JPH02258928A - Production of grain-oriented silicon steel sheet having controlled secondary recrystallized grain boundary - Google Patents

Production of grain-oriented silicon steel sheet having controlled secondary recrystallized grain boundary

Info

Publication number
JPH02258928A
JPH02258928A JP7999089A JP7999089A JPH02258928A JP H02258928 A JPH02258928 A JP H02258928A JP 7999089 A JP7999089 A JP 7999089A JP 7999089 A JP7999089 A JP 7999089A JP H02258928 A JPH02258928 A JP H02258928A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
grain
secondary recrystallized
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7999089A
Other languages
Japanese (ja)
Inventor
Takashi Kobayashi
尚 小林
Masayoshi Mizuguchi
水口 政義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7999089A priority Critical patent/JPH02258928A/en
Publication of JPH02258928A publication Critical patent/JPH02258928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To control secondary recrystallized grain boundaries and to produce a grain- oriented silicon steel sheet with low iron loss by subjecting a slab of silicon steel with a specific composition to hot rolling, cold rolling, and decarburizing annealing, applying proper local strain to the resulting steel sheet, and then carrying out specific heat treatment. CONSTITUTION:A slab of a silicon steel having a composition consisting of, by weight, 0.025-0.075% C, 2.5-4.5% Si, <=0.012% S, 0.010-0.060% acid soluble AL, <=0.010% N, 0.05-0.45% Mn, and the balance Fe with inevitable impurities is heated to <=1200 deg.C and hot-rolled and is then cold-rolled once or cold-rolled twice or more while process- annealed between the cold rolling stages so as to be formed to the final sheet thickness. Subsequently, the resulting steel sheet is subjected to decarburizing annealing and then to high-temp. finish annealing after the application of a separation agent at annealing. At this time, after the decarburizing annealing, local strain is applied to the steel sheet to the extent causing no recrystallization and heat treatment consisting of local heating at 500-850 deg.C for a short time in a gaseous mixture of H2 and N2 containing NH3 is applied to the steel sheet. By this method, the size of secondary recrystallized grains formed in the course of finish annealing can be controlled, and the iron loss in the resulting grain-oriented silicon steel sheet can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、一方向性を磁鋼板の二次再結晶粒サイズを制
御する方法に関するものであり、さらに詳しくは仕上焼
鈍過程において生成する二次再結晶の粒サイズをコント
ロールして一方向性電磁鋼板の鉄損を低減する方法に関
するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for controlling the secondary recrystallized grain size of a magnetic steel sheet, and more specifically, the present invention relates to a method for controlling the secondary recrystallized grain size of a magnetic steel sheet. This invention relates to a method for reducing iron loss in grain-oriented electrical steel sheets by controlling the grain size of secondary recrystallization.

(従来の技術) 一方向性電磁鋼板の鉄損は、ゴス粒の配向性および粒サ
イズに依存している。
(Prior Art) The core loss of a grain-oriented electrical steel sheet depends on the orientation and grain size of Goss grains.

一般に、一方向性電磁鋼板においては、磁束密度(B、
。値)が高くなるとともに鉄損は低減してくるが、B1
0値が1.957 (Tesla)よりも高くなると、
二次再結晶粒サイズも大きくなり、ヒステリシスロスの
減少にも拘わらず渦電流損が増大し、B10値が高くな
った割には鉄損の低減がみられない。
Generally, in unidirectional electrical steel sheets, the magnetic flux density (B,
. As the value of B1 increases, the iron loss decreases.
When the 0 value is higher than 1.957 (Tesla),
The secondary recrystallized grain size also increases, eddy current loss increases despite the decrease in hysteresis loss, and no reduction in iron loss is seen even though the B10 value becomes high.

また、材料をストリップコイルの状態で焼鈍して粒サイ
ズを大きくすると、<001>方位の板面に対するもぐ
り角が大きくなり、かえって鉄損が悪くなる。従って、
二次再結晶粒サイズを適正な大きさにコントロールする
ことが低鉄損の製品を得るために必須の条件となる。
Furthermore, if the grain size is increased by annealing the material in the form of a strip coil, the sink angle with respect to the plate surface in the <001> orientation will increase, which will actually worsen core loss. Therefore,
Controlling the secondary recrystallized grain size to an appropriate size is an essential condition for obtaining a product with low iron loss.

二次再結晶粒の粒サイズをコントロールする技術に関し
ては、既に、特開昭50−137819号公報に種々の
手段が開示されている。この特許公報記載の先行技術は
、その実施例にみられる如く、電子ビーム1 ショット
ピーニング、薬品塗布等の手段を用いる方法であり、現
実のプロセスに採用することがなかなか困難である。一
方、特開昭59−100221号公報には、高周波抵抗
加熱、高周波誘導加熱を用いる技術が開示されているが
、この先行技術も現実のプロセスに採用することがなか
なか困難である。
Regarding techniques for controlling the grain size of secondary recrystallized grains, various means have already been disclosed in JP-A-50-137819. The prior art described in this patent publication is a method that uses means such as electron beam single shot peening and chemical coating, as seen in the examples thereof, and is quite difficult to employ in actual processes. On the other hand, Japanese Patent Laid-Open No. 59-100221 discloses a technique using high-frequency resistance heating and high-frequency induction heating, but it is also difficult to apply this prior art to an actual process.

(発明が解決しようとする課題) 本発明は、従来技術における問題を解決し、仕上焼鈍過
程で生成する二次再結晶粒の粒サイズを安定、確実にコ
ントロールし、鉄損の少ない製品を製造する方法を提供
することを目的としてなされた。
(Problems to be Solved by the Invention) The present invention solves the problems in the prior art, stably and reliably controls the grain size of secondary recrystallized grains generated in the final annealing process, and manufactures products with low iron loss. The purpose was to provide a method for

(課題を解決するための手段) 本発明の要旨とするところは下記のとおりである。(Means for solving problems) The gist of the present invention is as follows.

(1)  重量で、C: 0.025〜0.075%、
Si:2.5〜4.5%、S≦0.012%、酸可溶性
Aj=0.010〜0.060%、N≦0.010%、
Mn=0.05〜0.45%を含存し、残部二Feおよ
び不可避的不純物からなるt磁鋼スラブを、1200“
C以下の温度に加熱した後熱間圧延し、1回または中間
焼鈍を介挿する2回以上の冷間圧延を施して最終板厚と
し、次いで、脱炭焼鈍、焼鈍分離剤塗布を行った後、高
温仕上焼鈍を施す一方向性電磁鋼板の製造方法において
、脱炭焼鈍後、再結晶を伴わない程度の局所歪を鋼板(
ストリップ)に導入した後、アンモニアガスを含む水素
、窒素混合ガス雰囲気下で500〜850″Cの温度域
で短時間の熱処理を施すことによって二次再結晶粒の粒
界制御を行うことを特徴とする二次再結晶粒界を制御す
る一方向性電磁鋼板の製造方法。
(1) C: 0.025-0.075% by weight,
Si: 2.5-4.5%, S≦0.012%, acid-soluble Aj=0.010-0.060%, N≦0.010%,
A magnetic steel slab containing 0.05 to 0.45% Mn and the balance consisting of Fe and unavoidable impurities was heated to 1200"
After heating to a temperature below C, hot rolling was performed, and cold rolling was performed once or twice or more with intervening intermediate annealing to give the final plate thickness, followed by decarburization annealing and application of an annealing separator. In a method for manufacturing unidirectional electrical steel sheets that is then subjected to high-temperature finish annealing, after decarburization annealing, the steel sheet is subjected to local strain to the extent that recrystallization does not occur (
It is characterized by controlling the grain boundaries of secondary recrystallized grains by applying heat treatment for a short time in a temperature range of 500 to 850"C in a hydrogen and nitrogen mixed gas atmosphere containing ammonia gas. A method for producing grain-oriented electrical steel sheets that controls secondary recrystallization grain boundaries.

(2)重量で、C: 0.025〜0.075%、Si
:2.5〜4.5%、S≦O,OI 2%、酸可溶性A
I=0.010〜0.060%、N≦0.010%、M
n:0.05〜0.45%を含有し、残部:Feおよび
不可避的不純物からなる電磁鋼スラブを、1200℃以
下の温度に加熱した後熱間圧延し、1回または中間焼鈍
を介挿する2回以上の冷間圧延を施して最終板厚とし、
次いで、脱炭焼鈍、焼鈍分離剤塗布を行った後、高温仕
上焼鈍を施す一方向性電磁鋼板の製造方法において、脱
炭焼鈍後、アンモニアガスを含む水素、窒素混合ガス雰
囲気下で500〜850℃の局所加熱を行うことによっ
て二次再結晶粒の粒界制御を行うことを特徴とする二次
再結晶粒界を制御する一方向性電磁鋼板の製造方法(3
)局所歪、局所加熱の導入間隔が、w4板(ストリップ
)圧延方向に5〜30mm、局所歪、局所加熱の幅が3
00−以下である前項1または2記載の二次再結晶粒界
を制御する一方向性電磁鋼板の製造方法。
(2) By weight, C: 0.025-0.075%, Si
:2.5-4.5%, S≦O, OI 2%, acid soluble A
I=0.010-0.060%, N≦0.010%, M
An electromagnetic steel slab containing n: 0.05 to 0.45% and the balance consisting of Fe and unavoidable impurities is heated to a temperature of 1200°C or less, then hot rolled, and one or intermediate annealing is performed. The final plate thickness is obtained by cold rolling two or more times,
Next, in a method for manufacturing a unidirectional electrical steel sheet in which decarburization annealing, application of an annealing separation agent, and high-temperature finish annealing are performed, after decarburization annealing, the temperature is 500 to 850 in a hydrogen and nitrogen mixed gas atmosphere containing ammonia gas. Method for producing grain-oriented electrical steel sheet for controlling secondary recrystallized grain boundaries, characterized in that grain boundaries of secondary recrystallized grains are controlled by local heating at ℃ (3)
) The introduction interval of local strain and local heating is 5 to 30 mm in the W4 plate (strip) rolling direction, and the width of local strain and local heating is 3
3. A method for producing a grain-oriented electrical steel sheet for controlling secondary recrystallization grain boundaries according to item 1 or 2 above, which is 00- or less.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、従来の電磁鋼板製造プロセスとは異なり、製
造プロセスの途中即ち最終板厚とされ脱炭焼純工程で一
次再結晶した鋼板(ストリップ)に窒素を侵入させて(
AZ、St ) Nを形成せしめ、これをインヒビター
として機能させるプロセスであり、窒素の侵入を鋼板(
ストリップ)面に対して局部的に行えば、インヒビター
強度は局部的に異なったものとなり、従来プロセスによ
る場合に比し容易に二次再結晶粒の粒サイズコントロー
ルが可能である。本発明は、このことを利用して、局部
的に窒素の濃度を変える手段を、脱炭焼鈍後、仕上焼鈍
前のプロセスに組み込んで、仕上焼鈍過程で生成する二
次再結晶粒の粒サイズをコントロールし、製品の鉄損を
低減せんとするものである。
The present invention differs from the conventional electrical steel sheet manufacturing process in that nitrogen is infiltrated into the steel sheet (strip) which has been made to the final thickness during the manufacturing process and has been primarily recrystallized in the decarburization sintering process.
AZ, St) This is a process that forms N and makes it function as an inhibitor, preventing the intrusion of nitrogen into steel sheets (
If this is done locally on the strip surface, the inhibitor strength will vary locally, and the grain size of the secondary recrystallized grains can be controlled more easily than in the case of conventional processes. Taking advantage of this, the present invention incorporates a means for locally changing the nitrogen concentration into the process after decarburization annealing and before finish annealing, thereby increasing the grain size of secondary recrystallized grains generated in the finish annealing process. The aim is to control this and reduce the iron loss of the product.

本発明の発明者等は、本発明において規定する成分から
なる脱炭後の鋼板において、局部的にインヒビター強度
を変えるべく種々の実験を繰返した結果、レーザ照射、
歯形ロール等によって再結晶を伴わない程度の歪を鋼板
に導入した後、アンモニアガスを含む窒素および水素の
混合ガス雰囲気中、500〜850℃の温度域で短時間
の熱処理を行い、次いで通常の仕上焼鈍を行うか或いは
、脱炭焼鈍後アンモニアガスを含む窒素および水素の混
合ガス雰囲気下で500〜850℃の局所加熱を行い次
いで通常の仕上焼鈍を行うことにより二次再結晶粒の粒
サイズをコントロールし得ることを見出した。
The inventors of the present invention have repeatedly conducted various experiments in order to locally change the inhibitor strength in a decarburized steel sheet consisting of the components specified in the present invention, and have found that laser irradiation,
After introducing strain to the steel plate to an extent that does not cause recrystallization using a toothed roll or the like, heat treatment is performed for a short time in a temperature range of 500 to 850°C in a mixed gas atmosphere of nitrogen and hydrogen containing ammonia gas, and then normal heat treatment is performed. The grain size of the secondary recrystallized grains can be changed by performing final annealing, or by performing local heating at 500 to 850°C in a mixed gas atmosphere of nitrogen and hydrogen containing ammonia gas after decarburization annealing, and then performing normal final annealing. We found that it is possible to control

鋼板に局所的な歪を導入するためのレーザは、ヤグレー
ザが最適であり、ビームエネルギーは、0.3mmφで
1mJ以上のエネルギーが必要である。
The most suitable laser for introducing local strain into the steel plate is a YAG laser, and the beam energy needs to be 1 mJ or more at 0.3 mmφ.

ビームエネルギーがIIIIJに満たない場合は、鋼板
への窒素侵入が不十分なものとなる。
If the beam energy is less than IIIJ, nitrogen penetration into the steel plate will be insufficient.

而して、鋼板への侵入窒素は、歪に沿って拡散するため
歪部で窒素濃度が高くなり、その結果、インヒビター強
度も歪部の所が無歪部の所に比し強くなり、二次再結晶
に際し、歪導入部が最も二次再結晶が遅れるので粒界に
なるものと考えられる。
Since the nitrogen that enters the steel plate diffuses along the strain, the nitrogen concentration increases in the strained area, and as a result, the inhibitor strength becomes stronger in the strained area than in the non-strained area, and During secondary recrystallization, it is thought that the strain introduced area becomes a grain boundary because secondary recrystallization is delayed the most.

歯形ロールによって鋼板に局所的な歪を導入する場合は
、印加力カニ50〜70kg/−が最適である。印加応
力が50kg/mシに満たない場合は、鋼板に局所的に
窒素を侵入させるに十分でなく、一方、印加応力が70
kg/−を超える場合は、鋼板の変形が大きくなる。
When introducing local strain into a steel plate using a toothed roll, an applied force of 50 to 70 kg/- is optimal. If the applied stress is less than 50 kg/m, it is not sufficient to locally infiltrate nitrogen into the steel plate, whereas if the applied stress is less than 70 kg/m
If it exceeds kg/-, the steel plate will be significantly deformed.

鋼板面に対し局所的加熱を行う手段としては、炭酸ガス
レーザ、マイクロプラズマ加熱、電子ビーム加熱、高周
波加熱等があるが、上記雰囲気中で鋼板面に対し局所的
加熱を行うためには、炭酸ガスレーザを用いたビーム加
熱が最適である。
Means for locally heating the steel plate surface include carbon dioxide laser, microplasma heating, electron beam heating, and high frequency heating. However, in order to locally heat the steel plate surface in the above atmosphere, carbon dioxide laser Beam heating using

次に、本発明の、鋼板へ再結晶を伴わない程度の局所的
歪を導入した後アンモニアガスを含む窒素、水素混合雰
囲気中で窒素を綱板に侵入させる方法ならびに、アンモ
ニアガスを含む窒素、水素混合雰囲気下で鋼板面を局所
的に加熱して窒素を綱板に侵入させる方法においてご窒
素を綱板に侵入させるときの温度域を500〜850℃
と特定した理由を説明する。500℃に満たない温度で
は、窒素の拡散が不均一となる。一方、850℃を超え
る温度では、−次回結晶粒の粒径に変化を来たし、この
ことに起因して二次再結晶が不良となる。
Next, a method of the present invention in which nitrogen is introduced into a steel plate in a mixed atmosphere of nitrogen and hydrogen containing ammonia gas after introducing local strain to a steel plate to a degree that does not involve recrystallization, and a method of introducing nitrogen containing ammonia gas into a steel plate in a mixed atmosphere of nitrogen and hydrogen; In the method of locally heating the steel plate surface in a hydrogen mixed atmosphere to infiltrate nitrogen into the steel plate, the temperature range when nitrogen is introduced into the steel plate is 500 to 850℃.
Explain the reason for this identification. At temperatures below 500° C., nitrogen diffusion becomes non-uniform. On the other hand, at a temperature exceeding 850°C, the grain size of the -next crystal grains changes, resulting in poor secondary recrystallization.

加熱時間は、経済的に考えて短かい方が良い。From an economic standpoint, the shorter the heating time, the better.

本発明においては、20秒間加熱すれば効果が得られる
。500〜850℃の温度に鋼板を加熱することにより
、歪は消失するものがあるが、ミクロな観点からは歪は
残存し、窒素の拡散に対して有効なバスとなっていると
考えられる。
In the present invention, the effect can be obtained by heating for 20 seconds. By heating the steel plate to a temperature of 500 to 850° C., the strain may disappear, but from a microscopic point of view, the strain remains and is thought to serve as an effective bath for nitrogen diffusion.

アンモニアガス中に窒素ガスおよび水素ガスを混入する
理由は、脱炭焼鈍後の鋼板表面はファイアライトの薄膜
に覆われており、この薄膜が窒素が鋼板に侵入するとき
のバリアーとして作用するから、この薄膜を還元により
除去し窒化を容易にすることにある。
The reason why nitrogen gas and hydrogen gas are mixed into the ammonia gas is that the surface of the steel sheet after decarburization annealing is covered with a thin film of fireite, and this thin film acts as a barrier when nitrogen enters the steel sheet. The purpose is to remove this thin film by reduction to facilitate nitriding.

アンモニアの最適濃度は、1〜10%であり、1%に満
たない濃度では粒界導入の効果が小さく、また、10%
を超える濃度では歪導入部と無歪部間のインヒビター強
度の差が小さくなり、粒界導入の効果がなくなる。
The optimum concentration of ammonia is 1 to 10%, and if the concentration is less than 1%, the effect of grain boundary introduction will be small;
At a concentration exceeding , the difference in inhibitor strength between the strain-introduced part and the non-strain part becomes small, and the effect of grain boundary introduction disappears.

一方、アンモニアガスを含む窒素、水素混合雰囲気下で
鋼板面を局所的に加熱して窒素を鋼板に侵入させる場合
の温度域を500〜850℃と特定した理由は、500
℃に満たない温度では窒素の拡散が十分でなく、850
℃を超える温度では一次再結晶粒が粗大化し、加熱部に
ビーム大の微細粒が残存して二次再結晶したときの磁束
密度(Blo値)を劣化させるからである。
On the other hand, the reason why we specified the temperature range of 500 to 850 degrees Celsius when nitrogen penetrates into the steel sheet by locally heating the steel sheet surface in a nitrogen and hydrogen mixed atmosphere containing ammonia gas is
At temperatures below 850°C, nitrogen diffusion is insufficient.
This is because at temperatures exceeding .degree. C., the primary recrystallized grains become coarse, and fine grains as large as the beam remain in the heating section, deteriorating the magnetic flux density (Blo value) when secondary recrystallization occurs.

鋼板に局所的歪部を導入する方法、鋼板表面に局所的加
熱部を導入する方法何れの場合も、導入部の間隔を鋼板
の圧延方向に5〜30mm、導入部の幅を300μ国以
下に限定した理由を説明する。
In both methods, the method of introducing local strain parts into the steel plate and the method of introducing local heating parts on the surface of the steel plate, the interval between the introduction parts should be 5 to 30 mm in the rolling direction of the steel plate, and the width of the introduction parts should be 300 μm or less. Explain the reason for the limitation.

導入部の間隔を鋼板の圧延方向に5〜30III11と
したのは、導入部の間隔は二次再結晶粒の鋼板圧延方向
における粒サイズを決定するものであり、二次再結晶粒
が511II11に満たないと磁束密度(Bl。値)が
低下して鉄損が悪くなるからであり、また、30閣を超
えると渦電流損が増大して全鉄損が太き(なるからであ
る。
The reason why the interval between the introduction parts is set to 5 to 30III11 in the rolling direction of the steel plate is that the interval between the introduction parts determines the grain size of the secondary recrystallized grains in the rolling direction of the steel plate, and the secondary recrystallized grains are set to 511II11. This is because if it is less than 30 degrees, the magnetic flux density (Bl. value) decreases and the iron loss worsens, and if it exceeds 30 degrees, the eddy current loss increases and the total iron loss increases.

導入部の幅を3006m以下に限定したのは、300μ
mを超える幅にするとインヒビター導入部にゴス粒と異
なる二次再結晶不良部が生成し、磁束密度(Boo値)
が劣化して鉄損を劣化せしめるからである。
The width of the introduction part was limited to 3006m or less because of 300μ.
If the width exceeds m, a defective secondary recrystallization area different from Goss grains will be generated at the inhibitor introduction part, and the magnetic flux density (Boo value) will decrease.
This is because iron loss deteriorates and the iron loss deteriorates.

尚、歪導入をレーザ照射によって行う場合は、点の連な
りとしても良い。その場合は、鋼板幅方向における点の
間隔は、0.5 am以下としなければならない。0.
5閣を超える間隔では、鋼板幅方向における点の連続線
上に無歪部が存在することとなり、二次再結晶粒サイズ
のコントロールができなくなる。
Note that when strain is introduced by laser irradiation, it may be a series of points. In that case, the distance between the points in the width direction of the steel plate must be 0.5 am or less. 0.
If the spacing exceeds 5, a strain-free area will exist on a continuous line of points in the width direction of the steel sheet, making it impossible to control the secondary recrystallized grain size.

(実施例) 実施例1 重量で、C: 0.052%、Si;3.3%、Mn:
0.12%、酸可溶性AZ : 0.028%、 S 
: 0.006%、N:0,0075%、残部:Feお
よび不可避的不純物からなる電磁鋼スラブを、1150
℃に加熱した後熱間圧延し2.3 mm厚さの熱延板と
した。この熱延板に1120℃X3分間の焼鈍を施した
後、冷間圧延し0.3腸の最終板厚とした。この冷延板
に、露点=60°cSHzニア5%十Nz:25%の混
合ガス雰囲気中で850℃X120秒間の脱炭焼鈍を施
した。脱炭焼鈍後、歯形ロールによって、ストリップ圧
延方向に直角な方向に延在する50/1111幅の歪部
を、圧延方向における間隔を10園として、印加部カニ
60kg/−で導入した。
(Example) Example 1 By weight, C: 0.052%, Si: 3.3%, Mn:
0.12%, acid soluble AZ: 0.028%, S
: 0.006%, N: 0,0075%, balance: Fe and inevitable impurities.
After heating to ℃, hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.3 mm. This hot-rolled sheet was annealed at 1120° C. for 3 minutes, and then cold-rolled to a final sheet thickness of 0.3 mm. This cold-rolled sheet was subjected to decarburization annealing at 850° C. for 120 seconds in a mixed gas atmosphere with a dew point of 60° cSHz, near 5%, and 10 Nz:25%. After decarburization annealing, strained portions with a width of 50/1111 extending in a direction perpendicular to the strip rolling direction were introduced using toothed rolls with an interval of 10 degrees in the rolling direction, and an application portion crab of 60 kg/-.

歪導入後、鋼板を、体積濃度5%のアンモニアガスを含
むHzニア5%十N、=25%の混合ガス雰囲気下で7
00℃X30秒間熱処理した0次いで、MgO中に5重
量%のフェロ窒化マンガンを添加した焼鈍分離剤を鋼板
に塗布し、然る後、10’C/hrの昇温速度で120
0℃に加熱して20時間の仕上焼鈍を施した。
After introducing strain, the steel plate was heated under a mixed gas atmosphere of 5% Hz nia = 25% containing ammonia gas with a volume concentration of 5%.
Heat treated at 00°C for 30 seconds. Next, an annealing separator containing 5% by weight of ferromanganese nitride in MgO was applied to the steel plate, and then heat treated at 120°C at a heating rate of 10'C/hr.
Finish annealing was performed at 0° C. for 20 hours.

こうして得られた製品の磁気特性を、表1に示す。The magnetic properties of the product thus obtained are shown in Table 1.

表1 表1から明らかなように、二次再結晶粒の粒サイズをコ
ントロールする本発明によるときは、粒サイズのコント
ロールをしなかった比較例によるものに比し、極めて優
れた鉄損を有する製品が得られている。
Table 1 As is clear from Table 1, when the grain size of the secondary recrystallized grains is controlled according to the present invention, the iron loss is extremely superior to that according to the comparative example where the grain size is not controlled. product is obtained.

実施例2 重量で、C:0:04%IsI:3゜5%、 Mn :
 0.12%、酸可溶性A! : 0.030%、S:
0.008%。
Example 2 By weight, C: 0:04% IsI: 3°5%, Mn:
0.12%, acid soluble A! : 0.030%, S:
0.008%.

N : 0.0080%、残部二Feおよび不可避的不
純物からなる電磁鋼スラブを、1200℃に加熱した後
熱間圧延して1.8 m厚さの熱延板とした。この熱延
板に、1120℃×2分間+900℃×2分間の2段階
焼鈍を施した後、冷間圧延し0.20 amの最終板厚
とした。次いで、露点=55℃、Ht75%十N、:2
5%の混合ガス雰囲気中で830℃X 90秒間の脱炭
焼鈍を鋼板に施した後、ヤグレーザにより0.3 wn
の径でエネルギー3mJのビームを圧延方向における間
隔1 、Omaで、圧延方向に直角な方向に延在する線
状に照射した。レーザビーム照射後、鋼板に、体積濃度
1%のアンモニアガスにH,ニア5%十N!  =25
%の混合ガスを混入した雰囲気中で550℃×40秒間
の熱処理を施した。熱処理後、?IgO中に5!量%の
フェロ窒化マンガンを添加した焼鈍分離剤を塗布し、次
いで、10’C/hrの昇温速度で1200℃に加熱し
て20時間仕上焼鈍した。
An electromagnetic steel slab consisting of N: 0.0080%, balance di-Fe and unavoidable impurities was heated to 1200° C. and then hot rolled to form a hot rolled sheet with a thickness of 1.8 m. This hot-rolled sheet was subjected to two-step annealing at 1120° C. for 2 minutes and 900° C. for 2 minutes, and then cold rolled to a final sheet thickness of 0.20 am. Then, dew point = 55°C, Ht 75% 10N, :2
After decarburizing the steel plate at 830°C for 90 seconds in a 5% mixed gas atmosphere, it was annealed at 0.3 wn using a YAG laser.
A beam with a diameter of 3 mJ and an energy of 3 mJ was irradiated in a linear manner extending in a direction perpendicular to the rolling direction at an interval of 1 Oma in the rolling direction. After laser beam irradiation, the steel plate was exposed to 1% volume concentration of ammonia gas with 5% H and 10N! =25
Heat treatment was performed at 550° C. for 40 seconds in an atmosphere containing a mixed gas of 50%. After heat treatment? 5 in IgO! An annealing separator to which % of ferromanganese nitride was added was applied, followed by final annealing at 1200° C. at a heating rate of 10° C/hr for 20 hours.

得られた製品の磁気特性を、表2に示す。The magnetic properties of the obtained product are shown in Table 2.

表2 表2から明らかなように、二次再結晶粒の粒サイズをコ
ントロールする本発明によるときは、粒サイズのコント
ロールをしなかった比較例によるものに比し、極めて優
れた鉄損を有する製品が得られる。
Table 2 As is clear from Table 2, when the grain size of the secondary recrystallized grains is controlled according to the present invention, the core loss is extremely superior to that according to the comparative example where the grain size is not controlled. product is obtained.

実施例3 重量で、C: 0.05%、Si:3.0%、 Mn 
: 0.15%、酸可溶性AI: 0.032%、S:
0.007%。
Example 3 By weight, C: 0.05%, Si: 3.0%, Mn
: 0.15%, acid soluble AI: 0.032%, S:
0.007%.

N : O,OO82%、残部Feおよび不可避的不純
物からなる電磁鋼スラブを、1150℃に加熱した後熱
間圧延し1.8 mm厚さの熱延板とした。この熱延板
を、1120℃X2分間+900℃X2分間の焼鈍(2
段階焼鈍)を施した後、冷間圧延し0、20 mmの最
終板厚とした。次いでこの冷延板に、露点:53℃,H
’、ニア5%十NZ15%の混合ガス雰囲気中で830
℃×90秒間の脱炭焼鈍を施した。脱炭焼鈍後、体積濃
度2%のアンモニアガスにH,ニア5%+Nt :25
%の混合ガスを混入した雰囲気下で炭酸ガスレーザによ
る局部加熱を行った。
An electromagnetic steel slab consisting of 82% N:O, OO, balance Fe and unavoidable impurities was heated to 1150° C. and then hot rolled to form a hot rolled sheet with a thickness of 1.8 mm. This hot-rolled plate was annealed at 1120°C for 2 minutes + 900°C for 2 minutes (2
After performing stepwise annealing), it was cold rolled to a final thickness of 0.20 mm. Next, this cold-rolled sheet was heated to a dew point of 53°C, H
', 830 in a mixed gas atmosphere of near 5% and NZ 15%
Decarburization annealing was performed at ℃ for 90 seconds. After decarburization annealing, ammonia gas with a volume concentration of 2%, H, Nia 5% + Nt: 25
Local heating was performed using a carbon dioxide laser in an atmosphere containing a mixed gas of 50%.

レーザ照射は、鋼板の圧延方向における間隔:15am
で、圧延方向に直角な方向に延在する線状に行った。レ
ーザビームの径は、0.2難であり、入射エネルギーは
1.5 KW、波長:10.6−のビームで鋼板面が局
所的に500〜850℃に加熱されるように走査した。
Laser irradiation was performed at intervals of 15 am in the rolling direction of the steel plate.
The rolling process was performed in a linear manner extending in a direction perpendicular to the rolling direction. The diameter of the laser beam was 0.2 mm, the incident energy was 1.5 KW, and the beam was scanned with a wavelength of 10.6 mm so that the surface of the steel plate was locally heated to 500 to 850°C.

レーザ照射による加熱後、鋼板に、MgO中に5重量%
のフェロ窒化マンガンを添加した焼鈍分離剤を塗布し、
次いで8℃/hrの昇温速度で1200℃に加熱して2
0時間仕上焼鈍した。
After heating by laser irradiation, 5% by weight in MgO was added to the steel plate.
Apply an annealing separator containing ferromanganese nitride,
Then, it was heated to 1200°C at a temperature increase rate of 8°C/hr for 2
Finish annealing was performed for 0 hours.

こうして得られた製品の磁気特性を、表3に示す。The magnetic properties of the product thus obtained are shown in Table 3.

い価値を有する。have great value.

表3から明らかなように、二次再結晶粒の粒サイズをコ
ントロールする本発明によるものは、粒サイズのコント
ロールをしなかった比較例によるものに比し、極めて優
れた鉄損を示している。
As is clear from Table 3, the product according to the present invention in which the grain size of the secondary recrystallized grains is controlled shows extremely superior iron loss compared to the comparative example in which the grain size is not controlled. .

(発明の効果)(Effect of the invention)

Claims (3)

【特許請求の範囲】[Claims] (1)重量で、C:0.025〜0.075%、Si:
2.5〜4.5%、S≦0.012%、酸可溶性Al:
0.010〜0.060%、N≦0.010%、Mn:
0.05〜0.45%を含有し、残部:Feおよび不可
避的不純物からなる電磁鋼スラブを、1200℃以下の
温度に加熱した後熱間圧延し、1回または中間焼鈍を介
挿する2回以上の冷間圧延を施して最終板厚とし、次い
で、脱炭焼鈍、焼鈍分離剤塗布を行った後、高温仕上焼
鈍を施す一方向性電磁鋼板の製造方法において、脱炭焼
鈍後、再結晶を伴わない程度の局所歪を鋼板(ストリッ
プ)に導入した後、アンモニアガスを含む水素、窒素混
合ガス雰囲気下で500〜850℃の温度域で短時間の
熱処理を施すことによって二次再結晶粒の粒界制御を行
うことを特徴とする二次再結晶粒界を制御する一方向性
電磁鋼板の製造方法。
(1) By weight, C: 0.025-0.075%, Si:
2.5-4.5%, S≦0.012%, acid-soluble Al:
0.010-0.060%, N≦0.010%, Mn:
An electromagnetic steel slab containing 0.05 to 0.45% and the balance consisting of Fe and unavoidable impurities is heated to a temperature of 1200 ° C. or less, then hot rolled, and one time or intermediate annealing is performed2. In a method for manufacturing unidirectional electrical steel sheets, the final thickness is achieved by cold rolling several times or more, followed by decarburization annealing, application of an annealing separator, and high-temperature finishing annealing. After introducing local strain to the steel plate (strip) to a degree that does not cause crystallization, secondary recrystallization is achieved by heat treatment for a short time in a temperature range of 500 to 850°C in a hydrogen and nitrogen mixed gas atmosphere containing ammonia gas. A method for producing a grain-oriented electrical steel sheet that controls secondary recrystallization grain boundaries, the method comprising controlling grain boundaries.
(2)重量で、C:0.025〜0.075%、Si:
2.5〜4.5%、S≦0.012%、酸可溶性Al:
0.010〜0.060%、N≦0.010%、Mn:
0.05〜0.45%を含有し、残部:Feおよび不可
避的不純物からなる電磁鋼スラブを、1200℃以下の
温度に加熱した後熱間圧延し、1回または中間焼鈍を介
挿する2回以上の冷間圧延を施して最終板厚とし、次い
で、脱炭焼鈍、焼鈍分離剤塗布を行った後、高温仕上焼
鈍を施す一方向性電磁鋼板の製造方法において、脱炭焼
鈍後、アンモニアガスを含む水素、窒素混合ガス雰囲気
下で500〜850℃の局所加熱を行うことによって二
次再結晶粒の粒界制御を行うことを特徴とする二次再結
晶粒界を制御する一方向性電磁鋼板の製造方法。
(2) By weight, C: 0.025-0.075%, Si:
2.5-4.5%, S≦0.012%, acid-soluble Al:
0.010-0.060%, N≦0.010%, Mn:
An electromagnetic steel slab containing 0.05 to 0.45% and the balance consisting of Fe and unavoidable impurities is heated to a temperature of 1200 ° C. or less, then hot rolled, and one time or intermediate annealing is performed2. In a method for manufacturing unidirectional electrical steel sheets, in which the final plate thickness is obtained by cold rolling more than once, then decarburization annealing, application of an annealing separator, and high-temperature finish annealing, after decarburization annealing, ammonia A unidirectional method for controlling secondary recrystallized grain boundaries, characterized in that grain boundaries of secondary recrystallized grains are controlled by local heating at 500 to 850°C in a mixed gas atmosphere of hydrogen and nitrogen containing gas. Manufacturing method of electrical steel sheet.
(3)局所歪、局所加熱の導入間隔が、鋼板(ストリッ
プ)圧延方向に5〜30mm、局所歪、局所加熱の幅が
300μm以下である請求項1または2記載の二次再結
晶粒界を制御する一方向性電磁鋼板の製造方法。
(3) The secondary recrystallization grain boundary according to claim 1 or 2, wherein the introduction interval of the local strain and local heating is 5 to 30 mm in the rolling direction of the steel plate (strip), and the width of the local strain and local heating is 300 μm or less. A controlled manufacturing method for unidirectional electrical steel sheets.
JP7999089A 1989-03-30 1989-03-30 Production of grain-oriented silicon steel sheet having controlled secondary recrystallized grain boundary Pending JPH02258928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7999089A JPH02258928A (en) 1989-03-30 1989-03-30 Production of grain-oriented silicon steel sheet having controlled secondary recrystallized grain boundary

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7999089A JPH02258928A (en) 1989-03-30 1989-03-30 Production of grain-oriented silicon steel sheet having controlled secondary recrystallized grain boundary

Publications (1)

Publication Number Publication Date
JPH02258928A true JPH02258928A (en) 1990-10-19

Family

ID=13705748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7999089A Pending JPH02258928A (en) 1989-03-30 1989-03-30 Production of grain-oriented silicon steel sheet having controlled secondary recrystallized grain boundary

Country Status (1)

Country Link
JP (1) JPH02258928A (en)

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
EP0334223B1 (en) Ultra-rapid heat treatment of grain oriented electrical steel
KR101062127B1 (en) Method for manufacturing directional electromagnetic steel sheet with high magnetic flux density
JPH05112827A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic property and coating film pr0perty
JPH0277525A (en) Production of grain-oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
JPH0230740A (en) High magnetic flux density grain oriented electrical steel sheet having drastically excellent iron loss and its manufacture
EP4079873A1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
CN111417737B (en) Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
JPH0717953B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH08134551A (en) Production of grain oriented silicon steel sheet excellent in iron loss and magnetostrictive characteristic
JP4123679B2 (en) Method for producing grain-oriented electrical steel sheet
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP3390109B2 (en) Low iron loss high magnetic flux density
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP3393218B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH02258928A (en) Production of grain-oriented silicon steel sheet having controlled secondary recrystallized grain boundary
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JP2826903B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with good glass coating
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
KR100650554B1 (en) A method for manufacturing thick gauge grain-oriented electrical steel sheet
JPS60218426A (en) Manufacture of grain-oriented electrical steel sheet having low iron loss and high magnetic flux density
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss