JPH02258706A - Preparation of insecticide - Google Patents

Preparation of insecticide

Info

Publication number
JPH02258706A
JPH02258706A JP1076596A JP7659689A JPH02258706A JP H02258706 A JPH02258706 A JP H02258706A JP 1076596 A JP1076596 A JP 1076596A JP 7659689 A JP7659689 A JP 7659689A JP H02258706 A JPH02258706 A JP H02258706A
Authority
JP
Japan
Prior art keywords
culture solution
water
insecticide
treatment
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1076596A
Other languages
Japanese (ja)
Inventor
Kenji Goto
兼治 後藤
Hironori Mori
森 博徳
Iwao Omori
大森 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP1076596A priority Critical patent/JPH02258706A/en
Publication of JPH02258706A publication Critical patent/JPH02258706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To sterilize bacterium cells or sprouts thereof for the preparation of a high quality insecticide without lowering the insecticidal ability of the crystalline toxin of Bacillus.thuringiensis by carrying out the sterilization of a culture solution containing the crystalline toxin produced by the Bacillus.thuringiensis after water-soluble components in the culture solution are removed. CONSTITUTION:Bacillus.thuringiensis is cultured at 25-30 deg.C for 2-4 days under a sufficiently aerobic condition and the culture solution containing sprouts and a crystalline toxin formed thus is subjected to a centrifugal treatment, filtration treatment, precipitation treatment, etc., to separate and remove water- soluble components (e.g. components caused by the medium, or metabolites discharged outside the cells) existing in the culture solution, followed by simultaneously performing a mild chemical sterilization treatment and a physical sterilization treatment to perfectly kill the bacterium cells and sprouts thereof, thereby providing an insecticide having an excellent insecticidal activity. The insecticide having such a remarkable insecticidal activity as having not been predicted can also be prepared.

Description

【発明の詳細な説明】 (イ) 発明の目的 〔産業上の利用分野〕 本発明は、バチルス・チューリンゲンシス(13aci
LIus thuringjensis:以下BT菌と
1.=5)の産生ずる結晶毒素を有効、成分としBT醒
細胞及び芽胞を含有しない鱗翅目昆虫等に対して有効な
殺虫剤(以下BT農薬という〕を製造する方法に関する
もので、農薬業界及び農業の分野で広く利用される吃の
である。
[Detailed description of the invention] (a) Object of the invention [Field of industrial application] The present invention is directed to the production of Bacillus thuringiensis
LIus thuringjensis: Hereinafter referred to as BT bacteria and 1. This article relates to a method for producing an insecticide (hereinafter referred to as BT pesticide) that contains crystalline toxin produced by 5) as an effective ingredient and is effective against Lepidoptera insects, etc. that do not contain BT sapling cells or spores, and is useful in the agrochemical industry and agriculture. It is widely used in the field of stuttering.

〔従来の技術〕[Conventional technology]

BT菌の産生ずる結晶毒素は、鱗翅目昆虫等に対して強
力な殺虫作用を示し、しかも、人畜魚介類に対して、無
害であることから。
The crystalline toxin produced by the BT bacterium exhibits a strong insecticidal effect against lepidopteran insects, and is harmless to humans, animals, fish, and shellfish.

バイオ農薬として実用化されている。It has been put into practical use as a biopesticide.

一般に、BT農薬は結晶毒素の他に、自己再生のための
生命体である胞子(芽胞とも言う)を含んでおり、自然
界において、そのままの状態で散布されると、胞子が発
芽し、さらにはBT菌の増殖が生じ、蚕に薬害を与える
恐れがあシ、国内の養蚕業保護の立場から。
In general, in addition to crystalline toxins, BT pesticides contain spores (also called spores), which are living organisms for self-renewal.In the natural world, when sprayed as is, the spores germinate, and This is done in order to protect the domestic sericulture industry, as there is a risk that the BT bacteria will proliferate and cause chemical damage to the silkworms.

胞子の二次増殖のないBT農薬が求められている。There is a need for a BT pesticide that does not cause secondary spore growth.

この課題を解決するために、結晶毒素を含有するBT菌
の培養液内の細菌細胞・芽胞に対して、該結晶毒素の殺
虫能を喪失せしめることなく、細菌細胞・芽胞ケ殺滅し
得る如き緩徐な化学的殺菌処理と同じく緩徐な物理的殺
菌処理を組合せ、それらを同時に行なうことを特徴とす
る殺虫剤の製造法が提案されている(特公昭51−50
47号公報)。
In order to solve this problem, we developed a method that can kill bacterial cells and spores in the culture solution of BT bacteria containing crystal toxin without losing the insecticidal ability of the crystal toxin. A method for producing insecticides has been proposed that combines slow chemical sterilization and slow physical sterilization and performs them simultaneously (Japanese Patent Publication No. 51-50).
Publication No. 47).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の方法は、#l菌細胞・芽胞の殺滅方法としては優
れているものであシ、実用化されている方法であるが、
該方法で得られた結晶毒素は、殺菌処理により、実用的
な濃度(BT濃薬は一般にコナガに対して1.000乃
至2,000倍の製剤水懸濁液とし、て用いられる)に
おける残存殺虫活性が低下したものとなり易く、細菌細
胞・芽胞の殺滅を完全に行なう場合、時によってはこれ
をかなυの高濃度で使用しなければ充分な殺虫性能を示
さない殺虫剤しか得られない事があるという問題点を有
する方法である。
The above method is an excellent method for killing #1 bacterial cells and spores, and is a method that has been put into practical use.
The crystalline toxin obtained by this method remains at a practical concentration (BT concentrate is generally used as a suspension in water with a concentration of 1.000 to 2,000 times more effective against diamondback moths) through sterilization. The insecticidal activity tends to be reduced, and if you want to completely kill bacterial cells and spores, you may have to use it at a high concentration of Kanaυ to obtain an insecticide that does not show sufficient insecticidal performance. This method has some problems.

