JPH03133911A - Production of insecticide - Google Patents

Production of insecticide

Info

Publication number
JPH03133911A
JPH03133911A JP1271149A JP27114989A JPH03133911A JP H03133911 A JPH03133911 A JP H03133911A JP 1271149 A JP1271149 A JP 1271149A JP 27114989 A JP27114989 A JP 27114989A JP H03133911 A JPH03133911 A JP H03133911A
Authority
JP
Japan
Prior art keywords
spores
culture
insecticidal activity
solution
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1271149A
Other languages
Japanese (ja)
Other versions
JPH0739330B2 (en
Inventor
Yoshiaki Ota
喜章 太田
Makoto Abe
誠 安部
Hironori Mori
森 博徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP1271149A priority Critical patent/JPH0739330B2/en
Publication of JPH03133911A publication Critical patent/JPH03133911A/en
Publication of JPH0739330B2 publication Critical patent/JPH0739330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To kill existing live endospores and live vegetative cells without causing denaturation of crystal toxins which are an insecticidal active ingredient by subjecting a culture solution of Bacillus.thuringiensis (bacterium BT) to sterilization treatment using isocyanuric chloride. CONSTITUTION:A bacterium BT is cultured in a natural culture medium rich in a nitrogen source, a carbon source, minerals and vitamins at 25-30 deg.C temperature under sufficient aerobic conditions for a period within 24hr from the time of releasing 90% enndospores to the outside of cells. Water-soluble intgredients in the resultant culture are then removal by centrifugation, filtration through a membrane, etc., and 0.05-0.20wt.% anionic or nonionic surfactant, as necessary, is then added or ultrasonic treatment is carried out to regulate dispersibility. Isocyanuric chloride is subsequently used to perform sterilization treatment at pH4-7, especially pH5-5.5. Not only insecticidal activity of crystal toxins can be prevented from deteriorating but also an insecticide of constant quality can stably be obtained. The insecticidal activity can be more enhanced than that of a conventional insecticide.

Description

【発明の詳細な説明】 (イ)発明の目的 〔産業上の利用分野] 本発明は、バチルス・チューリンゲンシス(Bacil
lus thuringiensis :以下BT菌と
いう)の、各種菌株の培養によって産出される結晶様殺
虫性蛋白質毒素(以下結晶毒素という)と芽胞等との混
在物から、結晶毒素の殺虫活性を保持しながら、芽胞お
よび生栄養細胞を殺滅して、生きた芽胞および生栄養細
胞による二次的災害発生の惧れのない殺虫剤(以下BT
農薬という)を製造する方法に関するもので、農薬業界
及び農業の分野で広く利用されるものである。
Detailed Description of the Invention (a) Purpose of the Invention [Field of Industrial Application] The present invention
From a mixture of crystal-like insecticidal protein toxin (hereinafter referred to as crystal toxin) produced by culturing various strains of S. lus thuringiensis (hereinafter referred to as BT bacteria) and spores, etc., while retaining the insecticidal activity of the crystal toxin, spores are generated. Insecticides (hereinafter referred to as BT
It relates to a method for producing agricultural chemicals (referred to as agricultural chemicals) and is widely used in the agricultural chemicals industry and agricultural fields.

〔従来の技術〕[Conventional technology]

BT菌の各種菌株は、芽胞形成に伴って、夏型、サイコ
ロ状、また不定形立方体などの、蛋白質からなる結晶毒
素を産生し、そのあるものは鱗翅目昆虫の幼虫に対する
選択的食前であり、また別のものはヤブカ・アカイエカ
に代表される双翅目の幼虫に対して高い殺虫活性を示し
、あるいはコロラドボテドビートルに代表される鞘翅目
昆虫のみに選択的毒性を示すものなどが知られている。
Various strains of the BT bacterium produce toxins made of protein, such as summer-shaped, dice-shaped, and amorphous cubes, as they form spores, some of which are selective prephages for the larvae of lepidopteran insects. Others are known to have high insecticidal activity against the larvae of Diptera, such as Aedes and Culex, and those that are selectively toxic only to Coleopteran insects, such as the Colorado-bottomed beetle. It is being

上記のようにBT菌の産生ずる結晶毒素はその選択性に
大きな特徴を有し、対象種と種目を異にする昆虫には作
用せず、もちろん、人畜、魚介、鳥類に無害であること
から、選択的殺虫剤としての利用が追求されてきた。
As mentioned above, the crystalline toxin produced by the BT bacterium is characterized by its selectivity; it does not act on insects different from the target species, and of course is harmless to humans, livestock, fish, and birds. , its use as a selective insecticide has been pursued.

一方、同じく培養によって産出される自己再生のための
生命体である胞子、すなわち芽胞は休眠細胞であって、
強固な耐久性構造を持ち、一般の生物にとって不利な環
境条件(乾燥条件を含む)でも耐え、長期間生きつづけ
るものである。したがって、これを含むものを殺虫剤と
して圃場など野外に散布を繰り返す時には、土壌への蓄
積と風雨による転流拡散が懸念され、これが養蚕業の行
われる地域に侵入した場合、いわゆるカイコの卒倒病に
つながる可能性があり、厳重な警戒がなされている。
On the other hand, spores, which are living organisms for self-renewal produced through culture, are dormant cells.
It has a strong and durable structure, can withstand environmental conditions (including dry conditions) that are unfavorable to ordinary living things, and can survive for long periods of time. Therefore, when pesticides containing this compound are repeatedly sprayed outdoors, such as in fields, there are concerns that they may accumulate in the soil and disseminate through wind and rain. Strict precautions are being taken as this could lead to

さらに、この芽胞が発芽して栄養細胞となり、それが対
数増殖の過程で水溶性の蛋白質毒素を分泌し、これは、
食中毒を発症するセレウス毒素と免疫化学的に強く反応
しく品用邦汎、臨床検査ユ又、P、 1559〜P、1
563 (1988))、よって芽胞が付着した食物の
調理ならびに保存過程において、食中毒の生ずる可能性
が懸念されている。これらの懸念は、生芽胞と結晶毒素
とを分離して生芽胞を含まない製品が得られれば消失す
るわけであるが、芽胞と結晶毒素は、いずれもその大き
さが数μm程度で、微細な上、表面の荷電状態も似かよ
っており、物理化学ならびに電気化学的に両者を分離す
ることは極めて困難な作業であり、且つ、工業的実用性
に乏しいものである。
Furthermore, this spore germinates into a vegetative cell, which secretes a water-soluble protein toxin during the process of logarithmic growth, which
It strongly immunochemically reacts with the cereus toxin that causes food poisoning.
563 (1988)), there is therefore concern that food poisoning may occur during the cooking and preservation process of food with spores attached. These concerns would disappear if a product containing no living spores could be obtained by separating live spores and crystalline toxins, but both spores and crystalline toxins are about a few micrometers in size and are microscopic. Moreover, the surface charge states are similar, and it is extremely difficult to separate the two physically and electrochemically, and it is not industrially practical.

一方、芽胞を死滅せしめた殺虫剤を製造することによっ
ても、上記懸念を、払拭できるが、芽胞は先にも触れた
ように、耐久性構造のもので、通常の殺滅のために行わ
れる加熱、乾燥、薬品処理などの物理的、または化学的
殺菌処理に対して生物の中で、最も強固な抵抗性を有す
。よって、芽胞を完全に殺滅するためには、激しい殺菌
条件が必要であり、例えば加熱ならば100°Cを越え
る高い温度が必要となる。
On the other hand, the above concerns can also be eliminated by manufacturing insecticides that kill spores, but as mentioned earlier, spores have a durable structure and cannot be used for normal killing. It has the strongest resistance among living organisms to physical or chemical sterilization treatments such as heating, drying, and chemical treatments. Therefore, in order to completely kill the spores, severe sterilization conditions are required, such as heating at a high temperature exceeding 100°C.

