エチレンー六フッ化プロピレ
ン共重合体、四フッ化エチレンーエチレン共重合体、三
フッ化塩化エチレンーエチレン共重合体、三フッ化塩化
エチレン重合体、フッ化ビニリデン重合体などが選択さ
れる。また、ポリプロピレン、ポリエチレン等のポリオ
レフィン系の樹脂、ポリスチレン、ポリイミド、ポリカ
ーボネート、さらに機能性を有する官能基を持つ疎水性
樹脂などでもよい。
In addition, examples of hydrophobic compounds include polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, A fluorinated chlorinated ethylene-ethylene copolymer, a trifluorinated chlorinated ethylene polymer, a vinylidene fluoride polymer, etc. are selected. Further, polyolefin resins such as polypropylene and polyethylene, polystyrene, polyimide, polycarbonate, and hydrophobic resins having functional groups may also be used.

上記本発明の方法により形成された疎水性膜は、ターゲ
ットに対して膜組成、膜配向性、重合度等の再現性が極
めて良好であるため、前述の基準電極や、その他5AW
(表面弾性波デバイス)、光導波路等に好適に用いるこ
とができる。
The hydrophobic film formed by the method of the present invention has extremely good reproducibility of film composition, film orientation, degree of polymerization, etc. with respect to the target, so it can be used as the reference electrode or other 5AW
(surface acoustic wave devices), optical waveguides, etc.

[実施例1 以下、本発明の実施例を図面を参照して具体的に説明す
る。
[Embodiment 1] Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.

(実施例1) 第1図に示す中性原子ビームスバッタリング装置1を用
いて、膜厚100〜370人の薄膜をガラス基板上に形
成した。すなわち、常温の真空中(3X I O−4T
orr)でF A B (Fast AtomBonb
ardment)銃2からアルゴン(Ar)の中性原子
ビーム3を、回転テーブル4上のポリテトラフルオルエ
チレンのターゲット5に照射し、ポリテトラフルオルエ
チレン分子を叩き出して、ガラス基板6上に薄膜を成長
させた。
(Example 1) A thin film with a thickness of 100 to 370 was formed on a glass substrate using the neutral atom beam battering apparatus 1 shown in FIG. That is, in a vacuum at room temperature (3X IO-4T
orr) and F A B (Fast AtomBonb
ardment) A neutral atomic beam 3 of argon (Ar) is irradiated from a gun 2 to a polytetrafluoroethylene target 5 on a rotary table 4 to knock out polytetrafluoroethylene molecules and deposit them on a glass substrate 6. A thin film was grown.

上記FAB銃2における加速電圧は4,5゜6.7およ
び8KVの4種類とし、スパッタリング時間を60分と
した。スパッタリング速度は100〜370人/時間と
し、またこのとき熱の集中を防ぐために、ターゲット5
を回転テーブル4により回転させた。なお、加速電圧と
スパッタリング速度は5〜8KVの範囲で直線関係が成
立している。
The acceleration voltage in the FAB gun 2 was set to four types: 4, 5°, 6.7 and 8 KV, and the sputtering time was 60 minutes. The sputtering speed was set at 100 to 370 people/hour, and at this time, the target 5
was rotated by the rotary table 4. Note that a linear relationship is established between the acceleration voltage and the sputtering rate in the range of 5 to 8 KV.

(実験例1) 実施例1の中性原子ビームスバッタリングの結果により
、加速電圧の薄膜形成への影響を5.6,7,8KVの
4種類の電圧について検討した。各電圧により形成され
た薄膜のESCA(Electron 5pectro
scopy for ChemicalAnalysi
s 、光電子分光法)による分析の結果を第2図に示す
(Experimental Example 1) Based on the results of the neutral atom beam scattering in Example 1, the influence of accelerating voltage on thin film formation was investigated at four types of voltages of 5.6, 7, and 8 KV. ESCA of the thin film formed by each voltage (Electron 5pectro
Scopy for Chemical Analysis
The results of analysis by photoelectron spectroscopy) are shown in FIG.