本発明者等は、上記方法における細菌細胞・芽胞の殺滅
の効率を向上させ、品質の優れた製品が得られる製造方
法を確立すべく鋭意検討を行なった。
The present inventors have conducted intensive studies to improve the efficiency of killing bacterial cells and spores in the above method and to establish a manufacturing method that can yield products of excellent quality.

(ロ) 発明の構成 〔課題を解決するための手段〕 本発明者等は、前記問題点を解消するための検討過程に
おいて、培養液中に存在する水溶性成分が細菌細胞・芽
胞の殺滅効率を低下させ、ひいては結晶毒素の殺虫活性
を低下させることを見出し、培養液の殺菌前に水溶性成
分を除去することにより、実用に供し得る殺虫剤を製造
するに足る殺虫活性を有する結晶毒素が安定的に得られ
るばかりでなく、殺虫活性の飛躍的に向上した結晶毒素
が得られることを見出し1本発明を完成した。
(B) Structure of the Invention [Means for Solving the Problems] In the process of studying to solve the above-mentioned problems, the present inventors discovered that the water-soluble components present in the culture solution kill bacterial cells and spores. It was discovered that the crystal toxin has sufficient insecticidal activity to produce a practical insecticide by removing the water-soluble components before sterilizing the culture solution by reducing the efficiency and ultimately the insecticidal activity of the crystal toxin. The present invention was completed based on the discovery that not only can a crystalline toxin be stably obtained, but also a crystalline toxin with dramatically improved insecticidal activity can be obtained.

すなわち、本発明はバチルス・チューリンゲンシスの産
生した結晶毒素を含有する培養液の殺菌を培養液中に存
在する水溶性成分の除去分離工程後に実施することを特
徴とする殺虫剤の製造方法に関するものである。
That is, the present invention relates to a method for producing an insecticide, characterized in that sterilization of a culture solution containing crystalline toxin produced by Bacillus thuringiensis is carried out after a step of removing and separating water-soluble components present in the culture solution. It is.

0結晶毒素を含有する培養液 本発明において殺虫剤の原料となる結晶毒素を含有する
培養液は、結晶毒素を産生ずるBT菌、例えばバチルス
・チューリンゲンシス・バリエタス・クルスタキHD−
1(Bac i I l usthuringiens
is var kurstaki HD−1)等を公知
の培養方法及び条件で培養して得られるものである。
0 Culture solution containing crystal toxin In the present invention, the culture solution containing crystal toxin, which is a raw material for the insecticide, is a culture solution containing BT bacteria that produces crystal toxin, such as Bacillus thuringiensis varietus kurstaki HD-
1 (Bac i I l usthuringiens
is var kurstaki HD-1), etc., by culturing them using known culture methods and conditions.

本発明において用いられるBT菌としては公知のものの
いずれでもよく、培養方法及び条件は具体的に説明する
と以下のとおりである。
The BT bacterium used in the present invention may be any known BT bacterium, and the culturing method and conditions are specifically described below.

BT醒は5窒素源、炭素源、ミネラルおよびビタミンに
富む天然培地を使用して培養することができるが、結晶
毒素ならびに菌体の産生は1通気攪拌条件に大きく左右
されるので、充分な好気的条件で培養することが好まし
く、それにより両者の産生量を増すことができる。培養
温度は、約25〜30℃、培養日数は2〜4日間でよい
。炭素源としては、例えば、蔗糖、麦芽糖、グルコース
、7ラクトース、塘密が利用され、窒素源としては、例
えば、コーンスチープリカー、硫酸アンモニウム、塩化
アンモニウム、綿実粉、酵母エキス、大豆粉、カゼイン
氷解物などが挙げられる。また、ミネラルおよびビタミ
ンは、精密、コーンスチープリカー、酵母エキスで代用
することができ、必要に応じては、無機塩類、ビタミン
類をさらに添加してもよい。特に、大量生産を行う場合
は、深部通気攪拌培上記の様にして培養した培養液中K
Ifi、、培地に起因する成分、BTIiiが菌体外に
排出した代謝物あるいは菌体内に含有され、自己融解後
に培養液中に放出された代謝産物等の水溶性成分が存在
し、本発明者等は、これらのうちのどの成分であるかK
ついては解明していないが、これらの水溶性成分の存在
により殺菌の効率が低下し、このまま、すなわち水溶性
成分の存在下に完全に殺菌するためには殺菌条件をかな
シ厳しいものとせざるを得す。
BT can be cultured using a natural medium rich in nitrogen sources, carbon sources, minerals and vitamins; however, the production of crystalline toxins and bacterial cells is highly dependent on the aeration and agitation conditions; It is preferable to culture under atmospheric conditions, thereby increasing the production amount of both. The culture temperature may be about 25 to 30°C, and the number of culture days may be 2 to 4 days. As the carbon source, for example, sucrose, maltose, glucose, 7-lactose, and tangmi are used, and as the nitrogen source, for example, corn steep liquor, ammonium sulfate, ammonium chloride, cottonseed flour, yeast extract, soybean flour, and casein ice melt are used. Examples include things. In addition, minerals and vitamins can be substituted with minerals, corn steep liquor, and yeast extract, and if necessary, inorganic salts and vitamins may be further added. In particular, when performing mass production, K
There are water-soluble components such as Ifi, components originating from the culture medium, metabolites excreted outside the bacterial cells by BTIii, or metabolites contained within the bacterial cells and released into the culture solution after autolysis, and the present inventors Which of these components is K?
Although it is not clear why, the presence of these water-soluble components reduces the sterilization efficiency, and in order to completely sterilize as it is, that is, in the presence of water-soluble components, the sterilization conditions must be made stricter. vinegar.

ひいては結晶毒素の殺虫活性を低下させることを見出し
、本発明を完成したものである。
Furthermore, the present invention was completed by discovering that the insecticidal activity of crystalline toxins can be reduced.

殺菌前に水溶性成分を除去することにより、実用的濃度
で有効的な殺虫剤を製造することが可能になるばかりで
なく、水溶性成分の除會′ 去の程夏によっては、今ま 予測することも出来なかっ
た程の殺虫活性を有する殺虫剤の製造を可能圧するもの
である。
Removal of water-soluble components before disinfection not only makes it possible to produce effective insecticides at practical concentrations, but also makes it possible to predict This makes it possible to produce insecticides with insecticidal activity to a degree that was previously impossible.

芽胞及び結晶毒素が形成された培養終了液(培養の進行
状態は、位相差顕微鏡で容易に追跡できるン中の水溶性
成分を除く方法としては1通常の遠心分離法、r適法、
沈降法などを利用して水溶液を除去する方法があげられ
る。特に、大量に処理する場合には、遠心分離機あるい
は膜1過材を使用する方法が好ましい。また、水溶性成
分の除去量は、前者の場合、遠心力(重力加速度)、通
液インターバル、洗浄インターバル等の操作条件により
、後者の場合、膜の孔径、圧力1通液速度等の操作条件
により異なるが、除去量が多すぎて芽胞及び結晶毒素の
分散性が阻害される様になることは避けるのが好ましく
、もし分ましい。
Methods for removing water-soluble components in the cultured solution in which spores and crystalline toxins have been formed (the progress of the culture can be easily tracked using a phase contrast microscope are 1) ordinary centrifugation method, r-proper method,
An example is a method of removing an aqueous solution using a sedimentation method or the like. In particular, when processing a large amount, it is preferable to use a centrifugal separator or a membrane filtration material. In addition, the amount of water-soluble components removed depends on operating conditions such as centrifugal force (gravitational acceleration), liquid passing interval, and washing interval in the former case, and in the latter case, operating conditions such as membrane pore diameter, pressure per liquid passing rate, etc. Although it differs depending on the situation, it is preferable to avoid removing too much amount so that the dispersibility of spores and crystal toxins is inhibited, if this is not possible.

O殺菌 本発明における殺菌は、細菌細胞・芽胞を殺滅するため
に行われるものでありで、下記のような化学的殺菌処理
及び物理的殺菌処理方法があシ、前掲の特公昭51−5
047号公報に提案されているように、単に一種類の殺
菌処理のみでは、結晶毒素の殺虫活性を低下させずに、
#l菌細胞・芽胞を完全に死滅させることは困難である
から1本発明においても緩徐な化学的殺菌処理と物理的
殺菌処理とを組合せて、それらを同時に行うことが好ま
しく、その方法により容易に細菌細胞・芽胞を完全に死
滅させることができ、殺虫能の優れた産業上極めて有用
な殺虫剤を得ることができる。
O Sterilization The sterilization in the present invention is carried out to kill bacterial cells and spores, and the following chemical sterilization treatment and physical sterilization treatment methods are available.
As proposed in Publication No. 047, simply one type of sterilization treatment does not reduce the insecticidal activity of the crystal toxin.
#1 Since it is difficult to completely kill bacterial cells and spores, it is preferable in the present invention to combine slow chemical sterilization treatment and physical sterilization treatment and perform them simultaneously. It is possible to completely kill bacterial cells and spores, and it is possible to obtain an industrially extremely useful insecticide with excellent insecticidal ability.

Q化学的殺菌処理 化学的殺菌処理方法は、ホルマリン、パラトルエンスル
ホンクロルアミドナトリウム、パラトルエンスルホン酸
ジクロルアミド、アゾビスクロロホルムアミジン、アク
リフジビン、メチレンブルー、塩化ベンザルコニウム、
塩化セチルピリジニウムなどの薬剤を上述の培養液に適
量加え殺菌する方法である。
Q Chemical sterilization treatment Chemical sterilization treatment methods include formalin, para-toluenesulfone chloramide sodium, para-toluenesulfonic acid dichloramide, azobischloroformamidine, acrizivin, methylene blue, benzalkonium chloride,
This method involves adding an appropriate amount of a drug such as cetylpyridinium chloride to the above-mentioned culture solution for sterilization.

O物理的殺菌処理 物理的殺菌処理方法は、加熱、超音波、放射線などによ
り、上述の培養液を殺菌する方法である。
O Physical sterilization treatment The physical sterilization treatment method is a method of sterilizing the above-mentioned culture solution by heating, ultrasonic waves, radiation, etc.

0殺虫活性の測定法 結晶毒素の殺虫活性を定量的に把握する方法としては、
コナガを用いた殺虫試験により半数致死濃度を求め、残
存殺虫活性を定量的に測定するという方法を採用した。
0Measurement method of insecticidal activityAs a method for quantitatively understanding the insecticidal activity of crystal toxins,
A method was adopted in which the half-lethal concentration was determined through an insecticidal test using diamondback moths, and the residual insecticidal activity was quantitatively measured.

すなわち。Namely.

適当に希釈した試料液夫々に対する検定供試昆虫の死亡
率を測定し、試料液の濃度と死亡率との関係から半数致
死濃度を求め殺虫活性の高低を比較する方法である。
This method measures the mortality rate of test insects for each appropriately diluted sample solution, calculates the half-lethal concentration from the relationship between the concentration of the sample solution and the mortality rate, and compares the level of insecticidal activity.

0調剤 BT菌の培養液から水溶性成分を除いた後に、上述の殺
菌処理を行い、必要に応じて。
After removing the water-soluble components from the culture solution of the 0-preparation BT bacteria, the above-mentioned sterilization treatment is performed, if necessary.

固液分離、精製を行うことで、結晶毒素な有する死滅し
た芽胞から成る殺虫剤が得られる。
Through solid-liquid separation and purification, an insecticide consisting of dead spores containing crystalline toxins can be obtained.

かかる殺虫剤は1通常、公知の方法で粉剤としたυ。あ
るいfi浴剤に懸濁させて製剤とすることが出来る。
Such insecticides are usually made into powders by known methods. Alternatively, it can be prepared by suspending it in a fi bath agent.

そして、その有効成分量は、対象昆虫罠よって異なるが
、通常公知の範囲で用いられ、また他の殺虫剤などと併
用されてもさしつかえない。
The amount of the active ingredient varies depending on the target insect trap, but it is usually used within a known range, and it can also be used in combination with other insecticides.

〔作用〕[Effect]

どの水溶性成分が殺菌効率を低下させているのかは不明
であるが、水溶性成分を培養液より除くことによって、
培養液の殺菌処理をより緩徐(例えば、化学殺菌剤の使
用量が軽減する)にすることが可能で、結晶毒素の殺虫
活性の低下を防止できるばかりでなく、従来の方法では
予測できないほど殺虫活性を飛躍的に高めることができ
るという作用を本発明は奏するものである。
It is unknown which water-soluble components reduce the sterilization efficiency, but by removing water-soluble components from the culture solution,
It is possible to sterilize the culture solution more slowly (for example, the amount of chemical disinfectant used is reduced), which not only prevents a decrease in the insecticidal activity of the crystal toxin, but also increases the insecticidal effect to a degree that cannot be predicted by conventional methods. The present invention has the effect of dramatically increasing activity.

〔実施例〕〔Example〕

以下実施例を用いて、更に詳細に本発明を説明する。 The present invention will be explained in more detail below using Examples.

実施例1.(培養液上澄部分の一部を水で置換した場合
:ホルマリン使用) バチルス・チューリンゲンシス健バリエタス・クルスタ
キHD −1(Bacillus thuringie
nsisvar kurstaki HD−1)を坂ロ
フラスコ中のC培地℃、3日間振盪培養する。6日培養
後の培養液を卓上型遠心分離機(14000rpm、4
℃。
Example 1. (When part of the culture supernatant is replaced with water: use formalin) Bacillus thuringiensis varietus kurstaki HD-1
Nsisvar kurstaki HD-1) is cultured with shaking in a Sakaro flask at C medium C for 3 days. After 6 days of culture, the culture solution was transferred to a tabletop centrifuge (14,000 rpm, 4
℃.

10分間)を用いて遠心分離し、上澄(水溶液)部分を
デカンテーションにより、回収する。その際、得られた
上澄の容量を測定しておく。つぎに、この培養液上澄部
分の一部を水で置換(100チ、90%、80%、60
%、40%。
10 minutes), and the supernatant (aqueous solution) portion is collected by decantation. At that time, measure the volume of the supernatant obtained. Next, a part of this culture solution supernatant was replaced with water (100%, 90%, 80%, 60%).
%, 40%.

20%、0%)した液をそれぞれ作製し、遠心分離後に
得られた土間容量分だけ、遠心管中の残渣にもどし、再
分散させる。その際、攪拌欅による分散に続き、超音波
処理(出力40W。
20% and 0%) are prepared respectively, and an amount equal to the soil volume obtained after centrifugation is returned to the residue in the centrifuge tube and redispersed. At that time, following dispersion using a stirrer, ultrasonic treatment (output 40W).

B)(、ANSON 5ONIFIER450超音波発
生装置な使用:試料を氷水中で冷却しながら、照射60
秒・休止30秒のインタバルで計5分間)を′施した。
B) (Using the ANSON 5ONIFIER450 ultrasonic generator: While cooling the sample in ice water, irradiate the sample for 60 minutes.
The treatment was carried out for a total of 5 minutes with intervals of 30 seconds and 30 seconds of rest.

このようにして、培養液上澄部分の一部ないし、すべて
を水で置換し、再分散させた種々の調製液(細菌細胞・
芽胞・結晶毒素の量は同じで、水溶性成分の量が異なる
)51づつを試験管に分注し、これにホルマリン各濃度
液5−を添加混合し、混合液中のホルマリン濃度を0.
1%〜1、0 %の範囲で0.1%刻みの水準となるよ
うにし5これを70℃に10分間加熱した後、室温に冷
却し、14000rpm・10分間遠心し、上清液をす
て沈降物に無菌水10ゴを加えて。
In this way, some or all of the culture supernatant is replaced with water, and various preparations (bacterial cells, etc.) are redispersed.
The amounts of spores and crystal toxins are the same, but the amounts of water-soluble components are different) are dispensed into test tubes, and each concentration of formalin (5-) is added and mixed to reduce the formalin concentration in the mixture to 0.
The mixture was heated to 70°C for 10 minutes, cooled to room temperature, centrifuged at 14,000 rpm for 10 minutes, and the supernatant liquid was drained. Add 10 g of sterile water to the sediment.

再び懸濁し、さらに遠心以降の操作を繰り返す。Resuspend and repeat the centrifugation and subsequent operations.

つぎに無菌水に懸濁した最終液について、生残細胞・芽
胞数及び残存殺虫活性を測定する(測定法は以下のとお
り)。
Next, the number of surviving cells/spores and residual insecticidal activity are measured for the final solution suspended in sterile water (the measurement method is as follows).

生残細胞・芽胞数測定 試料液11111を採り、無菌水にて適宜希釈し、Nu
trient −Broth−寒天培地(肉エキス1%
Take the sample solution 11111 for measuring the number of surviving cells and spores, dilute it appropriately with sterile water, and add Nu.
trient-Broth-agar medium (meat extract 1%
.

ポリペプトン1チ、塩化ナトリウム0.5 % 、寒天
1.5%:pH7,0)上に流し、30℃にて48時間
培養し、発生するコロニー数を数えて、これより試料中
の生残芽胞数(ケ/罰)を計算が0ケ/1となるホルマ
リンの混合液中濃度の最小値(細菌細胞・芽胞を完全に
死滅させる臨界濃度に相当する)と同処理液の残存殺虫
活性を表1に示す。
Polypeptone 1%, sodium chloride 0.5%, agar 1.5%: pH 7.0) was poured onto the sample, cultured at 30°C for 48 hours, the number of colonies generated was counted, and the number of surviving spores in the sample was counted. The minimum concentration of formalin in the mixed solution for which the number (ke/punishment) is 0ke/1 (corresponds to the critical concentration that completely kills bacterial cells and spores) and the residual insecticidal activity of the same treatment solution are expressed. Shown in 1.

試料厚を無菌水にて適宜希釈し、5ないし、7濃度段階
の検定液を50+ulずつ用意する。この検定液にキャ
ベツ生葉(200cd)を1分間浸漬した後、風乾する
。これを大型シャーレに敷き、各区(#度区)20頭の
コナガ3令幼虫を放飼し、72時間後に死生数を数え、
死亡率(%)を算出する。この結果をフイニー()’1
nney)の図解法(pinney、D、 J、(19
47) probit Al′1alysis。
Dilute the sample thickness appropriately with sterile water, and prepare 50+ ul of assay solution at 5 to 7 concentration levels. Fresh cabbage leaves (200 cd) are immersed in this test solution for 1 minute and then air-dried. This was spread in a large petri dish, 20 3rd instar diamondback moth larvae were released in each area (# area), and the number of dead and alive was counted after 72 hours.
Calculate the mortality rate (%). This result is Finny()'1
Pinney, D. J. (19
47) probit Al'1alysis.

Cambriage Univ、Press、Camb
ridge (Lordan)。
Cambriage Univ, Press, Cam
ridge (Lordan).

318 pp)を用いて解析し、半数致死n度(検定液
に含有する試料液の濃度(ppm〕として表示する)を
求める。
318 pp) to determine the half-lethal n degree (expressed as the concentration (ppm) of the sample solution contained in the test solution).

培養液上澄部分の一部な(化すべてを水で置換した調製
液を当該処理で殺菌し、生残芽胞数き、残存殺虫活性も
増大することが示された。
This treatment sterilized a prepared solution in which some or all of the culture supernatant was replaced with water, and it was shown that the number of surviving spores and residual insecticidal activity increased.

また、その置換の割合は80%以上でほぼ一定の結果を
与えた。
Further, the substitution ratio was 80% or more, giving almost constant results.

実施例2 (培養液上澄部分の一部を水で置換しり場合
:パラトルエンスルホンクロルア定ドナ胞・結晶毒素の
@濁液(培養液上澄部分の一部ないしすべてを水で置換
し、再分散させたものン51づつを試験管に分注し、こ
れにパラトルエンスルホンクロル了ミドナトリウムの各
#度の水溶液5就を添加混合し、混合液中のパラトルエ
ンスルホンクロルアミ)”−)−)jlム[tfO70
3%〜0.1チの範囲でo、o1s刻みの水準懸濁し、
これについて生残細胞・芽胞数及び残存殺虫活性を測定
した。この結果を表2に示す。
Example 2 (Part of the supernatant part of the culture solution is replaced with water.) Suspension solution of paratoluenesulfone chloride spores/crystalline toxin (part of the supernatant part of the culture solution is replaced with water) Dispense 51 portions of the redispersed material into test tubes, add and mix 5 portions of each degree of aqueous solution of sodium paratoluenesulfone chloramide (paratoluenesulfonechloramide) in the mixed solution. -)-)jlmu[tfO70
Suspended at a level of o, o1s in the range of 3% to 0.1 inch,
The number of surviving cells/spores and residual insecticidal activity were measured. The results are shown in Table 2.

\ 操作して、バラトルエン7スルホンクロルアミドナトリ
ウムを除去した沈降物を集め、無菌水に上表2において
も、培養液上管部分を水で置換することにより、混合液
中パラトルエンスルホンクロルアミドナトリウム濃度を
軽減でき、残存殺虫活性が増大することが認められた。
\ Collect the precipitate from which paratoluene 7-sulfone chloramide sodium has been removed, and add it to sterile water. As shown in Table 2 above, by replacing the upper tube of the culture solution with water, para-toluene sulfone chloramide in the mixed solution can be removed. It was observed that the sodium concentration could be reduced and the residual insecticidal activity increased.

また、その置換の割合は90チ以上でほぼ一定の結果を
与えた。
Furthermore, the substitution ratio was approximately constant at 90 or more.

以上、実施例1.2から明らかな通り、培養中の水溶性
成分を除くことで、殺菌用の化学薬品の濃度を軽減でき
、その結果として、残存殺虫活性が増大する(表1.2
では、LC,oの低下に相当する)ことが確認できたが
、実際の工業生産を想定した場合、−旦、遠心分離した
沈澱物(細菌細胞・芽胞・結晶毒素からなる)を水もし
くは電澄を用いて、もとの培養液レベルに戻して、殺菌
処理を行うことは、必ずしも得策とは言えない。
As is clear from Example 1.2, by removing water-soluble components during culture, the concentration of disinfecting chemicals can be reduced, and as a result, the residual insecticidal activity is increased (Table 1.2
However, assuming actual industrial production, first, the centrifuged precipitate (consisting of bacterial cells, spores, and crystalline toxins) should be soaked in water or electrolyte. It is not necessarily a good idea to return the culture solution to its original level and sterilize it using clear water.

そこで2殺菌処理後の液の分離・濃縮の負担を軽減する
ためK、培養液中の水溶性成分を除いた粘養液濃縮物に
ついて殺菌処理を試みた。
Therefore, in order to reduce the burden of separating and concentrating the liquid after sterilization, we attempted to sterilize the viscous liquid concentrate from which the water-soluble components in the culture liquid had been removed.

実施例6 実施例1と同様に調製した培養液0.8tを日立連続遠
心分離用ローター(容211)に入れ、回転数を種々変
えて(重力加速度1.000x、p−7,QOOXg)
回分遠心分離(4℃、10分間)を行う。遠心終了後、
沈澱部をまき込まないように注意深く、上清部分をとり
除き、水溶性成分の除去割合(濃縮比率:Xl、X2゜
超音波処理を施す。
Example 6 0.8 t of the culture solution prepared in the same manner as in Example 1 was placed in a Hitachi continuous centrifuge rotor (capacity 211), and the rotation speed was varied (gravitational acceleration 1.000x, p-7, QOOXg).
Perform batch centrifugation (4°C, 10 minutes). After centrifugation,
Carefully remove the supernatant portion so as not to include the precipitate, and perform ultrasonication at the removal rate of water-soluble components (concentration ratio: Xl, X2°).

この処理液5dづつを試験管に分注し、これにホルマリ
ン各濃度液51R1を添加混合し、混合液中のホルマリ
ン濃度を適宜5設定したものを70℃10分間加熱した
後、実施例1と同様に操作してホルマリンを除去した沈
降物を集め、無菌水に懸濁し、これについて生残細胞・
芽胞数及び残存殺虫活性を測定した。生残芽胞数が0ケ
/nilとなる混合液中のホルマリン濃度の最小値と開
成の残存殺虫活性を表3に示す。
Dispense 5d of this treatment solution into test tubes, add and mix 51R1 of each formalin concentration solution, set the formalin concentration in the mixed solution to 5 as appropriate, and heat it at 70°C for 10 minutes. The precipitate from which formalin has been removed in the same manner is collected, suspended in sterile water, and then mixed with surviving cells and
The number of spores and residual insecticidal activity were measured. Table 3 shows the minimum formalin concentration in the mixture at which the number of viable spores is 0/nil and the residual insecticidal activity of Kaisei.

表6から明らかなように、培養液からの水溶性成分の除
去割合の増大割合に応じて、細菌細胞・芽胞を完全に殺
滅するのに必要なホルマリン量(臨界濃度)の増加割合
は小さくなり、ゆえに培養固形分換算のホルマリン使用
量(混合液中のホルマリン臨界濃度/混合液中の固形分
濃度)の値を軽減でき、その結果として、培養固形分(
農薬本体となる)あたシの残存殺虫活性を飛躍IThK
高めることが可能となった。また、水溶性成分の除去割
合、すなわち培養液の濃縮比率は、培養固形分換算の残
存殺虫活性が変化しなくなる10倍以上になるようにす
るのが望ましいが、濃縮された培養液中の固形分濃度が
15チを越えると、液の粘稠性が著しく増大し、流動性
を失う恐れがあるので、とくに濃縮液中の培養固形分濃
度を4〜15チの範囲に調整することが望ましい。表3
には記載していないが、濃縮液中の培養固形分濃度が1
5%のものを殺菌処理に供したところ、培養固形分換算
の残存殺虫活性は#縦比率10倍(開成固形分濃度:4
チ)のものとほとんど変わらなかった。
As is clear from Table 6, the rate of increase in the amount of formalin (critical concentration) required to completely kill bacterial cells and spores decreases as the rate of removal of water-soluble components from the culture solution increases. Therefore, it is possible to reduce the amount of formalin used in terms of culture solid content (formalin critical concentration in the mixed solution/solid content concentration in the mixed solution), and as a result, the culture solid content (
IThK makes a leap forward in the residual insecticidal activity of atashi (the main pesticide)
It was possible to increase it. In addition, it is desirable to set the removal rate of water-soluble components, that is, the concentration ratio of the culture solution, at least 10 times so that the residual insecticidal activity in terms of culture solid content remains unchanged. If the concentration exceeds 15%, the viscosity of the liquid will increase significantly and there is a risk of losing fluidity, so it is particularly desirable to adjust the concentration of cultured solids in the concentrated solution to a range of 4 to 15%. . Table 3
Although it is not stated in , if the concentration of culture solids in the concentrate is 1
When 5% of the sample was subjected to sterilization treatment, the residual insecticidal activity in terms of culture solid content was 10 times the vertical ratio (open solid content concentration: 4
It was almost the same as that of C).

したがって、使用する遠心分離機等の性能によシ、上記
範囲の固形分濃度になるように水溶性成分を除去し濃縮
すればよい。さらに、表6の結果は、10倍濃縮によっ
て、無処理に較べて、培養固形分換算の化学薬品(この
場合、ホルマリン)の使用量を大幅に削減(約3A、x
*)できることを示しておυ、製造コストの低減にも寄
与することを意味する。
Therefore, depending on the performance of the centrifugal separator used, water-soluble components may be removed and concentrated so that the solid content concentration falls within the above range. Furthermore, the results in Table 6 show that by 10-fold concentration, the amount of chemical (formalin in this case) used in terms of culture solid content is significantly reduced (approximately 3A, x
*) This means that it shows what is possible and contributes to reducing manufacturing costs.

実施例4 実施例6と同様に調製(超音波処理を含む)した濃縮液
5ゴづつを試験管に分注し、これにパラトルエンスルホ
ンクロルアミドナトリウム各濃度液5Nを添加混合し、
混合液中のパラトルエンスルホンクロルアミドナトリウ
ム濃度を適宜設定したものを、60℃10分間加熱した
後、実施例3と同様にパラトルエンスルホンクロルアミ
ドナトリウムを除去した濃縮液について、生残芽胞数な
らびに残存殺虫活性を測定した。その結果な弐4に記す
Example 4 Five portions of a concentrated solution prepared in the same manner as in Example 6 (including ultrasonication) were dispensed into test tubes, and 5N of each concentration solution of sodium paratoluenesulfone chloramide was added and mixed.
After heating the mixed solution with an appropriately set concentration of sodium paratoluenesulfone chloramide at 60°C for 10 minutes, the number of surviving spores and the concentrated solution from which sodium paratoluenesulfonechloramide was removed in the same manner as in Example 3 were determined. Residual insecticidal activity was measured. The results are described in Section 2.4.

上表4でも、表6と同様に、水溶性成分を除去して濃縮
された培養液を殺菌処理することで、培養固形分換算の
化学薬品(この場合、パラトルエンスルホンクロルアミ
ドナトリウム)の使用量を大幅に削減(10倍濃縮で約
1./6.7)でき。
In Table 4 above, as in Table 6, by removing water-soluble components and sterilizing the concentrated culture solution, the use of chemicals (in this case, sodium paratoluenesulfone chloramide) in terms of culture solid content is achieved. The amount can be significantly reduced (approximately 1./6.7 with 10 times concentration).

培養固形分(農薬本体となる)換算の残存殺虫活性も飛
躍的に高まる(10倍7J縮で約6.3倍)ことが確認
できた。
It was confirmed that the residual insecticidal activity in terms of culture solid content (which becomes the pesticide itself) was also dramatically increased (approximately 6.3 times by 10 times 7J reduction).

実施例5 バチルス・チューリンゲンシスーバリエタス・クリスタ
キH,D −1を坂ロフラスコ中の肉エキス・ペプトン
培地(肉エキス1%、ポリペプトン1%、塩化ナトリウ
ム0825%: p H,−、、j O)50Mに接種
し、30℃、6日間振盪培養する。。
Example 5 Bacillus thuringiensis varietus cristaki H,D-1 was grown in a meat extract/peptone medium in a Sakaro flask (meat extract 1%, polypeptone 1%, sodium chloride 0825%: pH, -, j O) Inoculate at 50M and culture with shaking at 30°C for 6 days. .

同培養液を実施例ろと同様に水溶性成分を除去濃縮し、
超音波処理を施した。開成を用いて、実施例6および実
施例4と同様に殺菌処理を行い、その8菌処理後の生残
芽胞数ならびに残存殺虫活性を求めた。
The same culture solution was concentrated by removing water-soluble components in the same manner as in Example 3.
Ultrasonic treatment was performed. A sterilization treatment was performed using Kaisei in the same manner as in Examples 6 and 4, and the number of surviving spores and residual insecticidal activity after the 8 bacteria treatment were determined.

その結果、10倍′m縮(濃縮液中の培養固形分濃度:
6%)によ、りて、無処理に較べて、培養固形分換算の
化学薬品の使用fを大幅に削減(#、#マ!7ン:約’
+15.5.ハラトAエンスルホンクロルアミドナトリ
ウム:約1/’5)でき。
As a result, the concentration of cultured solids in the concentrate was 10 times
6%), significantly reducing the use of chemicals in terms of culture solid content compared to no treatment (#, #man!7: approx.
+15.5. Halato A en sulfone chloramide sodium: approx. 1/'5).

残存殺虫活性も増加(ホルーFWン:約1.5倍。Residual insecticidal activity also increased (Hollow FW: approximately 1.5 times).

バラトルユニ/スルホンクロルアミドナトリウム:約1
,8倍) L 7”: 6本結四は、表3および表4の
結果とよい一致を見た。
Balatruuni/Sulfone Chloramide Sodium: Approximately 1
, 8 times) L 7'': The results of the 6-piece knot were in good agreement with the results in Tables 3 and 4.

e→ 発明の効果 本発明は、フナガ、モンうロチヨウ、ヨトウガ、イチモ
ンジセセリなどの鱗翅目昆虫の幼虫に対して有効で、か
つ生菌体および胞子による二次増殖がない殺虫剤の製造
法に関(7、結晶毒素を含有するバチルス・チューリン
ゲンシスの培養液から、水溶性成分を除去l、た後に、
殺菌処理を施−!ことで、化学薬品の使用量を大@に削
減し、たより緩徐な殺菌処理を可能とし、しかも、殺菌
処理後の残存殺虫活性を飛躍的に高められるという優れ
た効果を有し、当該殺虫剤の生産性向上ならびに品質向
上に大きく寄与するため、農薬業界及び農業の分野に広
く貢献できるものである。
e→ Effects of the Invention The present invention relates to a method for producing an insecticide that is effective against the larvae of lepidopteran insects such as the flying moth, the armyworm moth, the armyworm moth, and the armyworm, and which does not cause secondary growth due to viable bacterial bodies and spores. (7. After removing water-soluble components from the culture solution of Bacillus thuringiensis containing crystal toxin,
Sterilized! This has the excellent effect of greatly reducing the amount of chemicals used, enabling slower sterilization, and dramatically increasing the residual insecticidal activity after sterilization. It can contribute widely to the agrochemical industry and agricultural fields because it greatly contributes to improving productivity and quality.

Claims (1)

【特許請求の範囲】[Claims] 1、バチルス・チューリンゲンシス(Bacillus
thuringiensis)の産生した結晶毒素を含
有する培養液の殺菌を、培養液中に存在する水溶性成分
の除去分離工程後に実施することを特徴とする殺虫剤の
製造方法。
1. Bacillus thuringiensis
A method for producing an insecticide, which comprises sterilizing a culture solution containing a crystalline toxin produced by P. thuringiensis after a step of removing and separating water-soluble components present in the culture solution.
JP1076596A 1989-03-30 1989-03-30 Preparation of insecticide Pending JPH02258706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1076596A JPH02258706A (en) 1989-03-30 1989-03-30 Preparation of insecticide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076596A JPH02258706A (en) 1989-03-30 1989-03-30 Preparation of insecticide

Publications (1)

Publication Number Publication Date
JPH02258706A true JPH02258706A (en) 1990-10-19

Family

ID=13609698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076596A Pending JPH02258706A (en) 1989-03-30 1989-03-30 Preparation of insecticide

Country Status (1)

Country Link
JP (1) JPH02258706A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899324A (en) * 1972-04-01 1973-12-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899324A (en) * 1972-04-01 1973-12-15

Similar Documents

Publication Publication Date Title
CA1335659C (en) Agents for combating pests and plant treatment agents
KR880001931B1 (en) Bacterial insecticide and production thereof
AU2002345299B2 (en) A bioinoculant composition comprising bacterial strains of B.subtilis or B.lentimorbus from cow's milk
JP2003219863A (en) BACILLUS sp. D747 STRAIN AND PLANT DISEASE INJURY-PROOFING AGENT AND PEST-PROOFING AGENT USING THE SAME
Hewlett et al. In vitro culture of Pasteuria penetrans
JPH02258706A (en) Preparation of insecticide
US7067299B2 (en) Materials and methods for in vitro production of bacteria
JPH04505998A (en) New strains of Bacillus Thuringiensis, their production and their use in insect control and protection of plants from insect attack
US20220030877A1 (en) Solid composition for agricultural and veterinary use
JPH02275810A (en) Production of insecticide
KR100227573B1 (en) Controlling cyperus weeds with scochyta sp. ferm bp-5176
JPH03133911A (en) Production of insecticide
JP2658378B2 (en) Method for producing pesticides
CA2066664A1 (en) Process for the production of compositions containing biosynthetic pesticidal products and use of the compositions obtained
JPH03123713A (en) Production of insecticide
JPH0687716A (en) Method for controlling bacteriosis of damping-off of rice plant
JPH03219883A (en) Weed-controlling agent containing microorganism of genus drechslera or its metabolic product and method for controlling weed therewith
JP2010070538A (en) Controlling agent for plant disease injury
JPH05284963A (en) New microorganism, herbicide containing the microorganism and extermination of weed therewith
JPS61205202A (en) Nematocide and nematocidal method
JPH037209A (en) Production of insecticide
JPH02195869A (en) Variant of bacillus thuringiensis and insecticide
RU2588483C2 (en) Bradyrhizobium strain for improving plant growth (versions), composition containing said strain and seed coated with composition
CN107183025A (en) A kind of application of naphthalene nucleus type sesquiterpenoid
JPH07179A (en) Novel microorganism and insecticide