しかし、このような激しい条件で処理した場合には、殺
虫有効成分である結晶毒素の変性(蛋白質の熱変性)を
招き、殺虫効力の喪失を生し、有効な製品が得られない
恐れがある。
However, when treated under such harsh conditions, the crystal toxin, which is the active insecticidal ingredient, may be denatured (heat denaturation of the protein), resulting in a loss of insecticidal efficacy, and there is a risk that an effective product may not be obtained. .

この課題を解決するために、結晶毒素を含有するBT菌
の培養液内の細菌細胞・芽胞に対して、該結晶毒素の殺
虫能を喪失せしめることのない、緩徐な化学的殺菌処理
と、同じく緩徐な物理的殺菌処理を組合わせ、それらを
同時に行なって細菌細胞・芽胞を殺滅することを特徴と
する殺虫剤の製造法が提案されている(特公昭51−5
047号公報)。
In order to solve this problem, we applied a slow chemical sterilization treatment to the bacterial cells and spores in the culture solution of BT bacteria containing the crystal toxin, which does not cause the crystal toxin to lose its insecticidal ability. A method for producing insecticides has been proposed that combines slow physical sterilization treatments and simultaneously performs them to kill bacterial cells and spores (Japanese Patent Publication No. 51-5
Publication No. 047).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の方法は、細菌細胞・芽胞の殺滅方法としては優れ
ているものであり、実用化されている方法であるが、該
方法で得られた結晶毒素は、この殺菌処理によっても、
実用的な濃度(BT農薬は−Sにコナガに対して1,0
00ないし2.000倍の製剤水懸濁液として用いられ
る)における残存殺虫活性が低下したものとなり易く、
細菌細胞・芽胞の殺滅を完全に行なう場合、時によって
はこれをかなりの高濃度で使用しなければ、充分な殺虫
性能を示さない殺虫剤しか得られない事があるという問
題点を有する方法でもある。
The above method is an excellent method for killing bacterial cells and spores and has been put into practical use; however, the crystal toxin obtained by this method is
Practical concentration (BT pesticide is -S to 1,0 against diamondback moth)
00 to 2.000 times (used as an aqueous suspension), the residual insecticidal activity tends to be reduced,
In order to completely kill bacterial cells and spores, this method has the problem that in some cases, it may be necessary to use it at a fairly high concentration, resulting in an insecticide that does not have sufficient insecticidal performance. There is also.

本発明者等は、芽胞と結晶毒素に対する殺滅効果に優れ
、特に前記従来法に用いられて優れた効果を奏する殺菌
剤について種々スクリーニングし、上記方法における細
菌細胞・芽胞の殺滅の効率を向上させ、残存殺虫活性が
より高く、品質の優れた製品が得られる製造方法を確立
すべく鋭意検討を行なった。
The present inventors have screened various fungicides that have excellent killing effects on spores and crystalline toxins, and that are particularly effective when used in the conventional method, and have evaluated the efficiency of killing bacterial cells and spores in the above method. We conducted extensive research to establish a manufacturing method that would improve the residual insecticidal activity and yield products of superior quality.

(ロ)発明の構成 〔課題を解決するための手段〕 本発明者等は、前記問題点を解消するための検討過程に
おいて、塩素化イソシアヌール酸またはその塩を化学的
殺菌処理用薬剤として用いたところ、実用に供し得る殺
虫剤を製造するに足る殺虫活性を有する結晶毒素が安定
的に得られるばかりでなく、殺虫活性の飛躍的に向上し
た結晶毒素が得られることを見出し、本発明を完成した
(B) Structure of the Invention [Means for Solving the Problems] In the process of studying to solve the above-mentioned problems, the present inventors used chlorinated isocyanuric acid or its salt as a chemical disinfectant. As a result, we discovered that not only can we stably obtain a crystalline toxin with insecticidal activity sufficient to produce a practical insecticide, but we can also obtain a crystalline toxin with dramatically improved insecticidal activity, and have developed the present invention. completed.

すなわち、本発明はバチルス・チューリンゲンシス(B
acillus thuringieusis)の培養
液中に存在する芽胞および生栄養細胞を、塩素化イソシ
アヌール酸またはその塩により殺滅することを特徴とす
る殺虫剤の製造方法に関するものである。
That is, the present invention relates to Bacillus thuringiensis (B.
The present invention relates to a method for producing an insecticide, characterized in that spores and biovegetative cells present in a culture solution of A. acillus thuringieusis are killed with chlorinated isocyanuric acid or a salt thereof.

oBT菌の培養液 本発明において殺虫剤の原料となる結晶毒素を含有する
培養液は、バチルス・チューリンゲンシス・バラエティ
・クルスタキ、バチルス・チューリンゲンシス・バラエ
ティ・イスラエレンシス等の結晶毒素を産生ずる公知の
BT菌株を、通常公知の培養方法及び条件で、培養して
得られるものである。
Culture solution of oBT bacterium In the present invention, the culture solution containing crystal toxin, which is a raw material for the insecticide, is a culture solution containing crystal toxin, which is a raw material for the insecticide. It is obtained by culturing the BT strain of 100% using commonly known culture methods and conditions.

例えば、肉エキス、ペプトンなどよりなる培養用溶液を
用い、BT菌を通常の方法及び条件で培養し、芽胞及び
結晶毒素が形成された培養終了液、或いは該培養液に遠
心沈降分離操作や膜濾過操作を施して、精製または濃縮
して得られた結晶毒素と芽胞を含有する水懸濁液、さら
にはそれらを水で稀釈した懸濁液が使用される。
For example, by culturing BT bacteria using a culture solution consisting of meat extract, peptone, etc. in a conventional manner and under conditions, the culture solution containing spores and crystal toxins may be obtained, or the culture solution may be subjected to centrifugal sedimentation or membrane separation. An aqueous suspension containing crystalline toxin and spores obtained by purification or concentration through filtration, or a suspension obtained by diluting them with water is used.

培養について、さらに具体的に説明すると窒素源、炭素
源、ミネラルおよびビタミンに冨む天然培地で培養する
。結晶毒素ならびに菌体の産生は、通気撹拌条件に大き
く左右され、充分な好気的条件で培養した場合に、両者
の産生量が増す。培養温度は、約25〜30°Cがよい
。炭素源としては、例えば、蔗糖、麦芽糖、グルコース
、フラクトース、糖蜜が利用され、窒素源としては、例
えば、コーンスチープリカー、硫酸アンモニウム、塩化
アンモニウム、綿実粉、酵母エキス、大豆粉、カゼイン
水解物などが挙げられる。また、ミネラルおよびビタミ
ンは、糖蜜、コーンスチープリカー酵母エキスで代用す
ることができ、必要に応じては、無機塩類、ビタミン類
をさらに添加してもよい。特に、大量生産を行う場合、
深部通気撹拌培養が望ましい。
More specifically, the culture is carried out in a natural medium rich in nitrogen sources, carbon sources, minerals and vitamins. The production of crystal toxins and bacterial cells is greatly influenced by aeration and agitation conditions, and the production amount of both increases when cultured under sufficient aerobic conditions. The culture temperature is preferably about 25-30°C. Examples of carbon sources used include sucrose, maltose, glucose, fructose, and molasses; examples of nitrogen sources include corn steep liquor, ammonium sulfate, ammonium chloride, cottonseed flour, yeast extract, soybean flour, and casein hydrolyzate. can be mentioned. Further, minerals and vitamins can be replaced with molasses and corn steep liquor yeast extract, and inorganic salts and vitamins may be further added as necessary. Especially when producing in large quantities,
Deep aeration agitation culture is preferable.

培養期間としては、芽胞が細胞外に90%放出されてか
ら24時時間以内に設定するのが好ましく、芽胞の放出
は、無菌的に経時採取した培養液を位相差光学顕微鏡を
用いて鏡検することにより、容易に追跡できる。なお芽
胞の放出とは、細胞内に形成された結晶毒素と芽胞が、
培養の進行に拌ってBT菌の細胞壁が自己消化した結果
、細胞外にそれらが放出され、培養液中に浮遊した状態
を言う。
The culture period is preferably set within 24 hours after 90% of the spores are released outside the cells, and the release of spores is determined by microscopic examination of the culture fluid collected aseptically over time using a phase contrast optical microscope. This allows easy tracking. Spore release refers to the release of crystal toxins and spores formed within cells.
As a result of autolysis of the cell walls of BT bacteria as the culture progresses, they are released outside the cells and become suspended in the culture solution.

芽胞は短軸1〜3μ×長軸2〜6μの楕円状物体で、光
屈折性を有するため、位相差光学顕微鏡の視野内では、
青白い光を放つことから、他の顆粒と識別できる。また
、公知の染色法によっても、結晶毒素と芽胞は区別でき
る(Fadel A、5harifet al、、J、
Ind、Microbiol、、3. 227〜229
(1988))。
Spores are elliptical objects with a short axis of 1 to 3 μm x a long axis of 2 to 6 μm, and have light refractive properties, so within the field of view of a phase contrast optical microscope,
They can be distinguished from other granules because they emit a bluish-white light. Crystal toxins and spores can also be distinguished by known staining methods (Fadel A, 5harifet al., J.
Ind. Microbiol, 3. 227-229
(1988)).

さらに、芽胞の90%が細胞外に放出されたことは、顕
微鏡視野内の全菌数(結晶毒素・芽胞を内在する細胞と
遊離芽胞の総数)に対する遊離芽胞の割合が当該範囲に
あることで確認できる。なお、培養条件によって、ある
程度の差はあるものの、芽胞が細胞外に放出され始めて
から、上記の状態に達するまで8〜24時間を必要とす
る。
Furthermore, the fact that 90% of the spores were released outside the cells means that the ratio of free spores to the total number of bacteria within the microscopic field (total number of cells containing crystal toxins/spores and free spores) is within the range. You can check it. Although there are some differences depending on the culture conditions, it takes 8 to 24 hours from when spores begin to be released outside the cells until the above state is reached.

上記範囲外で殺菌処理を行なうと、結晶毒素の殺虫活性
が損なわれ、実用的濃度で有効な殺虫剤を定常的に製造
することが困難となり、また残存殺虫活性が飛躍的には
向上しない。
If the sterilization treatment is performed outside the above range, the insecticidal activity of the crystal toxin will be impaired, making it difficult to regularly produce an effective insecticide at a practical concentration, and the residual insecticidal activity will not improve dramatically.

上記の様にして培養した培養液中には、培地に起因する
成分、BT菌が菌体外に排出した代謝物あるいは菌体内
に含有され自己融解後に培養液中に放出された代謝産物
等の水溶性成分が存在し、これらの水溶性成分の存在に
より殺菌の効率が低下し、このまま、すなわち水溶性成
分の存在下に完全に殺菌するためには殺菌条件をかなり
厳しいものとせざるを得す、ひいては結晶毒素の殺虫活
性を低下させることになるので、殺菌前に水溶性成分を
除去することは好ましいことであり、それにより実用的
濃度で有効的な殺虫剤を製造することを容易にするばか
りでなく、水溶性成分の除去の程度によっては、今まで
予測することも出来なかった程の殺虫活性を有する殺虫
剤の製造をも可能にする。
The culture medium cultured as described above contains components originating from the medium, metabolites excreted from the BT bacteria to the outside of the bacterial cells, or metabolites contained within the bacterial cells and released into the culture medium after autolysis. Water-soluble components exist, and the presence of these water-soluble components reduces the sterilization efficiency, and in order to completely sterilize as it is, that is, in the presence of water-soluble components, the sterilization conditions must be made quite severe. It is preferable to remove water-soluble components before disinfection, as this would reduce the insecticidal activity of the crystal toxin, thereby facilitating the production of effective insecticides at practical concentrations. Furthermore, depending on the degree of removal of water-soluble components, it is also possible to produce insecticides with insecticidal activity of a level that could not be predicted up to now.

芽胞及び結晶毒素が形成された培養終了液中の水溶性成
分を除く方法としては、通常の遠心分離法、濾過法、沈
降法などを利用して水溶液を除去する方法があげられる
。特に、大量に処理する場合には、遠心分離機あるいは
膜濾過材を使用する方法が好ましい。また、水溶性成分
の除去量は、前者の場合、遠心力(重力加速度)、通液
インターバル、洗浄インターバル等の操作条件により、
後者の場合、膜の孔径、圧力、通液速度等の操作条件に
より異なるが、除去量が多すぎて芽胞及び結晶毒素の分
散性が阻害される様になることは避けるのが好ましく、
もし分散性が阻害されるような状況に至った場合は、蒸
留水特に界面活性剤を添加しあるいは超音波処理を施し
て分散性を調節するのが好ましい。
Examples of methods for removing water-soluble components from the culture solution in which spores and crystal toxins have been formed include methods of removing the aqueous solution using conventional centrifugation, filtration, sedimentation, and the like. In particular, when processing a large amount, it is preferable to use a centrifugal separator or a membrane filtration material. In the former case, the amount of water-soluble components removed depends on operating conditions such as centrifugal force (gravitational acceleration), liquid flow interval, and washing interval.
In the latter case, although this will vary depending on the operating conditions such as membrane pore size, pressure, and liquid flow rate, it is preferable to avoid removing too much, which would impede the dispersibility of spores and crystal toxins.
If the dispersibility is inhibited, it is preferable to adjust the dispersibility by adding distilled water, especially a surfactant, or by applying ultrasonic treatment.

分散性の悪いものをそのまま殺菌すると殺菌剤との接触
または伝熱不良に起因すると思われるが殺菌効率が一定
せず、特に完全な殺菌を目的とする場合、殺菌条件をか
なり厳しいものとせざるを得す、ひいては結晶毒素の殺
虫活性を低下させる恐れが生じる。
If materials with poor dispersibility are sterilized as is, the sterilization efficiency will be inconsistent, which may be due to contact with the sterilizer or poor heat transfer, and especially if complete sterilization is desired, sterilization conditions must be made quite severe. This may reduce the insecticidal activity of the crystal toxin.

用いられる界面活性剤としては、分散させる粒子すなわ
ち栄養細胞、芽胞および結晶毒素の粒子表面が負に帯電
していることから、アニオン系又はノニオン系界面活性
剤が好ましく、アニオン系界面活性剤としては、ポリア
クリル酸ソーダ系、例えばアロンA−20px(東亜合
成化学工業a勾製)、ドデシルベンゼンスルホン酸ソー
ダ系、例えばペレックスNα6(花王■製)、レベノー
ルWZ(花王■製)、ラウリル硫酸ソーダ系、例えばエ
マール2F(花王■製)、ジオクチルスルホサクシネー
ト系、例えばペレックスOTP (花王lI@製)など
があげられ、ノニオン系界面活性剤としてはポリオキシ
エチレンエーテル系、例えばエマルゲン910(花王■
製)などがあげられる。なお使用量としては殺菌を施こ
す培養液に対して0゜01〜0.50重量%の範囲が好
ましく、特に好ましくは0.05〜0.20重量%であ
り、具体的には通液速度等の操作条件等に応じて設定す
ることが好ましい。
The surfactant to be used is preferably an anionic or nonionic surfactant because the surfaces of particles to be dispersed, that is, vegetative cells, spores, and crystalline toxins, are negatively charged. , Sodium polyacrylate type, such as Aron A-20px (manufactured by Toagosei Kagaku Kogyo A), Sodium dodecylbenzenesulfonate type, such as Perex Nα6 (manufactured by Kao ■), Lebenol WZ (manufactured by Kao ■), Sodium lauryl sulfate type Examples of nonionic surfactants include Emar 2F (manufactured by Kao ■), dioctyl sulfosuccinate-based surfactants such as Perex OTP (manufactured by Kao II@), and nonionic surfactants such as polyoxyethylene ether-based surfactants such as Emulgen 910 (manufactured by Kao ■).
(manufactured by). The amount used is preferably in the range of 0.01 to 0.50% by weight, particularly preferably 0.05 to 0.20% by weight, based on the culture solution to be sterilized. It is preferable to set the setting according to the operating conditions, etc.

BT菌の培養液の殺菌は、好ましくはpH4〜7、より
好ましくはpH5〜7、特に好ましくはpH5〜5.5
の範囲内で行う。前記培養液は一船的にpH8〜9程度
であるので、硫酸等の酸によりそのpHを4〜7に調整
してから殺菌処理を行なうのが望ましい。また、殺菌処
理中に、処理に伴ないpHが変動し上記範囲外に逸脱す
る恐れがあるときも、その変動に応じて酸やアルカリを
添加し、pHを上記範囲内に維持することが望ましい。
The culture solution of BT bacteria is sterilized preferably at pH 4 to 7, more preferably at pH 5 to 7, particularly preferably at pH 5 to 5.5.
Perform within the range of. Since the culture solution generally has a pH of about 8 to 9, it is desirable to adjust the pH to 4 to 7 with an acid such as sulfuric acid before sterilization. Also, during sterilization, if the pH changes due to the process and there is a risk of it deviating from the above range, it is desirable to add acid or alkali depending on the change to maintain the pH within the above range. .

上記範囲外で殺菌処理を行なうと、結晶毒素の殺虫活性
が損なわれ、実用的濃度で有効な殺虫剤を定常的に製造
することが困難となり、また残存殺虫活性が飛躍的には
向上しない。
If the sterilization treatment is performed outside the above range, the insecticidal activity of the crystal toxin will be impaired, making it difficult to regularly produce an effective insecticide at a practical concentration, and the residual insecticidal activity will not improve dramatically.

この効果は、遠心分離により、培養液上清部を取り去っ
て水に再懸濁したものにおいても、同様に示される。
This effect is also shown when the culture supernatant is removed by centrifugation and resuspended in water.

0殺滅 本発明における殺滅とは、栄養細胞・芽胞を殺菌するた
め特定の薬剤を用いた化学的殺菌処理により行われるこ
とを指すものであって、前掲の特公昭51−5047号
公報に開示されているように、物理的殺菌処理方法と併
用して行うのが好ましい。すなわち、一種類の殺菌処理
のみでは結晶毒素の殺虫能力を保持させながら、栄養細
胞・芽胞を完全に死滅させることは困難であるから、本
発明においても化学的殺菌処理と物理的殺菌処理とを組
合せて、それらを同時に行うことが好ましく、その方法
により容易に栄養細胞・芽胞を完全る薬剤は、塩素化イ
ソシアヌール酸またはその塩であり、具体的な化合物と
しては、ジクロロイソシアヌール酸ナトリウム、ジクロ
ロイソシアヌール酸カリウム、トリクロロイソシアヌー
ル酸などを挙げることができる。
0 Killing Killing in the present invention refers to chemical sterilization using a specific drug to kill vegetative cells and spores, and is described in the above-mentioned Japanese Patent Publication No. 51-5047. Preferably, it is carried out in conjunction with physical sterilization treatment methods, as disclosed. In other words, it is difficult to completely kill vegetative cells and spores while retaining the insecticidal ability of the crystal toxin with only one type of sterilization treatment, so the present invention also uses chemical sterilization treatment and physical sterilization treatment. It is preferable to perform these simultaneously in combination, and the drug that easily completes vegetative cells and spores by this method is chlorinated isocyanuric acid or its salt, and specific compounds include sodium dichloroisocyanurate, Examples include potassium dichloroisocyanurate and trichloroisocyanuric acid.

なお、比較のために次亜塩素酸ソーダ、パラトルエンス
ルホンクロルアミドナトリウム、N−クロルコハク酸イ
ミド、過酸化水素、ホルマリンを本発明の効果を明らか
にするために用いた。
For comparison, sodium hypochlorite, sodium paratoluenesulfone chloramide, N-chlorosuccinimide, hydrogen peroxide, and formalin were used to demonstrate the effects of the present invention.

物理的殺菌処理方法は、加熱、超音波、放射線などによ
り、上述の水性培養液等を殺菌する方法である。
The physical sterilization method is a method of sterilizing the above-mentioned aqueous culture solution, etc. by heating, ultrasonic waves, radiation, or the like.

工業的に有利な加熱方式は、反応槽内で撹拌しながら加
熱するバッチ加熱方式、あるいは長い反応管内に一方の
端から流入し、途中で加熱昇温しつつ、他端から排出す
る流管連続加熱方式などであり、特に後者は工業的実施
に当って有用である。
Industrially advantageous heating methods are the batch heating method, which heats while stirring in a reaction tank, or the continuous flow tube method, which flows into a long reaction tube from one end, heats it midway through, and discharges from the other end. The latter method is particularly useful in industrial implementation.

0製剤化方法 殺芽胞処理を終った水性培養液は、そのまま、あるいは
濃縮し、また、別設の後処理を施した後、適宜の助剤を
添加あるいは、添加せずして、懸濁液状で製品とし、あ
るいは更に、好ましくは噴霧乾燥や、流動乾燥によって
水和剤粉末、ないしは顆粒状製品に製剤化される。
0 Formulation method The aqueous culture solution that has undergone sporicidal treatment can be made into a suspension as it is, or after being concentrated and subjected to post-treatment in a separate facility, with or without the addition of appropriate auxiliaries. or further formulated into a wettable powder or granular product, preferably by spray drying or fluidized fluid drying.

本則の使用量は、対象昆虫によって異なるが、通常公知
の範囲で用いられる。また本則は他の殺虫剤と併用して
も差支えない。
The basic usage amount varies depending on the target insect, but it is usually used within a known range. Also, the main rule is that it can be used in combination with other insecticides.

