JPH02258891A - Production of coke - Google Patents
Production of cokeInfo
- Publication number
- JPH02258891A JPH02258891A JP8038289A JP8038289A JPH02258891A JP H02258891 A JPH02258891 A JP H02258891A JP 8038289 A JP8038289 A JP 8038289A JP 8038289 A JP8038289 A JP 8038289A JP H02258891 A JPH02258891 A JP H02258891A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- coke
- cob
- charging
- caking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000571 coke Substances 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000003245 coal Substances 0.000 claims abstract description 106
- 239000011230 binding agent Substances 0.000 claims abstract description 5
- 238000010000 carbonizing Methods 0.000 claims abstract description 4
- 238000003763 carbonization Methods 0.000 abstract description 29
- 238000004904 shortening Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 28
- 239000004484 Briquette Substances 0.000 description 27
- 238000004939 coking Methods 0.000 description 11
- 238000012546 transfer Methods 0.000 description 11
- 238000005336 cracking Methods 0.000 description 9
- 238000001125 extrusion Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000004927 fusion Effects 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000003610 charcoal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Coke Industry (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は現行の水平室炉式コークス炉を用いてのコー
クス製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a coke manufacturing method using a current horizontal chamber type coke oven.
C従来の技術]
現行の室炉式コークス製造法は発明以来約−世紀半に亘
って改良が加えられ、はぼ完成されたプロセスであるが
、生産弾力性の小さいことと、強粘結炭が不可欠であり
原料選択範囲の狭いことが欠点とされている。この問題
点を少しでも改善しようと各所でいろいろな検討が続け
られ、種種の方法が提案されている。現行室炉式コーク
ス炉の生産弾力性が小さいのはコークス炉に装入する装
入炭が3■以下80〜90%に粉砕された粉炭が主体で
あり、場合よフてはこれに炭化室内の窩密度up、コー
クス品質向上を目的として装入炭の一部を塊成化して粉
炭と混合させてコークス炉に装入しているが、いずれに
しても炭化室内の伝熱が伝導伝熱主体であるためであり
、生産スピードを上げて生産弾力性を高めるためにはフ
リュー温度を高める以外に方法がないが、フリュー温度
はレンガの材質から自ずと限界がある。また熱経済性の
上からフリュー温度を下げると伝熱特性上、乾留時間が
大巾に延びる結果となるなど現行室炉式は融通性の乏し
いコークス製造方法である。C. Prior Art] The current chamber furnace coke production method has been improved over the century and a half since its invention, and is a nearly perfected process, but it suffers from low production elasticity and strong caking coal. is indispensable, and the narrow range of raw material selection is considered to be a drawback. In order to improve this problem even a little, various studies are being carried out in various places, and various methods have been proposed. The production elasticity of current indoor coke ovens is low because the coal charged to the coke oven is mainly pulverized coal that has been crushed to 80-90% less than 3 mm. In order to increase the density of coke and improve the quality of coke, some of the charged coal is agglomerated and mixed with powdered coal before being charged into the coke oven, but in any case, the heat transfer in the coking chamber is conducted. The only way to increase production speed and increase production flexibility is to increase the flue temperature, but the flue temperature naturally has a limit due to the material of the brick. Furthermore, if the flue temperature is lowered from the viewpoint of thermoeconomics, the carbonization time will be significantly extended due to heat transfer characteristics, and the current indoor furnace method is a coke production method with little flexibility.