この結果によれば、加速電圧8Kl/で作製した薄膜の
原子組成は、図中(a)に示すように、F +sビーク
(フッ素Fの15電子スペクトル)が高く、F:C=2
:l程度であり、また加速電圧7KVで作製した薄膜の
原子組成は図中(b)に示すように、F:C=4:6程
度であった。
According to this result, the atomic composition of the thin film produced at an accelerating voltage of 8 Kl/, as shown in (a) in the figure, has a high F +s peak (15 electron spectrum of fluorine F), and F:C=2
:1, and the atomic composition of the thin film produced at an accelerating voltage of 7 KV was about F:C=4:6, as shown in (b) in the figure.

すなわち、加速電圧が高い場合には、+ CF 2−C
F、十〇の結合をもつ粒子が多く堆積しており疎水性機
能の発言に効果的であることがわかった@ 一方、加速電圧が6KV、 5KVの場合では、図中(
c)、(d)に示すようにそれぞれF1gピークが相当
減少し、フッ素含有量が相対的に少なくなる傾向がある
ことがわかった。また、電力量(W)を同じ条件とした
場合、加速電圧が5,6KVでは、加速電圧7,8KV
の場合に比べてピーク電流値が上昇するため、ポリテト
ラフルオルエチレンのターゲット5に炭化による変色が
みられた。すなわち、これは加速電圧が低い場合には、
ターゲット5に中性原子ビームのエネルギが熱に変化し
て蓄積されることを示唆している。この結果、加速電圧
を高< (8,7KV程度)し、スパッタリング速度を
速くして中性原子ビームの衝突エネルギーによるターゲ
ット5の温度上昇を避ける必要があることがわかった。
That is, when the accelerating voltage is high, + CF 2-C
It was found that many particles with F and 10 bonds were deposited, which is effective in expressing the hydrophobic function.
As shown in c) and (d), the F1g peak decreased considerably, and it was found that the fluorine content tended to become relatively low. Also, when the electric energy (W) is the same, when the acceleration voltage is 5.6KV, the acceleration voltage is 7.8KV.
Because the peak current value increased compared to the case of , discoloration due to carbonization was observed in the target 5 made of polytetrafluoroethylene. In other words, this means that when the accelerating voltage is low,
This suggests that the energy of the neutral atomic beam is converted into heat and accumulated in the target 5. As a result, it was found that it was necessary to increase the accelerating voltage (about 8.7 KV) and increase the sputtering speed to avoid a temperature rise in the target 5 due to the collision energy of the neutral atom beam.

(実施例2) ガラス基体の上に蒸着法により金層を形成し、続いて加
速電圧を7および8KVにした以外は実施例1と同様の
方法により膜厚150人のポリテトラフルオルエチレン
薄膜層を形成し、さらにこの薄膜層上に膜厚2000人
の金層を形成し、金層/ポリテトラフルオルエチレン薄
膜層/金層のMIM型素子を作製した。
(Example 2) A polytetrafluoroethylene thin film with a thickness of 150 mm was prepared in the same manner as in Example 1, except that a gold layer was formed on a glass substrate by vapor deposition, and then the acceleration voltage was changed to 7 and 8 KV. A gold layer with a thickness of 2,000 layers was further formed on this thin film layer to produce an MIM type element of gold layer/polytetrafluoroethylene thin film layer/gold layer.

X脹1 実施例2のMIM型素子の絶縁性を調べたが。X bulge 1 The insulation properties of the MIM type element of Example 2 were investigated.

良好な絶縁性を示した。すなわち、低周波誘電特性をA
Cインピーダンス法(ドライ膜を交流法により測定する
方法二NF回路社製、ロックインアンプ)を用いて測定
したところ、第3図に示すように、比誘電率ε、は周波
数50Hz〜5KHzの広い範囲に亘ってほぼ一定値(
7KVで作製した膜では3.8.8KVで作成した膜で
は2.2〕であった。
It showed good insulation properties. In other words, the low frequency dielectric property is A
When measured using the C impedance method (method of measuring dry membranes using an alternating current method (manufactured by NF Circuit Co., Ltd., Lock-in Amplifier), the relative dielectric constant ε showed a wide range of frequencies from 50 Hz to 5 KHz, as shown in Figure 3. Almost constant value over the range (
It was 3.8 for the film produced at 7 KV, and 2.2 for the film produced at 8 KV.