0殺虫活性の測定法 BT菌の産生ずる結晶毒素の殺虫活性を定量的に把握す
る方法としては、コナガならびにアカイエカを用いた殺
虫試験により半数致死濃度を求め、殺菌処理後の残存殺
虫活性を定量的に測定するという方法を採用した。すな
わち、任意の希釈率の試料液夫々に対する検定供試昆虫
の死亡率を測定し、試料液の濃度と死亡率との関係から
半数致死濃度を求め、殺虫活性の高低を比較する方法で
ある。
0 Method of Measuring Insecticidal Activity A method for quantitatively understanding the insecticidal activity of the crystalline toxin produced by BT bacteria is to determine the half-lethal concentration through an insecticidal test using diamondback moths and Culex mosquitoes, and quantify the residual insecticidal activity after sterilization treatment. We adopted a method of measuring. That is, this method measures the mortality rate of test insects for each sample solution at an arbitrary dilution rate, determines the half-lethal concentration from the relationship between the concentration of the sample solution and the mortality rate, and compares the level of insecticidal activity.

〔作用] 塩素化イソシアヌール酸ならびにその塩を殺菌薬剤とし
て使用することより、殺菌処理をより緩徐(例えば、加
熱温度を低下させることができる)にすることが可能と
なりその結果として結晶毒素の殺虫活性の低下を防止で
きるばかりでなく、品質の一定した殺虫剤を安定して供
与でき、かつ従来のものより殺虫活性を高めることがで
きるという作用を本発明は奏するものである。
[Action] By using chlorinated isocyanuric acid and its salts as a disinfectant, it is possible to make the disinfection process more gradual (for example, the heating temperature can be lowered), and as a result, the insecticidal effect of crystal toxins is achieved. The present invention has the effect of not only being able to prevent a decrease in activity, but also being able to stably provide an insecticide of constant quality and increasing insecticidal activity compared to conventional ones.

〔実施例〕〔Example〕

次に実施例を挙げてさらに詳細に本発明を説明する。な
お生残細胞・芽胞数及び残存殺虫活性の測定方法は以下
のとおりである。
Next, the present invention will be explained in more detail by giving examples. The methods for measuring the number of surviving cells/spores and residual insecticidal activity are as follows.

・   の′1″″′ 試料液1In1を採り、無菌水にて適宜希釈し、Nut
rient−Broth−寒天培地(肉エキス1%、ポ
リペプトン1%、塩化ナトリウム0.5%、寒天1.5
%:pH7,0)上に流し、30″cにて48時間培養
し、発生するコロニー数を数え、これより試料中の生残
細胞・芽胞数(ケ/d)を計算する。
・ Take 1In1 sample solution of '1'''', dilute it appropriately with sterile water, and add Nut.
rient-Broth-agar medium (1% meat extract, 1% polypeptone, 0.5% sodium chloride, 1.5% agar)
%: pH 7.0), cultured at 30''c for 48 hours, count the number of colonies that develop, and calculate the number of surviving cells/spores (ke/d) in the sample.

歿在殺曳五1皿足 〔コナガ〕 試料液1dを採り、無菌水にて適宜希釈し、5乃至7段
階の濃度の検定液を50dずつ用意する。
Take 1 d of sample liquid and dilute it appropriately with sterile water to prepare 50 d each of test solutions with 5 to 7 concentrations.

この検定液にキャベツ生葉(200cffl)を1分間
浸漬した後、風乾する。これを大型シャーレに敷き、各
区(1度区)20頭のコナガ3令幼虫を放飼し、72時
間後に死生数を数え、死亡率(%)を算出する。この結
果をフィニー(Finney)の図解法(Finney
、 D、J、、(1974)Probit Analy
sis+Cam−bridge Llniv、 Pre
ss、 Cambridge(London)、pl)
−318)を用いて解析し、半数致死濃度(検定液に含
有する試料液の濃度(ppml  として表示する)を
求める。
Fresh cabbage leaves (200 cffl) are immersed in this test solution for 1 minute and then air-dried. This is spread on a large petri dish, 20 3rd instar diamondback moth larvae are released in each section (1 degree section), and after 72 hours, the number of dead and alive is counted to calculate the mortality rate (%). This result can be expressed using Finney's graphical method (Finney).
, D.J., (1974) Probit Analysis
sis+Cam-bridge Llniv, Pre
ss, Cambridge (London), pl)
-318) to determine the half-lethal concentration (concentration of the sample solution contained in the assay solution (expressed as ppml)).

〔アカイエカ] 試料液を無菌的に適宜希釈し、5乃至7段階の濃度の検
定液各2蔵をアカイエカの3令幼虫30頭の浮遊した2
00dの飼育液中に加え、27°Cに保ち、48時間後
に死生数を数え死亡率(%)を算出する。この結果を上
記のフィニーの図解法で解析し、半数致死濃度を求める
[Culex Culex] The sample solution was appropriately diluted aseptically, and 2 samples of each of the test solutions with 5 to 7 concentrations were added to 30 3rd instar larvae of Culex mosquito.
It is added to the rearing solution of 00d, kept at 27°C, and after 48 hours, the number of dead and alive is counted to calculate the mortality rate (%). Analyze this result using Finney's graphical method described above to determine the half-lethal concentration.

実施例1 バチルス・チューリンゲンシス・バリエタス・クルスタ
キ HD−1を坂ロフラスコ中のC培地(グルコース1
%、コーンスチープリ力−1%、Mn 1 ppm: 
pH7,0)  50 rrdlに接種し、30”Cで
10時間振盪培養する。同培養液120dを種菌とし、
予め12fの2XC培地(C培地の2倍の濃度)を仕込
んでおいたジャーファーメンタ−(全容10 f)に接
種し、pHを7.0に調整・維持しつつ、30°Cで4
8時間通気攪拌培養(攪拌速度300rpm、il気!
0.5 vvm)を行なう。同培養終了液を5−ずつ試
験管に分注し、混合液中のジクロロイソシアヌール酸ナ
トリウムの濃度が0〜0.25%の範囲で0.05%刻
みの水準となるように混合し、これを20″C〜70″
Cの範囲で10°C刻みの水準となるように1o分間加
熱した後、直ちに冷却する。これを遠心骨!(14,0
0Orpm)、4°C110分間)し、上清液を捨てて
沈降物に5mlの無菌水を加えて懸濁する操作を2回繰
り返し、ジクロロイソシアヌール酸ナトリウム及び菌体
外可溶性毒性物質を除去する。
Example 1 Bacillus thuringiensis varietus kurstakii HD-1 was grown in C medium (glucose 1
%, cone steeple force -1%, Mn 1 ppm:
pH 7,0) 50 rrdl was inoculated and cultured with shaking at 30"C for 10 hours. 120d of the same culture was used as a seed,
It was inoculated into a jar fermentor (total volume 10 f) containing 12 f of 2XC medium (twice the concentration of C medium) and incubated at 30°C for 4 hours while adjusting and maintaining the pH at 7.0.
8-hour aeration stirring culture (stirring speed 300 rpm, illumination!
0.5 vvm). Dispense 5 portions of the same cultured solution into test tubes and mix so that the concentration of sodium dichloroisocyanurate in the mixture is in the range of 0 to 0.25% in 0.05% increments. This is 20″C~70″
After heating for 10 minutes in 10°C increments, it is immediately cooled. This is a distal bone! (14,0
0 Orpm) at 4°C for 110 minutes), discard the supernatant, and add 5 ml of sterile water to the sediment to suspend. Repeat the procedure twice to remove sodium dichloroisocyanurate and extracellular soluble toxic substances. .

このようにして得られ゛た夫々の試料液の生残細胞・芽
胞数(ケ/−)を測定した結果を表−1に示す。この結
果よりジクロロイソシアヌール酸すトリウムを用いた場
合、薬剤濃度0.2%、温度40℃という緩徐な条件で
細菌細胞及び芽胞を完全に殺滅できることがわかる。な
おジクロロイソシアヌール酸カリウム、トリクロロイソ
シアヌール酸を用いて同様の操作を行なったところジク
ロロイソシアヌール酸カリウムにおいては、薬剤濃度0
.2%、温度40°Cで、トリクロロイソシアヌール酸
においては、薬剤濃度0.15%、温度40’Cにおい
て各々細菌細胞及び芽胞を殺滅できた。
Table 1 shows the results of measuring the number of surviving cells and spores (k/-) of each sample solution thus obtained. These results show that when sodium dichloroisocyanurate is used, bacterial cells and spores can be completely killed under slow conditions of a drug concentration of 0.2% and a temperature of 40°C. When similar operations were performed using potassium dichloroisocyanurate and trichloroisocyanuric acid, the drug concentration was 0 for potassium dichloroisocyanurate.
.. Trichloroisocyanuric acid was able to kill bacterial cells and spores at a drug concentration of 0.15% and a temperature of 40'C, respectively.

(以下余白) 実施例2 実施例1と同様の培養終了液5dずつを試験管に分注し
、これにジクロロイソシアヌール酸ナトリウム(混合時
の濃度が0.2%となるように)、ジクロロイソシアヌ
ール酸カリウム(同0.2%)、トリクロロイソシアヌ
ール酸(同0.15%)を各々5−混合し、これを20
’C〜80゛Cの範囲でlO′C刻みの水準となるよう
に10分間加熱した後、直ちに冷却する。この溶液を実
施例1と同様の遠心分離操作を行なう。
(Margins below) Example 2 Dispense 5 d of the same cultured solution as in Example 1 into test tubes, add sodium dichloroisocyanurate (so that the concentration at the time of mixing is 0.2%), and dichloromethane. Potassium isocyanurate (0.2%) and trichloroisocyanuric acid (0.15%) were mixed together for 50 minutes.
After heating for 10 minutes in the range of 10'C to 80°C in increments of 10'C, the mixture is immediately cooled. This solution is centrifuged in the same manner as in Example 1.

このようにして得られた夫々の試料液の生残細胞・芽胞
数及び残存殺虫活性を表−2に示す、この結果よりこれ
ら3種類の薬剤においては、生残細胞・芽胞数がθケ/
a1となる条件下では、低温で加熱処理を行なう程、高
い残存殺虫活性が得られることがわかる。
The numbers of surviving cells and spores and residual insecticidal activity of each sample solution obtained in this way are shown in Table 2.The results show that for these three types of drugs, the number of surviving cells and spores is θ
It can be seen that under the conditions of a1, the lower the heat treatment is performed, the higher the residual insecticidal activity can be obtained.

−(以下余白)− 表−2 表中数値 ・・・ 残存殺虫活性(コナガ半数致死濃度
(ρpm) 1実施例3 バチルス・チューリンゲンシス・バリエタス・クルスタ
キ HD−1を坂ロフラスコ中の肉エキス・ポリペプト
ン培地(肉エキス1%、ポリペプトン1%、塩化ナトリ
ウム0.5%:pH7,0)50dに接種し、30゛C
で3日間振盪培養する。
- (Margins below) - Table 2 Values in the table...Residual insecticidal activity (half lethal concentration for diamondback moth (ρpm)) 1 Example 3 Bacillus thuringiensis varietus kurstaki HD-1 was added to the meat extract polypeptone in a Sakaro flask. Inoculate 50 d of culture medium (1% meat extract, 1% polypeptone, 0.5% sodium chloride: pH 7.0) and incubate at 30°C.
Culture with shaking for 3 days.

同培養終了液(pH8,2程度)を採取し、それらの固
形分を測定(培養液を14,000rpm、4°C11
0分遠心し、その残香を100℃で恒量となるまで乾燥
し、その重量百分率を算出する)し適当な濃度のH,S
o、溶液及び無菌水を用いてそれらの培養固形分を単位
重量当り同量含みかつpHが4.0〜8.0の範囲で0
.5刻みの水準となるように調整する。この溶液5Id
ずつを試験管に分注しそれらにジクロロイソシアヌール
酸ナトリウムまたはジクロロイソシアヌール酸カリウム
を混合液中濃度が夫々0.2%となるように加え40°
Cで10分間加熱した後、直ちに冷却する。この溶液に
実施例1と同様の遠心分離操作を行なう。
Collect the culture solution (about pH 8.2) and measure its solid content (culture solution at 14,000 rpm, 4°C, 11
Centrifuge for 0 minutes, dry the residual scent at 100°C until it reaches a constant weight, and calculate its weight percentage) and add H, S at an appropriate concentration.
o, using a solution and sterile water containing the same amount of cultured solid content per unit weight and with a pH in the range of 4.0 to 8.0.
.. Adjust the level in increments of 5. This solution 5Id
Dispense each into test tubes, and add sodium dichloroisocyanurate or potassium dichloroisocyanurate to them so that the concentration in the mixture is 0.2%, respectively, at 40°C.
After heating for 10 minutes at C, cool immediately. This solution is subjected to the same centrifugation operation as in Example 1.

このようにして得られた試料液の生残細胞・芽胞数及び
残存殺虫活性を表−3に示す。この結果より上記2剤を
殺菌薬剤として使用した場合は、培養終了後のpHを5
.5に調整した場合が最も高い残存殺虫活性が得られる
ことがわかる。またトリクロロイソシアヌール酸を用い
た場合においても同様の結果が得られている。
The number of surviving cells/spores and residual insecticidal activity of the sample solution thus obtained are shown in Table 3. Based on this result, when the above two agents are used as bactericidal agents, the pH after culturing is 5.
.. It can be seen that the highest residual insecticidal activity is obtained when adjusted to 5. Similar results were also obtained when trichloroisocyanuric acid was used.

(以下余白) PDCI ジクロロインシアヌール酸カリウム 実施例4 実施例3と同様の培養終了液を適当な濃度のHz S0
4溶液及び無菌水を用いてpH5,5に調整した後、日
立遠心分離用ローター(容量If)に入れ、回転数を種
々変えて(動力加速度:1.000Xg〜7.000X
g)回分遠心分離(4°C110分間)を行なう、遠心
終了後上清部分を取り除き、水溶性成分の除去割合(濃
縮比率=×11×2、×5、×10、×15、×20)
の異なる濃縮された溶液を得た後、それらをよく分散さ
せるために超音波処理(出力40 WSBRANSON
SONIFIER450超音波発生装置使用:試料を氷
水中で冷却しながら照射30秒・休止30秒のインタバ
ルで、計5分間行なう)を施す。それらにトリクロロイ
ソシアヌール酸溶液5dを混合し、混合液中のトリクロ
ロイソシアヌール酸濃度を適宜設定したものを40°C
で10分間加熱した後、実施例1と同様の遠心分離操作
を行なう。
(Left below) PDCI Potassium dichloroin cyanurate Example 4 The same cultured solution as in Example 3 was heated to an appropriate concentration of Hz S0.
After adjusting the pH to 5.5 using 4 solution and sterile water, it was placed in a Hitachi centrifugal rotor (capacity If), and the rotation speed was varied (power acceleration: 1.000Xg to 7.000X).
g) Perform batch centrifugation (4°C for 110 minutes). After centrifugation, remove the supernatant and calculate the removal rate of water-soluble components (concentration ratio = ×11 ×2, ×5, ×10, ×15, ×20)
After obtaining different concentrated solutions, ultrasonication (output 40 WSBRANSON
Using a SONIFIER 450 ultrasonic generator: While cooling the sample in ice water, the test was performed for a total of 5 minutes with an interval of 30 seconds of irradiation and 30 seconds of rest). Mix them with 5d of trichloroisocyanuric acid solution, set the concentration of trichloroisocyanuric acid in the mixture appropriately, and heat at 40°C.
After heating for 10 minutes, the same centrifugation operation as in Example 1 is performed.