一方、原料選択範囲に関しては例えば成型炭配合法、ス
タンピング法、乾燥炭装入法などいろいろな方法が提案
され、原料選択範囲の拡大が図られてきたが、その原理
とするところは炭化室内の充填密度を高めることにより
原料石炭の持っている粘結性を有効に活用させ、その分
非・微粘結炭を配合しようとしたものであり、非・微粘
結炭の配合量はせいぜい20%程度が限界である。また
、これらの方法では炭化室内の嵩密度が増大するためコ
ークス化した時の炉壁とコークケーキとの隙間がなくな
り押出抵抗が増大し、ひいては押出し不能となるため限
界があり、例えば成型炭配合法の場合には高稼動率操業
時成型炭配合率30%で押出電流が限界値をオーバーす
ることが起きるため塊成炭の配合量はmax、30%程
度が限界とされている。On the other hand, with regard to the range of raw material selection, various methods have been proposed, such as the briquette blending method, stamping method, dry coal charging method, etc., and efforts have been made to expand the range of raw material selection. By increasing the packing density, the caking properties of the coking coal are effectively used, and the amount of non-slightly caking coal is blended accordingly.The amount of non-slightly caking coal is at most 20 The limit is about %. In addition, these methods have their limits because the bulk density in the coking chamber increases, which eliminates the gap between the furnace wall and the coke cake when coked, increasing the extrusion resistance, and eventually making extrusion impossible. In the case of the method, the extrusion current may exceed the limit value at a briquette ratio of 30% during high operation rate operation, so the maximum blending amount of agglomerated coal is set at about 30%.
非・微粘結炭を最も多量に使用で診るプロセスは成型コ
ークス法であり、各所でいろいろな成型コークス製造方
法が提案、開発されている。The process that uses the largest amount of non-slightly coking coal is the molded coke process, and various molded coke production methods have been proposed and developed in various places.
成型コークス製造方法の多くはシャフト炉によるもので
あるが現行室炉式コークス炉に成型炭を装入して成型コ
ークスや通常コークスを製造する方法もいくつか提案さ
れている0例えば、炭化室内に粉炭、成型炭の順に装入
し、乾留して成型コークスと通常コークスを同時に製造
する特開昭51−5401号公報の方法、装入炭の一部
を成型コークス用成型炭にお籾かえ、その成型炭を押出
機側と反対の炭化室部に装入し乾留して、成型コークス
と通常コークスを同時に製造する特開昭52−1030
3号公報の方法、両側装入孔より通常のコークス用配合
炭を装入し、一方残りの装入孔より判融着成型コークス
用成型炭を装入することを特徴とする特開昭54−11
101号公報の原料炭の装入方法およびまず成型炭を装
入し、しかる後に粉炭を成型炭の上部に装入して、乾留
することを特徴とする特開昭54−61201号公報の
コークス製造方法などがある。これらの方法はいずれも
乾留過程で成型炭を融着させて押出を容易ならしめるた
めに粉炭をも装入しているため、伝熱形態は伝導伝熱が
主体であり、成型炭配合の効果により非・微粘結炭の配
合量は増加するが装入密度が高くなりた分だけ乾留速度
は遅くなり、生産性向上には繋らない。Most molded coke manufacturing methods use a shaft furnace, but some methods have been proposed in which molded coke or regular coke is produced by charging molded coal into the current chamber-type coke oven. A method disclosed in JP-A-51-5401 in which pulverized coal and briquette coal are charged in that order and carbonized to produce briquette coke and regular coke at the same time; JP-A-52-1030, in which the molten coal is charged into the carbonization chamber opposite to the extruder side and carbonized to produce molten coke and regular coke at the same time.
The method of Publication No. 3, characterized in that normal blended coal for coke is charged through charging holes on both sides, and molten coal for fused coke is charged through the remaining charging hole. -11
The coke disclosed in Japanese Patent Laid-Open No. 54-61201, which is characterized in that the method of charging coking coal is disclosed in Japanese Patent Publication No. 101, and that briquette coal is first charged, and then powdered coal is charged on top of the briquette coal, followed by carbonization. There are manufacturing methods, etc. In all of these methods, pulverized coal is charged to fuse the briquettes during the carbonization process and make extrusion easier, so conduction heat transfer is the main form of heat transfer, and the effect of the briquette coal composition is Although this increases the blending amount of non-slightly coking coal, the carbonization rate slows down as the charging density increases, and this does not lead to improved productivity.
また成型炭形状に関してもサイズが大きくなる程、境内
均−密度成型が困難となり、加熱時においては収縮割れ
を起こし易いため1、いろいろな工夫が提案されている
が、それらの多くは例えば、特開昭51−111803
号公報に提案されているよに成型炭のタイプはいろいろ
であるがいずれも中心部を凹ませたものである。この様
な成型炭の場合、成型性に関しては境内密度の均一性に
おいて効果があるが、加熱時の収縮割れ抑制に関しては
その効果が小さい、収縮割れは乾留過程の固化収縮時に
境内の温度差により境内に熱歪みが生じ、その応力がコ
ークス組織の強度を越えたときに発生するものである。In addition, regarding the shape of briquette coal, the larger the size, the more difficult it becomes to mold the coal to a uniform density within the precincts, and shrinkage cracks are more likely to occur during heating. Kaisho 51-111803
As proposed in the publication, there are various types of briquette coal, but all of them have a concave center. In the case of such briquette coal, it is effective in terms of the uniformity of density within the boundary in terms of moldability, but the effect is small in terms of suppressing shrinkage cracking during heating.Shrinkage cracking occurs due to temperature differences within the boundary during solidification and shrinkage during the carbonization process. This occurs when thermal strain occurs within the coke structure and the stress exceeds the strength of the coke structure.
その応力の度合は境内の温度勾配と等温帯の面積(−数
的には成型炭の径に比例)とに左右されるものであり、
境内の温度勾配が同一でも成型炭種が大ぎくなると割易
くなるのはこのためである。したがって、収縮割れを抑
制させるためには境内の等温帯面積を小さくすることが
肝要である。上記特開昭51−111803号公報は等
温帯面積がほとんど小さくならず、成型炭形状面から収
縮割れ抑制の効果は期待薄であり、更に何等かの工夫が
必要である。The degree of stress depends on the temperature gradient within the area and the area of the isothermal zone (numerically proportional to the diameter of the briquette).
This is why even if the temperature gradient within the precincts is the same, the larger the type of molten coal, the more likely it is to break. Therefore, in order to suppress shrinkage cracking, it is important to reduce the area of the isothermal zone within the temple grounds. In the above-mentioned Japanese Unexamined Patent Publication No. 51-111803, the isothermal zone area is hardly reduced, and the effect of suppressing shrinkage cracking is not expected due to the shape of the briquette, and some further measures are required.
[発明が解決しようとする課題]
本発明は現行の室炉式コークス炉を改造することなく、
装入炭の事前処理および操業方法により乾留時間の短縮
、非・微粘結炭の多量使用、フリュー温度の低下等を達
成しようとするものである。[Problem to be solved by the invention] The present invention solves the problem without modifying the current indoor coke oven.
The aim is to shorten the carbonization time, use a large amount of non-slightly caking coal, lower the flue temperature, etc. by pre-treating the charged coal and operating methods.
[課題を解決するための手段および作用]本発明は装入
炭を塊成化してコークス炉に装入することにより、上記
課題を解決しようとするものである。その要旨は水平室
炉式コークス炉において装入炭の粘結性を塊成炭サイズ
に応じて粘結力指数CIを40〜80の範囲に調整した
後、バインダーを添加して30cm3以上の塊成炭とし
、これを全量コークス炉に装入して乾留することを特徴
とするコークス製造方法である。さらに各種形状の塊成
炭を2個以上連結した形とし、連結部の厚みを最大厚み
の75%以下および最長径を厚みの2倍とした塊成炭を
コークス炉に装入して乾留することを特徴とするコーク
ス製造方法である。つまり、本発明は粉炭装入時の伝導
伝熱に加え輻射伝熱および発生ガスによる対流伝熱をも
利用して乾留速度を速め、乾留時間の短縮を図るととも
に、装入炭を塊成化・圧密化することにより石炭の粘結
性を有効に活用せしめ非・微粘結炭の多量使用を狙った
ものである。また、本発明は現行室炉法の粉炭装入の場
合と乾留時間を同じとすればそれだけフリュー温度の低
下が図れものである。[Means and effects for solving the problems] The present invention aims to solve the above problems by agglomerating charged coal and charging it into a coke oven. The gist of this method is to adjust the caking properties of the charged coal to a range of 40 to 80 according to the size of the agglomerated coal in a horizontal chamber type coke oven, and then add a binder to create agglomerates of 30 cm3 or more. This coke manufacturing method is characterized by forming coal into coal, charging the entire amount into a coke oven, and carbonizing it. Furthermore, two or more pieces of agglomerated coal of various shapes are connected, and the agglomerated coal is charged into a coke oven and carbonized, with the thickness of the connected part being 75% or less of the maximum thickness and the longest diameter twice the thickness. This is a coke manufacturing method characterized by the following. In other words, the present invention uses radiation heat transfer and convection heat transfer by generated gas in addition to conduction heat transfer when charging powdered coal to increase the carbonization rate, shorten the carbonization time, and agglomerate the charged coal.・The aim is to make effective use of the caking properties of coal by compacting it, and to use a large amount of non-slightly caking coal. Furthermore, in the present invention, if the carbonization time is the same as in the case of pulverized coal charging in the current room furnace method, the flue temperature can be reduced accordingly.
問題はいかにして押出時に炭化室内でコークケーキが崩
壊して押出不能となることがなく、かつ炭化室内にある
大きさの空隙を確保できる程度に塊成炭同士を適度に融
着させ得るかと言うことであった。これまでの技術は前
述先願発明に見られるように粘結性の低い成型コークス
用成型炭の場合、いずれも炉壁部の成型炭同士は相互に
融着し得ないものとの判断から粘結性のある粉炭を装入
しているが、本発明者らは成型コークス用成型炭の乾留
試験を行っていた過程で成型炭サイズがある程度以上で
あれば成型炭の粘結性を大幅に下げても炉壁部の成型炭
は押出に耐える程度には十分融着するものであることを
発見したのである。つまり、後述実施例1に示す通り、
塊成炭サイズが30 cm’未満と小さい場合では装入
炭crは80以上が必要であるが、塊成炭サイズが30
CI113以上と大きくなれば装入炭CIは80未満で
も塊成炭同士は強固に融着することを発見したものであ
る。y4を水平室炉式コークス炉における各種成型炭の
乾留実験結果、成型炭同士の融着度合は排出時のコーク
スの融着状態(目視および写真判定)から、押出しに十
分耐える程度に融着していると判断されたものは成型コ
ークス原形率が80%以下でありた。また、空間が若干
残っている程度に融着していた場合の成型コークス原形
率は約30%であったことから、適正な融着範囲を30
≦成型コークス原形率≦80とした。これを基準値とし
て各成型炭サイズにおける適正配合条件を求めたものが
第1図である。乾留過程における塊成炭同士の融着特性
は第1図に示すように塊成炭のサイズに大きく影響をう
けるので、装入炭配合に際しては塊成炭サイズに応じて
装入炭の粘結力指数を調整する必要がある。The problem is how to prevent the coke cake from collapsing in the coking chamber during extrusion and making it impossible to extrude, and how to properly fuse the agglomerated coal to each other to the extent that a certain size of void can be secured in the coking chamber. It was something to say. As can be seen in the prior invention mentioned above, in the case of molded coal for molded coke with low caking properties, the technology has been developed based on the judgment that the molded coals on the furnace wall cannot fuse together. Although pulverized coal, which has caking properties, is charged, the present inventors found that in the process of conducting a carbonization test of briquette coal for briquette coke, the caking properties of briquette coal were significantly reduced if the briquette size exceeded a certain level. They discovered that even when lowered, the molten coal on the furnace wall was sufficiently fused to withstand extrusion. In other words, as shown in Example 1 below,
When the lump coal size is small (less than 30 cm'), the charging coal cr must be 80 or more, but if the lump coal size is 30 cm
It was discovered that if the CI is increased to 113 or more, the lumped coal will be firmly fused together even if the charged coal CI is less than 80. The results of a carbonization experiment of various types of briquette coal in a horizontal chamber type coke oven showed that the degree of fusion between the briquettes was determined from the fused state of the coke at the time of discharge (visual and photographic judgment) to the extent that it could withstand extrusion. The molded coke originality ratio of those judged to be 80% or less was found to be 80% or less. In addition, when the molded coke was fused to the extent that some space remained, the original molded coke ratio was approximately 30%, so the appropriate fusion range was determined to be 30%.
≦molded coke original form ratio≦80. Using this as a reference value, the appropriate blending conditions for each briquette size are determined in FIG. 1. As shown in Figure 1, the fusion characteristics between lump coals during the carbonization process are greatly affected by the size of the lump coals. It is necessary to adjust the force index.
また、粘結性が高くなり過ざ塊成炭全体が軟化溶融融着
して空間を埋めると輻射伝熱の効果が無くなるので、そ
の兼合いが重要である。更に操業の安全性を考慮すると
、好ましくは塊成炭サイズ50 cm’以上、装入炭C
l50〜70である。In addition, if the caking property becomes high and the entire over-agglomerated coal softens, melts and fuses to fill the space, the effect of radiant heat transfer will be lost, so it is important to balance this. Furthermore, considering operational safety, it is preferable to use agglomerated coal with a size of 50 cm or more and a charging coal C.
l50-70.
また輻射伝熱を有効的に活用するためには塊成炭サイズ
は炭化室内への持込み粉および装入時の落下衝フによる
発生粉等により空間部が閉塞されることを考慮すると大
きいほど有利である。しかし、塊成炭サイズが大きくな
ると装入時の落下?r11jにより壊れ易く、また乾留
過程で熱歪みによる収縮割れを起こし易く、特に急速加
熱を受ける炉壁部ゾーンで割れが多くなることは即押出
抵抗の増大に繋がり延いては押出不能となることが心配
されるので、鋳物用などの大塊塊成炭を乾留する場合に
は後述するような塊成炭形状に工夫を凝らし、かつ乾留
時のフリュー温度を若干低目にするなどの割れ抑制アク
ションを講じる必要がある。この様な方策を講ずれば、
水平室炉コークス炉でもって大塊の鋳物用コークスの乾
留も可能である。一般に塊成炭が大きくなると収縮割れ
を起こし易くなるので、これを回避するための方策とし
て乾留過程における境内の等温帯面積が出来るだけ小さ
くなるような塊成炭形状を考案した。つまり発想として
は収縮割れを起こしにくい小型の塊成炭を2個以上連結
させた形状とすることにより塊成炭体積は2倍以上とな
るが、塊成炭は割れ難く、かつ炭化室内の空隙率も確保
し易くなるというものである。小型の塊成炭の形状につ
いては例えば、マセック、ピロー ラシジナル、オボイ
ドなど特に規制はないが、乾留過程での境内の亀裂発生
を抑制するためには′s1表の結果から、第2図に示す
塊成炭の形状比が0.75 a≧b、2a≦Cの条件を
満足することが大切である。dとdoとの関係について
はd ’/d −1でもd ’/d冨1でも特に支障は
ない。また炭化室内に有効な空隙を確保するために粉炭
部分を篩分・除去して塊のみを装入することを心掛け、
炭化室内の塊成炭原形率を出来るだけ高めことが肝要で
ある。In addition, in order to effectively utilize radiation heat transfer, the larger the coal size, the better, considering that the space will be blocked by powder brought into the coking chamber and powder generated by falling impact during charging. It is. However, as the lump coal size increases, does it fall during charging? It is easily broken due to r11j, and is prone to shrinkage cracking due to thermal strain during the carbonization process.In particular, if there are many cracks in the furnace wall zone that undergoes rapid heating, it will immediately lead to an increase in extrusion resistance, and eventually it may become impossible to extrude. This is a concern, so when carbonizing large lump charcoal for use in castings, etc., take measures to prevent cracking, such as devising the shape of the charcoal as described below, and lowering the flue temperature during carbonization to a slightly lower temperature. It is necessary to take the following steps. If you take such measures,
It is also possible to carbonize large blocks of foundry coke in horizontal chamber coke ovens. Generally, the larger the agglomerated coal is, the more likely it is to cause shrinkage cracking, so as a measure to avoid this, we devised an agglomerated coal shape that minimizes the area of the isothermal zone within the precinct during the carbonization process. In other words, the idea is that the volume of agglomerated coal can be more than doubled by connecting two or more small agglomerated coals that do not easily cause shrinkage cracking, but agglomerated coal is difficult to crack, and there are no voids in the coking chamber. This will also make it easier to secure a good rate. There are no particular regulations regarding the shape of small agglomerated coal, such as masec, pillow radial, or ovoid, but in order to suppress the occurrence of cracks in the precinct during the carbonization process, from the results of Table 's1, it is shown in Figure 2. It is important that the shape ratio of the lump coal satisfies the conditions of 0.75 a≧b and 2a≦C. Regarding the relationship between d and do, there is no particular problem with d'/d-1 or d'/d-1. In addition, in order to secure effective voids in the carbonization chamber, we tried to sieve and remove the powdered coal and charge only the lumps.
It is important to increase the original form of agglomerated coal as much as possible in the carbonization chamber.
[実施例] 本発明を実施例に基づいて説明する。[Example] The present invention will be explained based on examples.
実施例−1
第2表に、電トン水平式ガス加熱コークス炉(炭化室寸
法:巾400×高さ1000x長さ120ha)を用い
ての代表的乾留実験結果を示す、乾留条件はいずれもフ
リュー温度1250℃一定であり、それぞれ炭中温度9
50℃に達した後2時装置いて排出した。ここには成型
炭サイズ27cm’(ラショナル形)、56cm’(ピ
ロー形)、92cm’(ピロー形)のデータを示したが
、成型炭サイズが大きくなると粘結力指数はほぼ同じで
もコークスの原形率が低下し融着率が高くなっている。Example-1 Table 2 shows the results of a typical carbonization experiment using a Denton horizontal gas-heated coke oven (carbonization chamber dimensions: width 400 x height 1000 x length 120 ha). The temperature is constant at 1250℃, and the temperature in the coal is 9.
After reaching 50°C, the apparatus was drained for 2 hours. Here, we have shown data for briquette coal sizes of 27cm' (rational type), 56cm' (pillow type), and 92cm' (pillow type), but as the briquette size increases, even though the coking force index is almost the same, the original coke shape The rate decreases and the fusion rate increases.
特に、成型炭サイズ27 crtr’と小さい場合は配
合炭の粘結性をかなり高くしないと融着しにくい結果と
なっている。コークス強度に関しては融着しすぎても融
着不足でも強度が低下する傾向にあり、原形率でみると
適正範囲は30≦原形率≦80にありそうである。この
ように成型炭同士を適度に融着させることがポイントで
あり、そのためには第1図に示すように成型炭サイズに
応じて配合炭の粘結性を調整することが重要である。ま
た、配合No、LOは非・微粘結炭のみを配合したもの
であるが、配合炭の粘結性を適正範囲に調整すれば、成
型炭同士は互いに強固に融着し、かつコークス強度も高
炉用コークスなみ以上のものが得られており、本発明は
現行室炉法に比べて原料選択範囲にが大幅に拡大するこ
とが実証された。In particular, when the coal briquette size is as small as 27 crtr', it is difficult to fuse the coal blend unless the caking properties of the coal blend are considerably increased. With regard to coke strength, the strength tends to decrease if there is too much fusion or not enough fusion, and in terms of original shape ratio, the appropriate range is likely to be 30≦original ratio≦80. The key is to properly fuse the briquettes together in this manner, and for this purpose it is important to adjust the caking properties of the coal blend according to the size of the briquettes, as shown in FIG. In addition, blend No. and LO are blended with only non-slightly caking coal, but if the caking properties of the blended coal are adjusted to an appropriate range, the briquettes will firmly fuse together and the coke strength will increase. Even coke equivalent to blast furnace coke or higher was obtained, demonstrating that the present invention greatly expands the range of raw material selection compared to the current indoor furnace method.
実施例−2
第3表に、属トン水平式ガス加熱コークス炉(炭化室寸
法:巾400×高さ1000 x長さ1200tx量)
に招ける粉炭装入の場合と成型炭装入の場合の乾留特性
を示す、フリュー温度を1250℃とした場合、粉炭装
入の場合に比べ、成型炭100%装入の方が約2.5h
rも乾留時間が短くなった。また乾留時間を同じとした
場合は成型炭装入の方が約150℃フリエ−温度を下げ
ることができた。Example-2 Table 3 shows a horizontal gas-heated coke oven (dimensions of carbonization chamber: width 400 x height 1000 x length 1200 tx quantity)
When the flue temperature is set to 1250°C, the carbonization characteristics of pulverized coal charging and briquette coal charging are approximately 2.5% higher with 100% briquette charging than with pulverized coal charging. 5h
The carbonization time was also shortened. Furthermore, when the carbonization time was the same, the Freeier temperature could be lowered by about 150°C by charging briquette coal.
第3表 成型炭および粉炭の乾留特性
実施例−3
第3図に、本発明の実機プロセスイメージを示す、まず
所定粒度に粉砕された原料石炭を記合撞1で粘結力指数
Cl40〜80の範囲に配合し、混錬機2でこれにSo
P等のバインダーを添加・混練した後、ダブルロールの
成型機3で所期タイプの形状に成型された成型炭は最終
的にはコークス炉5の装入直前に篩分機4により粉炭部
分を除去し、塊状のもののみをコークス炉5に装入して
通常室炉式コークス炉の操業と同様にしてコークスを製
造する。コークス炉5の装入直前に篩分m4により篩分
けられた粉炭は混練機2に戻され、リサイクルされる。Table 3 Carbonization characteristics of briquette coal and pulverized coal Example-3 Figure 3 shows an image of the actual process of the present invention. First, raw coal pulverized to a predetermined particle size is recorded with a caking force index of Cl 40 to 80 at a combined particle size of 1. Mix it within the range of , and mix it with So
After adding and kneading a binder such as P, the molded coal is molded into the desired shape using a double roll molding machine 3, and the powdered coal portion is finally removed by a sieve machine 4 just before charging into a coke oven 5. Then, only the lumps are charged into the coke oven 5, and coke is produced in the same manner as in the operation of a normal indoor coke oven. The powdered coal sieved by the sieve m4 immediately before charging into the coke oven 5 is returned to the kneader 2 and recycled.
[発明の効果]
本発明は現行室炉式コークス炉を改造することなく、単
に成型炭製造設備を増設して30cm″以上の成型炭を
造り、全量コークス炉に装入することにより炭化室内に
ある大きさの空隙が形成される結果、炭化室内で伝導伝
熱に加え輻射および対流伝熱が起こることとなるため乾
留時間の短縮、フリエ−温度の低下、非・微粘結炭の多
量使用等が達成される等顕著な効果が得られる。[Effects of the Invention] The present invention does not require modifying the existing chamber-type coke oven, but simply adds briquette coal manufacturing equipment to produce briquettes of 30 cm or more, and charges the entire amount into the coke oven, thereby creating a briquette inside the coke oven. As a result of the formation of voids of a certain size, radiation and convection heat transfer occur in addition to conduction heat transfer in the carbonization chamber, resulting in shorter carbonization time, lower Freeier temperature, and use of a large amount of non-slightly caking coal. Remarkable effects such as the following can be achieved.
第1図は、塊成炭サイズに応じた装入炭の適正粘結性範
囲を示した図、第2図は、収縮割れを起しにくい塊成炭
の形状を示す図、第3図は、本発明のプロセスイメージ
を示した図である。
1・・・原料配合槽、 2・・・混練機、3・・・
成形機、 4・・・篩分機、5・・・水平室
炉式コークス炉。
粘結指数CI
[−]
第
図Figure 1 shows the appropriate caking range of charged coal depending on the size of coal coal, Figure 2 shows the shape of lump coal that is less prone to shrinkage cracking, and Figure 3 shows , is a diagram showing a process image of the present invention. 1... Raw material blending tank, 2... Kneading machine, 3...
Forming machine, 4... Sieving machine, 5... Horizontal chamber type coke oven. Caking index CI [-] Fig.
Claims (1)
成炭サイズに応じて粘結力指数CIを40〜80の範囲
に調整した後、バイン ダーを添加して30cm^3以上の塊成炭とし、これを
全量コークス炉に装入して乾留することを特徴とするコ
ークス製造方法。 2 各種形状の塊成炭を2個以上連結した形とし、連結
部の厚みを最大厚みの75%以下および最長径を厚みの
2倍以上とした塊成炭をコークス炉に装入して乾留する
ことを特徴とするコークス製造方法。[Claims] 1. In a horizontal chamber type coke oven, the caking property of the charged coal is adjusted to a caking power index CI in the range of 40 to 80 according to the size of agglomerated coal, and then a binder is added. A method for producing coke, which comprises making lump coal of 30 cm^3 or more in size, charging the entire amount into a coke oven, and carbonizing it. 2 Lump coal of two or more connected pieces of various shapes, with the thickness of the connected part being 75% or less of the maximum thickness and the longest diameter being at least twice the thickness, is charged into a coke oven and carbonized. A coke manufacturing method characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8038289A JPH02258891A (en) | 1989-03-31 | 1989-03-31 | Production of coke |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8038289A JPH02258891A (en) | 1989-03-31 | 1989-03-31 | Production of coke |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02258891A true JPH02258891A (en) | 1990-10-19 |
Family
ID=13716734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8038289A Pending JPH02258891A (en) | 1989-03-31 | 1989-03-31 | Production of coke |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02258891A (en) |
-
1989
- 1989-03-31 JP JP8038289A patent/JPH02258891A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3027084B2 (en) | Method for producing molded coke for metallurgy | |
JP6299332B2 (en) | Coking coal for coke production | |
JP5017966B2 (en) | Ferro-coke manufacturing method | |
JP5884159B2 (en) | Method for producing metallurgical coke | |
JP5017967B2 (en) | Ferro-coke manufacturing method | |
JP4718241B2 (en) | Coke production method | |
JP2001303143A (en) | Method for producing agglomerate including carbonaceous material | |
JPH02258891A (en) | Production of coke | |
CN101343582B (en) | Method for preparing moulded coke with ball press technique | |
JPH0714804B2 (en) | Method for producing high-density isotropic carbon material | |
JP5365043B2 (en) | Ferro-coke manufacturing method | |
JP4892928B2 (en) | Ferro-coke manufacturing method | |
JP5470855B2 (en) | Manufacturing method of ferro-coke for metallurgy | |
CN113929460A (en) | Preparation method of isostatic pressing graphite material | |
USRE18062E (en) | Vania | |
JP5386840B2 (en) | Manufacturing method of ferro-coke for metallurgy | |
JP5028946B2 (en) | Ferro-coke raw material molding and method for producing ferro-coke | |
JP4996103B2 (en) | Manufacturing method of carbonized material agglomerates | |
JP2005344181A (en) | Agglomerate including carbonaceous material and its manufacturing method | |
JP3812370B2 (en) | Coke production method | |
CN106672961A (en) | Method for preparing high-resistance graphitizing heat insulation material | |
JP5386988B2 (en) | Manufacturing method of ferro-coke for metallurgy | |
JP2002121568A (en) | Process for manufacturing coke by agglomerating charcoal | |
JP2868983B2 (en) | Coking furnace coal heating method and metallurgical coke manufacturing method | |
JP3491092B2 (en) | Manufacturing method of molded coke |