また、絶縁破壊強度は、7KVで作成した膜で4、7K
V/mm、8 KVテ作成した膜テア〜8Kv/ff1
11であり、良好であった。
In addition, the dielectric breakdown strength is 4.7K for a film created at 7KV.
V/mm, 8KVte created membrane tear~8Kv/ff1
The score was 11, which was good.

(実施例3) ポリテトラフルオルエチレンのターゲット5の回転速度
を90分/回とするとともに、FAB銃2による中性原
子ビームの加速電圧を4.5゜6.7,8.9および1
0Kvトシ、60分間スパッタリングを行い、それぞれ
膜厚約260人の薄膜をガラス基板上に形成した6 X荻■ユ 実施例3で作製した各薄膜のフッ素含有率をESCAに
より算出した。その結果を第4図に示す。すなわち、加
速電圧8KVの場合は、ポリテトラフルオルエチレンの
理論値(原子数比)である66.67%に対し約63.
1%が得られており、再現性が良好であることがわかっ
た。
(Example 3) The rotation speed of the polytetrafluoroethylene target 5 was set to 90 minutes/time, and the acceleration voltage of the neutral atom beam from the FAB gun 2 was set to 4.5°, 6.7°, 8.9°, and 1°.
The fluorine content of each thin film prepared in Example 3 was calculated by ESCA by sputtering at 0 Kv for 60 minutes to form a thin film with a thickness of about 260 on a glass substrate. The results are shown in FIG. That is, in the case of an accelerating voltage of 8 KV, the theoretical value (atomic ratio) of polytetrafluoroethylene is 66.67%, but it is approximately 63.6%.
1%, indicating good reproducibility.

また、加速電圧9.l0KVの場合には、それぞれ60
.58%であり、基準電極に十分使用可能であった。
Also, acceleration voltage 9. In case of 10KV, 60 each
.. It was 58% and could be used as a reference electrode.

一方、他の加速電圧4.5.6.7KVの場合のフッ素
含有率は、それぞれ3,21,36゜40%であり、再
現性が悪かった。
On the other hand, the fluorine contents in the case of other acceleration voltages of 4,5, and 6.7 KV were 3, 21, and 36°40%, respectively, and the reproducibility was poor.

また、第5図に示すようにターゲット5のポリテトラフ
ルオルエチレンのESCEビークはCF sまたは4C
F、−CF、+に対応する大きなピークが得られる。8
KVでスパッタリングしたものはポリテトラフルオルエ
チレンに類似したピーク形成と同様の結合エネルギーを
もつことがわかる。このことから8KVで加速して成膜
した場合には、この膜はポリテトラフルオルエチレンと
ほぼ同組成であるということが結論できる。一方、7K
Vから4KVニなると+CF * −CF z÷に対応
するピーク強度は弱くなり+CF−)nを含む結合に対
応するピークが増加し始める。このためポリテトラフル
オルエチレンの組成から外れた(CFの大きな)膜がで
きていると考えられる。
Furthermore, as shown in Fig. 5, the ESCE peak of target 5, polytetrafluoroethylene, is CFs or 4C.
Large peaks corresponding to F, -CF, + are obtained. 8
It can be seen that the one sputtered with KV has a peak formation similar to that of polytetrafluoroethylene and a similar binding energy. From this, it can be concluded that when the film is formed at an acceleration of 8 KV, the film has almost the same composition as polytetrafluoroethylene. On the other hand, 7K
At 4 KV from V, the peak intensity corresponding to +CF*-CFz÷ becomes weaker and the peak corresponding to the bond containing +CF-)n begins to increase. For this reason, it is thought that a film with a composition deviating from that of polytetrafluoroethylene (with a large CF) was formed.

尚、上記実施例においては、希ガスとしてアルゴン(A
r)を用いたが、アルゴン以上の重量を有するクリプト
ン(Kr)、キセノン(Xe)を用いてもよい。
In the above embodiment, argon (A
r), but krypton (Kr) or xenon (Xe), which has a weight greater than that of argon, may also be used.

[発明の効果コ 以上説明したように本発明に係る疎水性膜を有する基体
の製造方法によれば、反応室内の所定の位置に疎水性化
合物からなるターゲットを設置した後、前記反応室内に
希ガスを導入し、当該希ガスをイオン化して加速電圧0
.1〜100KVの範囲で加速するとともに中性原子化
し、その中性原子ビームを前記ターゲットに照射してス
パッタリングを行うようにしたので、疎水性化合物の薄
膜を再現性よく成長させることができ、したがって絶縁
性に優れた疎水性膜を効率良く形成することができる。
[Effects of the Invention] As explained above, according to the method for producing a substrate having a hydrophobic film according to the present invention, after setting a target made of a hydrophobic compound at a predetermined position in the reaction chamber, Introduce a gas, ionize the rare gas, and reduce the acceleration voltage to 0.
.. By accelerating the target in the range of 1 to 100 KV and converting it into neutral atoms, the target is irradiated with the neutral atom beam to perform sputtering, which makes it possible to grow a thin film of a hydrophobic compound with good reproducibility. A hydrophobic film with excellent insulation properties can be efficiently formed.

また、前記ターゲットを回転させながら中性原子ビーム
を照射するようにしたので、ターゲットに熱的損傷を与
えることなく薄膜を形成することができるという効果を
奏する。
Furthermore, since the neutral atomic beam is irradiated while rotating the target, it is possible to form a thin film without causing thermal damage to the target.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いられる中性原子ビームス
バッタリング装置の概略構成図、第2区は実施例1のE
SCAによる分析結果を示す特性図、第3図は実施例2
で作製したMIM素子の周波数特性図、第4図は実施例
3で作製した各薄膜の加速電圧とフッ素含有率との関係
を示す特性図、第5図は実験例3で作製した各薄膜の結
合エネルギーと光電子強度との関係を示す特性図である
FIG. 1 is a schematic configuration diagram of a neutral atom beam scattering device used in an embodiment of the present invention, and the second section is an E of the embodiment 1.
Characteristic diagram showing the analysis results by SCA, Figure 3 is Example 2
Figure 4 is a characteristic diagram showing the relationship between acceleration voltage and fluorine content of each thin film produced in Example 3, and Figure 5 is a frequency characteristic diagram of the MIM element produced in Experimental Example 3. FIG. 3 is a characteristic diagram showing the relationship between binding energy and photoelectron intensity.

Claims (5)

【特許請求の範囲】[Claims] (1)反応室内の所定の位置に疎水性化合物からなるタ
ーゲットを設置する工程と、前記反応室内に希ガスを導
入し、当該希ガスをイオン化して加速電圧0.1〜10
0KVの範囲で加速するとともに中性原子化し、その中
性原子ビームを前記ターゲットに照射してスパッタリン
グを行い、所定の基体表面に疎水性化合物を成長させて
疎水性膜を形成する工程とを備えたことを特徴とする疎
水性膜を有する基体の製造方法。
(1) A step of installing a target made of a hydrophobic compound at a predetermined position in the reaction chamber, introducing a rare gas into the reaction chamber, ionizing the rare gas, and applying an acceleration voltage of 0.1 to 10
A step of accelerating in a range of 0 KV and turning the target into neutral atoms, irradiating the target with the neutral atom beam to perform sputtering, and growing a hydrophobic compound on the surface of a predetermined substrate to form a hydrophobic film. A method for producing a substrate having a hydrophobic film, characterized in that:
(2)前記ターゲットを回転させながら中性原子ビーム
を照射するようにした請求項1記載の疎水性膜を有する
基体の製造方法。
(2) The method for manufacturing a substrate having a hydrophobic film according to claim 1, wherein the neutral atomic beam is irradiated while rotating the target.
(3)反応室内の真空度が10^−^4Torr以下で
ある請求項1または2記載の疎水性膜を有する基体の製
造方法。
(3) The method for producing a substrate having a hydrophobic film according to claim 1 or 2, wherein the degree of vacuum in the reaction chamber is 10^-^4 Torr or less.
(4)前記中性原子ビームと前記ターゲットの面との角
度が15〜60℃である請求項1ないし3のいずれか1
つに記載の疎水性膜を有する基体の製造方法。
(4) Any one of claims 1 to 3, wherein the angle between the neutral atomic beam and the surface of the target is 15 to 60°C.
A method for producing a substrate having a hydrophobic film as described in .
(5)前記基体は中性原子ビームが照射されるターゲッ
ト上の点の法線上に位置する請求項1ないし4のいずれ
か1つに記載の疎水性膜を有する基体の製造方法。
(5) The method for manufacturing a substrate having a hydrophobic film according to any one of claims 1 to 4, wherein the substrate is located on a normal line to a point on a target to which the neutral atom beam is irradiated.
JP1077814A 1989-03-29 1989-03-29 Production of substrate having hydrophobic film Pending JPH02258969A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1077814A JPH02258969A (en) 1989-03-29 1989-03-29 Production of substrate having hydrophobic film
EP19900400864 EP0390692A3 (en) 1989-03-29 1990-03-29 Method of forming thin film, apparatus for forming thin film and sensor
US07/837,873 US5296122A (en) 1989-03-29 1992-02-18 Apparatus for forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1077814A JPH02258969A (en) 1989-03-29 1989-03-29 Production of substrate having hydrophobic film

Publications (1)

Publication Number Publication Date
JPH02258969A true JPH02258969A (en) 1990-10-19

Family

ID=13644495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1077814A Pending JPH02258969A (en) 1989-03-29 1989-03-29 Production of substrate having hydrophobic film

Country Status (1)

Country Link
JP (1) JPH02258969A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337794A (en) * 2021-05-19 2021-09-03 重庆慧雍应用技术研究院有限公司 Self-cleaning substrate surface coating for preventing fouling and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337794A (en) * 2021-05-19 2021-09-03 重庆慧雍应用技术研究院有限公司 Self-cleaning substrate surface coating for preventing fouling and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5302420A (en) Plasma deposition of fluorocarbon
Biederman et al. Plasma polymer films and their future prospects
US6274014B1 (en) Method for forming a thin film of a metal compound by vacuum deposition
JP3274669B2 (en) Fluorine resin with excellent wettability surface
JPH04329638A (en) Method of bonding fluorocarbon polymer film with substrate and substrate
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
Collaud et al. Plasma treatment of polymers: The effect of the plasma parameters on the chemical, physical, and morphological states of the polymer surface and on the metal-polymer interface
KR100296156B1 (en) Method for making thin film tantalum oxide layers with enhanced dielectric properties and capacitors employing such layers
Endo et al. Preparation and properties of fluorinated amorphous carbon thin films by plasma enhanced chemical vapor deposition
JPH0514722B2 (en)
JPH02258969A (en) Production of substrate having hydrophobic film
JP2004217975A (en) Carbon thin film and manufacturing method therefor
Lim et al. Reduction in surface resistivity of polymers by plasma source ion implantation
Kyokane et al. Organic solid capacitor with conducting thin films as electrolyte by ion-beam-assisted deposition
JPH01282175A (en) Formation of protective film of superconducting material
EP3962989A1 (en) Process for preparation of oxygen barrier film
Usui et al. Characteristics of polyethylene thin films deposited by ionized cluster beam
JPH04165063A (en) Production of metallized polypropylene film for capacitor
JPS61190064A (en) Formation of thin titanium nitride film
JPH01261214A (en) Production of diamond-containing or hard carbon film
Wang Ultrathin fluoropolymer films deposited on a polyimide (kapton®) surface by RF magnetron sputtering of poly (tetrafluoroethylene)
US5523166A (en) Process for forming thin film having excellent insulating property and metallic substrate coated with insulating material formed by said process
JP5018169B2 (en) Method for forming fluorine thin film and method for manufacturing semiconductor device
JPH04285154A (en) Formation of carbon thin film
RU2205838C1 (en) Method of preparing conducting polymer layers