このようにして得られた試料液の生残細胞・芽胞数及び
残存殺虫活性を測定し、生残細胞・芽胞数がOケ/dと
なる混合液中のトリクロロイソシアヌール酸濃度の最小
値と同法の残存殺虫活性を表−4に示す。この結果より
、培養液をそのまま殺菌処理した場合と比較すると、培
養固形分換算の薬剤使用量は20倍濃縮時に1/9.4
となり大幅に軽減することができるために培養固形分当
りの残存殺虫活性を飛躍的に高めることができる。
The number of surviving cells/spores and residual insecticidal activity of the sample solution obtained in this way are measured, and the minimum value of the concentration of trichloroisocyanuric acid in the mixed solution at which the number of surviving cells/spores is Oke/d is determined. The residual insecticidal activity of the same method is shown in Table 4. From this result, compared to when the culture solution is sterilized as it is, the amount of drug used in terms of culture solid content is 1/9.4 when concentrated 20 times.
Since this can be significantly reduced, the residual insecticidal activity per culture solid content can be dramatically increased.

(以下余白) 実施例5 バチルス・チューリンゲンシス・バリエタス・クルスタ
キ HD−1を坂ロフラスコ中の培地(肉エキス0.5
%、ポリペプトン0.5%、コーンスチープリ力−1%
、グルコース1%:pH7,0)50Idに接種し30
°Cで54時間培養する。同培養終了液を実施例3と同
様の操作でpHを5.5に調整したもの5dに、ジクロ
ロイソシアヌール酸ナトリウム0.4%溶液、及び比較
のためにパラトルエンスルホンクロルアミド0.2%溶
W1.、N−クロルコハク酸イミド0.4%溶液、次亜
塩素酸ナトリウム0.08%溶液(有効塩素濃度換算)
、過酸化水素水0.5%溶液、ホルマリン2%溶液を夫
々sIdずつ加え加熱処理(処理条件は表−5参照)し
た後、実施例1と同様の遠心分離操作を行なう。
(Left below) Example 5 Bacillus thuringiensis varietus kurstaki HD-1 was placed in a medium in a Sakaro flask (meat extract 0.5
%, polypeptone 0.5%, corn steeple force -1%
, glucose 1%: pH 7,0) inoculated into 50Id and 30
Incubate for 54 hours at °C. The same culture solution was adjusted to pH 5.5 in the same manner as in Example 3, and 5d was added with a 0.4% solution of sodium dichloroisocyanurate, and for comparison, 0.2% paratoluenesulfone chloramide. Melting W1. , N-chlorosuccinimide 0.4% solution, sodium hypochlorite 0.08% solution (effective chlorine concentration conversion)
, a 0.5% hydrogen peroxide solution, and a 2% formalin solution were added at sId each and heated (see Table 5 for treatment conditions), followed by centrifugation in the same manner as in Example 1.

このようにして得られた夫々の試料液の生残細胞・芽胞
数及び残存殺虫活性を表−5に示す。この結果よりこれ
ら6種類の薬剤の中では、ジクロロイソシアヌール酸ナ
トリウムを使用した場合が最も残存殺虫活性の高いこと
がわかる。
Table 5 shows the number of surviving cells/spores and residual insecticidal activity of each sample solution thus obtained. These results show that among these six types of chemicals, the use of sodium dichloroisocyanurate has the highest residual insecticidal activity.

実施例6 バチルス・チューリンゲンシス・バリエタス・イスラエ
レンシス HD−522株を肉エキス1%、ポリペプト
ン1%、酵母エキス0.5%、pH7,0の加熱滅菌済
培養液1042に接種し、培養温度30°C1通気量0
.5 vvm 、攪拌速度350rpa+の条件下で5
4時間培養を行なう。この培養終了液(pH8,4程度
)を5dずつ試験管に分注し、混合液中にジクロロイソ
シアヌール酸ナトリウム、ジクロロイソシアヌール酸カ
リウム、トリクロロイソシアヌール酸の各濃度が0〜0
.3%の範囲で0.05%刻みの水準となるように混合
し、これを20〜70°Cの範囲で10°C刻みの水準
となるように10分間加熱した後、直ちに冷却する。
Example 6 Bacillus thuringiensis varietus israelensis strain HD-522 was inoculated into heat-sterilized culture solution 1042 containing 1% meat extract, 1% polypeptone, 0.5% yeast extract and pH 7.0, and the culture temperature 30°C1 ventilation rate 0
.. 5 vvm under the conditions of stirring speed 350 rpa+
Cultivate for 4 hours. Dispense 5 d of this cultured solution (about pH 8.4) into test tubes, and the concentrations of sodium dichloroisocyanurate, potassium dichloroisocyanurate, and trichloroisocyanuric acid in the mixture are 0 to 0.
.. The mixture is mixed in a range of 3% in 0.05% increments, heated for 10 minutes in a range of 20 to 70°C in 10°C increments, and then cooled immediately.

これらの処理後溶液に実施例1と同様の遠心分離操作を
行なう。
The same centrifugation operation as in Example 1 is performed on these treated solutions.

このようにして得られた各殺菌終了液の生残細胞・芽胞
数を測定する。その結果、生残細胞・芽胞数が0ケ/戚
となる条件は夫々ジクロロイソシアヌール酸ナトリウム
は混合液中濃度0.15%、加熱温度40℃、加熱時間
10分であり、ジクロロイソシアヌール酸カリウムは同
0.15%、40゛C110分であり、トリクロロイソ
シアヌール酸は同0.1%、40°C110分であった
The number of surviving cells and spores in each sterilized solution thus obtained is measured. As a result, the conditions for the number of surviving cells/spores to be 0 cells/spores were as follows: sodium dichloroisocyanurate concentration in the mixed solution was 0.15%, heating temperature was 40°C, heating time was 10 minutes, and sodium dichloroisocyanurate was Potassium was 0.15% at 40°C for 110 minutes, and trichloroisocyanuric acid was 0.1% at 40°C for 110 minutes.

実施例7 実施例6と同様の培養終了液を実施例3と同様の操作で
pHを4.0〜8.0の範囲で0.5刻みの水準となる
ように調整する。上記の培養液を5 mlずつ試験管に
分注しこれにジクロロイソシアヌール酸ナトリウムを混
合液中濃度0.15%となるように加え40°Cで10
分間加熱する。同様に比較のためにN−クロルコハク酸
イミドを混合液中濃度が0.2%となるように加え、6
0°Cで10分間加熱する。
Example 7 The same procedure as in Example 3 was carried out using the same culture-finished solution as in Example 6 to adjust the pH to a level in the range of 4.0 to 8.0 in 0.5 increments. Dispense 5 ml of the above culture solution into test tubes, add sodium dichloroisocyanurate to the mixture to give a concentration of 0.15%, and incubate at 40°C for 10 ml.
Heat for a minute. Similarly, for comparison, N-chlorosuccinimide was added to the mixture so that the concentration was 0.2%.
Heat at 0°C for 10 minutes.

このようにして得られた各殺菌終了液を無菌水で希釈し
、種々の段階濃度希釈液をつくり、アカイエカの3令幼
虫を用いて残存殺虫活性を測定した。その結果を表−6
に示す。この結果より両側ともに培養終了液のpHを5
.5に調整した場合が最も高い残存殺虫活性が得られる
ことがわかる。
Each of the sterilized liquids thus obtained was diluted with sterile water to prepare various graded diluted liquids, and the residual insecticidal activity was measured using third instar larvae of Culex mosquito. Table 6 shows the results.
Shown below. Based on this result, the pH of the culture solution on both sides was adjusted to 5.
.. It can be seen that the highest residual insecticidal activity is obtained when adjusted to 5.

またジクロロイソシアヌール酸ナトリウムを使用した場
合の方がN−クロルコハク酸イミドを使用した場合より
かなり残存殺虫活性が高いこともわかる。
It can also be seen that the residual insecticidal activity is considerably higher when sodium dichloroisocyanurate is used than when N-chlorosuccinimide is used.

(以下余白) 表−6 SI ・・・N−クロルコハク酸イミド 実施例8 実施例6と同様の培養液を実施例4と同様の操作でpH
5,5にした後、水溶性成分の除去割合(411比率:
×1、×5、×20)の異なる濃縮された培養液を5d
ずつ試験管に分注する。これにトリクロロイソシアヌー
ル酸及び比較のためにパラトルエンスルホンクロルアミ
ドナトリウムを加え、表−7に示した水準で殺菌処理を
施した。
(Left below) Table 6 SI N-Chlorsuccinimide Example 8 The same culture solution as in Example 6 was adjusted to pH in the same manner as in Example 4.
5,5, the removal rate of water-soluble components (411 ratio:
×1, ×5, ×20) different concentrated culture solutions for 5 d
Dispense each into test tubes. To this, trichloroisocyanuric acid and sodium paratoluenesulfone chloramide were added for comparison, and sterilization was performed at the levels shown in Table 7.

同処理液の残存殺虫活性(アカイエカを使用)の測定結
果を表−7に示す。この結果より培養液をそのまま殺菌
処理した場合と比較して、培養固形分換算の薬剤使用量
は20倍濃縮時において夫々トリクロロイソシアヌール
酸1/8.3、パラトルエンスルホンクロルアミドナト
リウム1/7.1となり両割ともに大幅に軽減できるた
めに、培養固形分当りの残存殺虫活性は飛躍的に高める
ことができた。なおトリクロロイソシアヌール酸を用い
り場合の方がパラトルエンスルホンクロルアミドナトリ
ウムを用いた場合よりも高い残存殺虫活性が得られた。
Table 7 shows the measurement results of the residual insecticidal activity of the same treatment solution (using Culex pipiens). From this result, compared to when the culture solution was sterilized as it was, the amount of drug used in terms of culture solid content was 1/8.3 of trichloroisocyanuric acid and 1/7 of sodium paratoluenesulfone chloramide when concentrated 20 times. .1, both of which can be significantly reduced, making it possible to dramatically increase the residual insecticidal activity per culture solid content. Note that higher residual insecticidal activity was obtained when trichloroisocyanuric acid was used than when sodium paratoluenesulfone chloramide was used.

(ハ)発明の効果 本発明方法は、BT菌の結晶毒素を含む培養液の細菌細
胞及び芽胞を高い殺虫活性を維持したまま完全に殺滅す
ることができ、生芽胞による二次的災害もなく、安全で
より高い薬効のBT農薬を、工業的に安定に製造するこ
とが可能となるという優れた効果を奏する。
(C) Effects of the Invention The method of the present invention can completely kill bacterial cells and spores in a culture solution containing crystal toxin of BT bacteria while maintaining high insecticidal activity, and also prevents secondary damage caused by living spores. This has the excellent effect of making it possible to industrially and stably produce a safe and highly effective BT pesticide.

Claims (1)

【特許請求の範囲】[Claims] 1、バチルス・チューリンゲンシス(Bacillus
thuringiensis)の培養液中に存在する生
芽胞および生栄養細胞を、塩素化イソシアヌール酸また
はその塩により殺滅することを特徴とする殺虫剤の製造
方法。
1. Bacillus thuringiensis
1. A method for producing an insecticide, which comprises killing viable spores and biovegetative cells present in a culture solution of P. thuringiensis using chlorinated isocyanuric acid or a salt thereof.
JP1271149A 1989-10-18 1989-10-18 Insecticide manufacturing method Expired - Fee Related JPH0739330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1271149A JPH0739330B2 (en) 1989-10-18 1989-10-18 Insecticide manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1271149A JPH0739330B2 (en) 1989-10-18 1989-10-18 Insecticide manufacturing method

Publications (2)

Publication Number Publication Date
JPH03133911A true JPH03133911A (en) 1991-06-07
JPH0739330B2 JPH0739330B2 (en) 1995-05-01

Family

ID=17496012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1271149A Expired - Fee Related JPH0739330B2 (en) 1989-10-18 1989-10-18 Insecticide manufacturing method

Country Status (1)

Country Link
JP (1) JPH0739330B2 (en)

Also Published As

Publication number Publication date
JPH0739330B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
JP2514793B2 (en) Cell encapsulation of biological insecticides
BR112013002854B1 (en) USE OF A NEMATOCIDAL COMPOSITION COMPRISING BACILLUS SUBTILIS AND BACILLUS LICHENIFORMIS, AND PROCESSES FOR CONTROL AND/OR COMBATING PHYTONESATOIDES, AND TO PROVIDE RESISTANCE
BR112015006405B1 (en) METHOD FOR CONTROL OF AT LEAST ONE PEST OF PLANTS, PARTICULARLY LEPIDOPTERS AND DIPTERS
CN102329760B (en) New bacterial strain of Bacillus thuringiensis for killing grub pest and pest killing protein thereof
US8263526B2 (en) Compositions of keratin hydrolysate and microbes for pest control applications
WO2010018830A1 (en) Lecanicillium muscarium strain v-5, pest extermination method using the same, and microorganism pesticide comprising the same
CN101597574A (en) One Paecilomyces cateniannulatus strain with high yield of spores and screening thereof and application method
JPH0358904A (en) New bacillus thurinqiensis chorista
JPH03133911A (en) Production of insecticide
CN100420738C (en) Natural insect carcase separating bacillus and use thereof
JPH0515364A (en) New bacillus strain and insect pest controller
JPH04505998A (en) New strains of Bacillus Thuringiensis, their production and their use in insect control and protection of plants from insect attack
JP5455114B2 (en) Plant disease control agent
JPH03123713A (en) Production of insecticide
JPH03127706A (en) Production of insecticide
JPS5823365B2 (en) Saikin Seisatsu Yuzai Oyobi Sono Seizou Hohou
JP2658378B2 (en) Method for producing pesticides
JPH02275810A (en) Production of insecticide
RU2812480C1 (en) Bacillus thuringiensis var. darmstadiensis 109/7 strain as polyfunctional plant protector and stimulation of their growth
JPH02258706A (en) Preparation of insecticide
CA2193378A1 (en) Process for cultivating bacillus thuringiensis biopesticides in wastewater treatment sludges
US20220142172A1 (en) Bacillus halosaccharovorans strain, composition comprising the same, and uses thereof
JPH037209A (en) Production of insecticide
JPH03219883A (en) Weed-controlling agent containing microorganism of genus drechslera or its metabolic product and method for controlling weed therewith
Mohammad Biological Control of the Dengue Transmitted Mosquitoes Aedes aegypti Using Bacillus thuringiensis

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees