JPH02258066A - Catalyst for preparing ammonia - Google Patents

Catalyst for preparing ammonia

Info

Publication number
JPH02258066A
JPH02258066A JP1245429A JP24542989A JPH02258066A JP H02258066 A JPH02258066 A JP H02258066A JP 1245429 A JP1245429 A JP 1245429A JP 24542989 A JP24542989 A JP 24542989A JP H02258066 A JPH02258066 A JP H02258066A
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
reaction
ammonia
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1245429A
Other languages
Japanese (ja)
Other versions
JP2532145B2 (en
Inventor
Kenichi Akishika
研一 秋鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNENSHIYOU SYST KENKYUSHO KK
Original Assignee
SHINNENSHIYOU SYST KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNENSHIYOU SYST KENKYUSHO KK filed Critical SHINNENSHIYOU SYST KENKYUSHO KK
Priority to JP1245429A priority Critical patent/JP2532145B2/en
Publication of JPH02258066A publication Critical patent/JPH02258066A/en
Application granted granted Critical
Publication of JP2532145B2 publication Critical patent/JP2532145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a highly active catalyst by removing the poisoning of the catalyst due to chlorine by impregnating a hardly reducible oxide carrier with a ruthenium metal component using a ruthenium compound containing no chlorine. CONSTITUTION:A ruthenium compound containing no chlorine such as a ruthenium carbonyl complex or ruthenium nitrate is supported by hardly reducible oxide such as alumina or magnesia and reduced under vacuum and/or a hydrogen gas stream to obtain a metalloid ruthenium catalyst. Subsequently, an alkali metal compound such as a rubidium compound or a cesium compound is supported by said catalyst. By this method, catalyst poisoning action due to chlorine can be excluded and, when magnesia is used as the catalyst carrier, the catalyst accelerates reaction and becomes highly active.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒素と水素からアンモニアを合成するのに適し
た触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a catalyst suitable for synthesizing ammonia from nitrogen and hydrogen.

(従来の技術〕 従来、アンモニアを合成するには鉄を主成分とし、アル
ミナ、酸化カリウム等を助触媒として添加した鉄系触媒
が採用されているが、この触媒のアンモニア合成活性は
低温では発揮されず、そのために工業装置における操業
反応温度は平衡論上の不利にもかかわらず400〜50
0℃の高温を利用せざるを得ない、そのため現存のアン
モニア製造法においては反応ガスの再循環比を太き(と
り、空間速度を高くすることが必要でありこれに伴う動
力、熱伝達等の運転経費の増大は著しい。
(Conventional technology) Conventionally, an iron-based catalyst containing iron as a main component and supplemented with alumina, potassium oxide, etc. as a co-catalyst has been used to synthesize ammonia, but the ammonia synthesis activity of this catalyst is not exhibited at low temperatures. Therefore, the operational reaction temperature in industrial equipment is 400 to 50
Therefore, in the existing ammonia production method, it is necessary to increase the recirculation ratio of the reaction gas and increase the space velocity, and the power, heat transfer, etc. The increase in operating costs is significant.

本発明者らは、さきに鉄、ルテニウム、オスミウムおよ
びコバルトからなる■族遷移金属のいずれかと、アルカ
リ金属とを活性炭、あるいは多孔質炭素に担持させたア
ンモニア製造用触媒を提供した(特公昭54−3759
2号公報)。このアンモニア製造用触媒は、活性炭に担
持した■族金属触媒にアルカリ金属を添加して調製され
、200℃のような低温でもアンモニアを合成すること
ができるものである。
The present inventors have previously provided a catalyst for ammonia production in which one of the Group I transition metals consisting of iron, ruthenium, osmium, and cobalt and an alkali metal are supported on activated carbon or porous carbon (Japanese Patent Publication No. 54 -3759
Publication No. 2). This catalyst for producing ammonia is prepared by adding an alkali metal to a group (1) metal catalyst supported on activated carbon, and is capable of synthesizing ammonia even at a low temperature of 200°C.

その後、この触媒系についてアルカリ金属にかえてアル
カリ金属塩を使用し、触媒担体として特定の表面積を有
するグラファイト含有炭素を使用するアンモニア製造方
法が報告され(特公昭5916816号公f4り1また
本発明者等も塩化ルテニウムとアルカリ金属塩とをアル
ミナ担体に担持させ、−酸化炭素、水による被毒作用の
少ないアンモニア製造用触媒を報告した( JOURN
AL 0FCATALYSTS 、録 、P、P、29
6〜304(1985) 、同305〜311(198
5) l 。
Subsequently, an ammonia production method using an alkali metal salt instead of an alkali metal for this catalyst system and using graphite-containing carbon having a specific surface area as a catalyst carrier was reported (Japanese Patent Publication No. 5916816 f4ri1 and the present invention They also reported a catalyst for producing ammonia with less poisoning effect by carbon oxide and water by supporting ruthenium chloride and an alkali metal salt on an alumina carrier (JOURN).
AL 0FCATALYSTS, Record, P, P, 29
6-304 (1985), 305-311 (1985)
5) l.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながらルテニウムを担体上に担持させるにあたり
、塩化物の形で使用すると、触媒被毒作用によりアンモ
ニア収率が減少することを本発明者らは見出した。
However, the present inventors have found that when ruthenium is supported on a carrier and is used in the form of chloride, the ammonia yield decreases due to catalyst poisoning.

本発明は、本発明者らによるアンモニア製造用触媒を更
に改良し、塩素イオンによる触媒被毒作用がなく、触媒
担体としてアルミナ、またはマグネシア等の酸化物担体
を使用したアンモニア製造用触媒の提供を課題とする。
The present invention further improves the catalyst for ammonia production by the present inventors, and provides a catalyst for ammonia production that does not have the poisoning effect of chlorine ions and uses an oxide carrier such as alumina or magnesia as a catalyst carrier. Take it as a challenge.

更に本発明は塩素イオンのない場合もアルカリ金属化合
物が促進効果を有する触媒の提供を課題とする。
Furthermore, it is an object of the present invention to provide a catalyst in which an alkali metal compound has a promoting effect even in the absence of chloride ions.

〔課題を解決するための手段〕[Means to solve the problem]

本発明におけるアンモニア製造用触媒は、塩素を含有し
ないルテニウム化合物を難還元性酸化物に担持させ、真
空排気及び/又は水素気流下還元して金属状ルテニウム
触媒を調製し、次いでアルカリ金属化合物を担持させて
製造されることを特徴とする。
In the catalyst for producing ammonia in the present invention, a ruthenium compound that does not contain chlorine is supported on a refractory oxide, a metallic ruthenium catalyst is prepared by vacuum evacuation and/or reduction under a hydrogen stream, and then an alkali metal compound is supported. It is characterized by being manufactured by

ルテニウム化合物としては塩素を含有しない化合物、例
えばルテニウムカルボニル錯体、ルテニウムアセチルア
セトナート、ルテニウムシアン酸カリウム、ルテニウム
酸カリウム、酸化ルテニウム、硝酸ルテニウム、ルテニ
ウムレッド等を使用することができ、これらのルテニウ
ム化合物はアセトン、テトラヒドロフラン等の極性有機
溶媒、又は水に溶解させて難還元性酸化物に含浸させる
とよく、またルテニウム金属成分は難還元性酸化物触媒
担体に対して0.1重量%〜20重量%、好ましくは2
重量%〜5重量%含浸させるとよい。
As the ruthenium compound, compounds that do not contain chlorine can be used, such as ruthenium carbonyl complex, ruthenium acetylacetonate, ruthenium potassium cyanate, potassium ruthenate, ruthenium oxide, ruthenium nitrate, ruthenium red, etc. It is preferable to impregnate the refractory oxide by dissolving it in a polar organic solvent such as acetone, tetrahydrofuran, or water, and the ruthenium metal component is 0.1% to 20% by weight based on the refractory oxide catalyst carrier. , preferably 2
It is preferable to impregnate the resin in an amount of 5% to 5% by weight.

ルテニウム金属触媒を調製するには、触媒担体にルテニ
ウム化合物溶液を含浸させた後まず50℃〜500℃、
好ましくは150℃〜400℃で真空排気し、引き続い
て水素気流下100℃〜700℃、好ましくは300℃
〜500℃で水素還元することにより行うとよいが、ア
ンモニア製造時は水素雰囲気下で行われるので、触媒調
製に際して水素還元処理を省略し、真空排気手段のみで
調製してもよく、また逆に水素還元処理により金属状ル
テニウムとすることも可能であり、真空排気処理を省略
してもよい。
To prepare a ruthenium metal catalyst, first, after impregnating a catalyst carrier with a ruthenium compound solution,
Preferably evacuation at 150°C to 400°C, followed by 100°C to 700°C, preferably 300°C under a hydrogen stream.
It is preferable to carry out hydrogen reduction at ~500°C, but since ammonia production is carried out in a hydrogen atmosphere, the hydrogen reduction treatment may be omitted when preparing the catalyst and preparation may be carried out only by vacuum evacuation means, or vice versa. It is also possible to obtain metallic ruthenium by hydrogen reduction treatment, and the vacuum evacuation treatment may be omitted.

次にアルカリ金属化合物としてはリチウム、ナトリウム
、カリウム、セシウム、ルビジウム化合物であることが
でき、特にルビジウム、セシウム、カリウム化合物が好
ましい、またアルカリ金属化合物としては、硝酸塩、酢
酸塩、炭酸塩、シアン酸塩、水酸化物等を水溶液の形で
上記ルテニウム金属触媒に含浸させるとよい、アルカリ
金属はルテニウム金属に対して0.1〜100(モル比
)、好ましくは5〜20(モル比)で添加するとよい。
Next, the alkali metal compounds can be lithium, sodium, potassium, cesium, and rubidium compounds, with rubidium, cesium, and potassium compounds being particularly preferred; and the alkali metal compounds include nitrates, acetates, carbonates, and cyanates. It is preferable to impregnate the above ruthenium metal catalyst with a salt, hydroxide, etc. in the form of an aqueous solution.The alkali metal is added in an amount of 0.1 to 100 (mole ratio), preferably 5 to 20 (mole ratio) to the ruthenium metal. It's good to do that.

なおアルカリ金属化合物の代わりに、上記従来技術で開
示されているように一定の反応促進機能を有するカルシ
ウム、マグネシウム、バリウム等のアルカリ土類金属化
合物を使用してもよい。
Note that instead of the alkali metal compound, an alkaline earth metal compound such as calcium, magnesium, or barium, which has a certain reaction promoting function as disclosed in the above-mentioned prior art, may be used.

本発明における触媒担体において特にマグネシアはアル
カリ金属酸化物同様に反応促進機能を有するので、アル
カリ金属酸化物を添加しなくても一定のアンモニア合成
活性を有する。しかしながら、マグネシアを触媒担体と
して使用する場合にもアルカリ金属を添加すると、より
反応を促進させることができる。
In the catalyst carrier of the present invention, magnesia in particular has a reaction promoting function like an alkali metal oxide, so it has a certain level of ammonia synthesis activity even without the addition of an alkali metal oxide. However, even when magnesia is used as a catalyst carrier, the reaction can be further promoted by adding an alkali metal.

触媒担体としては難還元性酸化物、例えばアルミナ、マ
グネシア、酸化カルシウム、ジルコニア、複合材料であ
るコージェライト等を使用するとよく、アルミナは触媒
担体として使用するものであるので1体として使用する
とよく、触媒担体形状としては粉末状で使用してもよい
がベレット形状とするとよく、また自動車等への積載に
あたっては触媒担体を公知の手段によりハニカム形状に
成型し、次いで活性金属成分を含浸させてもよい。
As the catalyst carrier, it is best to use a refractory oxide, such as alumina, magnesia, calcium oxide, zirconia, or the composite material cordierite. Since alumina is used as a catalyst carrier, it is best to use it as a single body. The catalyst carrier may be used in powder form, but it is better to use a pellet shape.Also, when loading it onto a car, the catalyst carrier may be formed into a honeycomb shape by known means and then impregnated with an active metal component. good.

本発明の触媒を適用するアンモニア合成用原料ガスは、
従来のアンモニア合成用ガスでよく特別の精製を必要と
しないが、本発明の触媒は一酸化炭素に被毒しても容易
に再生しうるので、例えば本出願人の先の出願(特願昭
63−142401号)における、軽油等の接触分解反
応により製造される水素を使用する際のアンモニア製造
用触媒としても有用である。
The raw material gas for ammonia synthesis to which the catalyst of the present invention is applied is:
Although conventional ammonia synthesis gas does not require special purification, the catalyst of the present invention can be easily regenerated even if it is poisoned by carbon monoxide. It is also useful as a catalyst for ammonia production when using hydrogen produced by catalytic cracking reaction of light oil etc. in No. 63-142401).

アンモニア合成反応における反応温度、反応圧力は、平
衡論上低温高圧が望ましいが、本発明の触媒は100℃
〜500℃、好ましくは150℃〜350℃において、
圧力lないし300気圧で行われる0本発明の触媒は低
温活性であるためにアンモニアが高濃度で得られるので
液化分離が容易である。
The reaction temperature and reaction pressure in the ammonia synthesis reaction are preferably low temperature and high pressure in terms of equilibrium theory, but the catalyst of the present invention
~500°C, preferably 150°C to 350°C,
The catalyst of the present invention, which is carried out at a pressure of 1 to 300 atm, is active at a low temperature, so that ammonia can be obtained in a high concentration, making it easy to liquefy and separate it.

〔作用〕[Effect]

本発明のアンモニア製造用触媒は、ルテニウム金属成分
を塩素を含有しないルテニウム化合物を用いて難還元性
酸化物担体に含浸させて調製されるものであり、従来の
塩化ルテニウムを原料とする場合のように塩素イオンに
よる触媒被毒作用を排除することができ、高いアンモニ
ア合成活性を示すものである。また反応促進剤としての
アルカリ金属化合物は、水溶液の形で触媒担体に容易に
担持させることができ、特にマグネシアを触媒担体とし
て使用する場合には、触媒担体としての機能の外に反応
促進機能を有するので反応活性を更に高めることができ
る。また一般にアルミナ、マグネシア担体はルテニウム
カルボニル錯体、またアルカリ金属塩との親和性が極め
てよいので、本発明の触媒において触媒担体としてアル
ミナ、マグネシア等を使用することにより、触媒担体細
孔内に活性金属成分を容易に且つ均一に付着させること
ができ、活性金属成分の担持量の大きい触媒とすること
ができる。
The catalyst for ammonia production of the present invention is prepared by impregnating a ruthenium metal component into a refractory oxide carrier using a ruthenium compound that does not contain chlorine, and is similar to the case where conventional ruthenium chloride is used as a raw material. It can eliminate the catalyst poisoning effect caused by chlorine ions and exhibits high ammonia synthesis activity. In addition, an alkali metal compound as a reaction promoter can be easily supported on a catalyst carrier in the form of an aqueous solution, and especially when magnesia is used as a catalyst carrier, it has a reaction promoting function in addition to its function as a catalyst carrier. The reaction activity can be further increased. Furthermore, in general, alumina and magnesia supports have extremely good affinity with ruthenium carbonyl complexes and alkali metal salts. Components can be easily and uniformly deposited, and a catalyst with a large amount of active metal components supported can be obtained.

以下、実施例、および参考例をあげて本発明を説明する
が、本発明はこれらに限定されるものではない。
The present invention will be described below with reference to Examples and Reference Examples, but the present invention is not limited thereto.

実施例に共通した事項として、アンモニア製造にあたっ
ては内径18−一のガラス管に本発明の触媒を1g含有
する触媒を充填し、触媒層を外部より加熱しつつ、−酸
化炭素を混入させるもの以外は窒素と水素の混合比1:
3、全圧1気圧の原料ガスを3,51/hrの流速で流
して反応させ、生成ガス中のアンモニア量は液体窒素に
より凝縮させて測定した。
As a matter common to the Examples, in producing ammonia, a glass tube with an inner diameter of 18-1 is filled with a catalyst containing 1 g of the catalyst of the present invention, and while the catalyst layer is heated from the outside, carbon oxide is mixed. is the mixing ratio of nitrogen and hydrogen 1:
3. A raw material gas with a total pressure of 1 atm was caused to flow at a flow rate of 3.51/hr to react, and the amount of ammonia in the produced gas was measured by condensing it with liquid nitrogen.

〔実施例1〕 第1図は本発明のルテニウム−セシウム/アルミナ触媒
における、セシウムの使用量のアンモニア収量に対する
影響を示す図である。
[Example 1] FIG. 1 is a diagram showing the influence of the amount of cesium used on the ammonia yield in the ruthenium-cesium/alumina catalyst of the present invention.

ルテニウムカルボニル を40talのテトラヒドロフランに溶解し、この溶液
を500℃、6時間空気中で予備焼成したTーアルミナ
(触媒学会参照触媒、JRC−ALO−4)体3、3g
にルテニウム分が2重量%となるように含浸させた.次
いで低温で溶媒を除去した後、350℃で真空排気しル
テニウム金属触媒を調製した。
Ruthenium carbonyl was dissolved in 40 tal of tetrahydrofuran, and this solution was pre-calcined in air at 500°C for 6 hours. 3.3 g of T-alumina (Catalysis Society Reference Catalyst, JRC-ALO-4) body
was impregnated with 2% by weight of ruthenium. Next, after removing the solvent at a low temperature, the reactor was evacuated at 350° C. to prepare a ruthenium metal catalyst.

このルテニウム金属触媒にセシウム/ルテニウムのモル
比が1,3、5、7、10となるように硝酸セシウム水
溶液を含浸させ、90℃−晩乾燥させ本発明の触媒を調
製した。
This ruthenium metal catalyst was impregnated with an aqueous cesium nitrate solution at a cesium/ruthenium molar ratio of 1, 3, 5, 7, and 10, and dried overnight at 90°C to prepare a catalyst of the present invention.

触媒をアンモニア製造に使用する直前に350℃、又は
400℃に昇温しつつ、4時間水素気流中で還元処理を
した。
Immediately before using the catalyst for ammonia production, the catalyst was heated to 350°C or 400°C and subjected to reduction treatment in a hydrogen stream for 4 hours.

これらの触媒を使用して、反応温度400℃でのアンモ
ニア合成を行った.その結果を第1図に示す。
Using these catalysts, ammonia synthesis was carried out at a reaction temperature of 400°C. The results are shown in FIG.

第1図において0印は触媒製造直後のもの、Q印は10
時間運転後の活性を示す.なお反応生成量の単位は、触
媒1g、1時間あたりの生成量を示すμー〇1gー1h
−1である(以下同様)これによるとセシウムの添加割
合が増加すると反応活性が上昇し、高いアンモニア合成
活性を示すことがわかる。
In Figure 1, the 0 mark is the one immediately after the catalyst was manufactured, and the Q mark is the 10
Shows the activity after hours of operation. The unit of the reaction product amount is μ-〇1g-1h, which indicates the amount of product generated per 1g of catalyst and 1 hour.
-1 (the same applies hereinafter) According to this, it can be seen that as the addition ratio of cesium increases, the reaction activity increases and a high ammonia synthesis activity is exhibited.

〔実施例2〕 第2図は本発明のルテニウム−ルビジウム、またはカリ
ウム/アルミナ触媒における、ルビジウム、またはカリ
ウムの使用量のアンモニア収量に対する影響を示す図で
ある。
[Example 2] FIG. 2 is a diagram showing the influence of the amount of rubidium or potassium used on the ammonia yield in the ruthenium-rubidium or potassium/alumina catalyst of the present invention.

上記実施例1に於いてセシウムに代えて硝酸ルビジウム
、硝酸カリウムを含浸させ、還元温度350℃で触媒を
調製し、反応温度350℃でアンモニア合成を行った。
In Example 1, rubidium nitrate and potassium nitrate were impregnated in place of cesium, a catalyst was prepared at a reduction temperature of 350°C, and ammonia synthesis was performed at a reaction temperature of 350°C.

その結果を第2図に示す。The results are shown in FIG.

図中、0印は硝酸ルビジウム、0印は硝酸カリウムの場
合を示す、これによると硝酸ルビジウム、硝酸カリウム
を含浸させたものは、第1図におけるセシウムを含浸さ
せたものに比較して収量は減少するが、同様の反応活性
を有していることがわかる。
In the figure, the 0 mark indicates the case of rubidium nitrate, and the 0 mark indicates the case of potassium nitrate. According to this, the yield of the product impregnated with rubidium nitrate and potassium nitrate is lower than that of the product impregnated with cesium in Figure 1. It can be seen that they have similar reaction activities.

次に第3図は、本発明の触媒の寿命について示す図であ
る。
Next, FIG. 3 is a diagram showing the life of the catalyst of the present invention.

ルテニウムに対する各アルカリ金属の添加量をモル比で
10とし、350℃で水素還元を行い、反応を350℃
で行ったこと以外は上記実施例1同様にしてアンモニア
合成をした。その結果を第3図に示す。
The amount of each alkali metal added to ruthenium was set at a molar ratio of 10, hydrogen reduction was carried out at 350°C, and the reaction was carried out at 350°C.
Ammonia synthesis was carried out in the same manner as in Example 1 above, except that the procedure was carried out in Example 1 above. The results are shown in FIG.

第3図かられかるように本発明の触媒は、極めて短い誘
導時間後、一定の反応収量で長時間反応活性を維持する
ことがわかり、また促進剤ではセシウム、ルビジウム、
カリウムの順に反応活性が高いことがわかる。
As can be seen from Figure 3, the catalyst of the present invention maintains reaction activity for a long time with a constant reaction yield after an extremely short induction time, and the catalyst of the present invention maintains reaction activity for a long time with a constant reaction yield.
It can be seen that the reaction activity is highest in order of potassium.

また第4図は、触媒の還元温度による反応収率に対する
影響を示す図である。
Further, FIG. 4 is a diagram showing the influence of the reduction temperature of the catalyst on the reaction yield.

Cs/Ruモル比10のルテニウム−セシウム/アルミ
ナ触媒を、還元温度を変化させた以外は上記各実施例と
同様にして触媒を調製し、反応収率に対する影響を見た
0図中、○印は400℃、0印は350℃、Δ印は31
5℃で反応させた場合を示す。
A ruthenium-cesium/alumina catalyst with a Cs/Ru molar ratio of 10 was prepared in the same manner as in each of the above examples except that the reduction temperature was changed, and the influence on the reaction yield was observed. is 400℃, 0 mark is 350℃, Δ mark is 31
The case where the reaction was carried out at 5°C is shown.

これによると触媒層の調製温度、及び反応温度が高いと
反応収率は高いが、本発明の触媒は触媒の還元温度をで
きるだけ低くすることにより高い反応収率が得られるこ
とがわかる。
According to this, it can be seen that the reaction yield is high when the preparation temperature of the catalyst layer and the reaction temperature are high, but the catalyst of the present invention can obtain a high reaction yield by lowering the reduction temperature of the catalyst as much as possible.

尚、比較のために第4図において、実施例1と同様であ
るが、セシウムを全く添加しない触媒を用いた時の40
0℃での反応結果を印で示す。
For comparison, FIG. 4 shows the same catalyst as in Example 1 but with no cesium added.
The reaction results at 0°C are indicated by marks.

これによりセシウムを添加しないと活性効果が著しく低
いことがわかる。
This shows that the activation effect is extremely low unless cesium is added.

また同じく比較のために実施例1と同量のルテニウム、
及びセシウムを含有するように、ルテニウム化合物とし
て塩化ルテニウムを使用してアルミナに含浸させ400
℃で還元処理後硝酸セシウムで処理した触媒を調製し、
400℃でアンモニア合成に使用したところ、収率は2
00μmo1 g−Ih−1であアた。第4図において
×印で示す、即ち本発明の触媒は同様の還元条件で調製
した塩化ルテニウム由来の触媒と比較して著しく反応活
性が高いことがわかる。
Also, for comparison, the same amount of ruthenium as in Example 1,
and 400% impregnated into alumina using ruthenium chloride as a ruthenium compound to contain cesium.
Prepare a catalyst treated with cesium nitrate after reduction treatment at °C,
When used for ammonia synthesis at 400℃, the yield was 2.
00 μmol g-Ih-1. It can be seen that the catalyst of the present invention, which is indicated by the x mark in FIG. 4, has significantly higher reaction activity than a catalyst derived from ruthenium chloride prepared under similar reduction conditions.

〔実施例3〕 第5図はマグネシア担体を使用し、アルカリ金属化合物
を含有しない場合のアンモニア合成活性の還元温度依存
性を示す図である。
[Example 3] FIG. 5 is a diagram showing the reduction temperature dependence of ammonia synthesis activity when a magnesia carrier is used and no alkali metal compound is contained.

実施例1において、アルミナ担体に代えて、マグネシア
を使用し、セシウム塩を添加しないで水素還元し触媒を
調製した。この触媒調製時における還元温度を変化させ
、反応温度を350℃、400℃としてアンモニア合成
をした0反応温度を変えた結果を第5図に示す。
In Example 1, a catalyst was prepared by using magnesia instead of the alumina carrier and carrying out hydrogen reduction without adding a cesium salt. FIG. 5 shows the results of changing the reduction temperature during catalyst preparation and changing the reaction temperature for ammonia synthesis by changing the reaction temperature to 350° C. and 400° C.

これによると担体としてマグネシアを使用すると、セシ
ウムを添加しなくてもかなり高い反応活性を有すること
がわかる。更に本発明の触媒は、還元前に350℃で排
気処理をしており、主としてこの段階で触媒の特性が決
まり、後の還元温度には大きく影響されないことがわか
る。
This shows that when magnesia is used as a carrier, it has a considerably high reaction activity even without the addition of cesium. Furthermore, the catalyst of the present invention is subjected to exhaust treatment at 350° C. before reduction, and it can be seen that the characteristics of the catalyst are mainly determined at this stage and are not greatly influenced by the subsequent reduction temperature.

〔実施例4〕 実施例1においてアルミナ担体に代えてマグネシア担体
を使用して実施例1同様にしてルテニウム金属触媒を調
製し、このルテニウム金属触媒にアルカリ金属/ルテニ
ウムのモル比が1.0となるように、硝酸セシウム水溶
液を含浸させ、本発明の触媒を調製した。
[Example 4] A ruthenium metal catalyst was prepared in the same manner as in Example 1 using a magnesia support instead of the alumina support, and the ruthenium metal catalyst had an alkali metal/ruthenium molar ratio of 1.0. The catalyst of the present invention was prepared by impregnating it with an aqueous cesium nitrate solution.

このようにして調製した触媒をアンモニア製造に使用す
る直前に350℃、4時間、水素気流中で還元処理し、
反応温度を変化させてアンモニア合成を行った。結果を
下表に示す0反応収率の単重量は、μmo1 g”h (以下余白) この表かられかるように、マグネシア担体を使用すると
、極めて高いアンモニア合成活性を示すことがわかると
共に、アルカリ金属の使用量が、アルミナ担体の場合に
比して少なくてよいことがわかる。またカリウム、ルビ
ジウム、セシウム添加ルテニウム触媒において、反応温
度が315℃から330℃に上昇しているにもかかわら
ず活性が増加していない理由は、これらの触媒の活性が
高いために反応が既に平衡近くにまで進んでいることに
よるものと思われる。
Immediately before using the catalyst thus prepared for ammonia production, it was reduced at 350°C for 4 hours in a hydrogen stream,
Ammonia synthesis was performed by changing the reaction temperature. The results are shown in the table below. It can be seen that the amount of metal used is smaller than in the case of an alumina support.Also, in the case of potassium, rubidium, and cesium-doped ruthenium catalysts, the activity remained even though the reaction temperature rose from 315℃ to 330℃. The reason why is not increasing seems to be that the reaction has already proceeded to near equilibrium due to the high activity of these catalysts.

〔実施例5〕 実施例1で調製したルテニウム金属触媒(但し、ルテニ
ウムを2重量%の代わりに5重量%となるように調製し
たもの)に、セシウム/ルテニウムのモル比が3.76
となるように硝酸セシウム水溶液を含浸させ、90℃−
晩乾燥させて本発明の触媒を調製した。
[Example 5] The ruthenium metal catalyst prepared in Example 1 (however, the ruthenium was prepared to be 5% by weight instead of 2% by weight) had a cesium/ruthenium molar ratio of 3.76.
Impregnated with cesium nitrate aqueous solution so that
The catalyst of the present invention was prepared by drying overnight.

この触媒を実施例1同様に還元処理し、反応温度400
℃、大気圧下で、原料ガス組成を容量%で窒素20、水
素60、希釈ガス(ヘリウム)20−xl−酸化炭素X
としてアンモニア合成を行った。原料ガスにおける一酸
化炭素の割合(モル分率)を変化させて、アンモニア生
成量の変化を測定し、その結果を下表に示す、アンモニ
ア収率の単位はμmo1 g−’h −’ (以下余白) これによると、本発明の触媒は一酸化炭素による被毒作
用をあまり受けないことがわかる。
This catalyst was reduced in the same manner as in Example 1, and the reaction temperature was 400.
℃, under atmospheric pressure, the raw material gas composition was 20% by volume, 60% hydrogen, and 20% diluent gas (helium) -xl-carbon oxide
Ammonia synthesis was carried out as follows. Changes in the amount of ammonia produced were measured by changing the proportion (mole fraction) of carbon monoxide in the raw material gas, and the results are shown in the table below. The unit of ammonia yield is μmo1 g-'h-' (hereinafter Margin) This shows that the catalyst of the present invention is not significantly affected by the poisoning effect of carbon monoxide.

また、本実験において一酸化炭素の流入を止めて引き続
き反応を継続してみたところ、本発明の触媒の活性は元
の値に戻り、CO被毒が一時的なものであることがわか
った。
Furthermore, in this experiment, when the inflow of carbon monoxide was stopped and the reaction was continued, the activity of the catalyst of the present invention returned to its original value, indicating that the CO poisoning was temporary.

〔参考例〕[Reference example]

第6図はルテニウム源として塩化ルテニウムを使用する
場合の反応収率を示す図である。
FIG. 6 is a diagram showing the reaction yield when ruthenium chloride is used as the ruthenium source.

マグネシアに対してルテニウムを2重量%含有するよう
に、塩化ルテニウム水溶液にマグネシアを含浸させ、ル
テニウムに対するモル比が横軸の数字となるように硝酸
カリウム水溶液を含浸させ触媒を調製した0図中、○印
はルテニウム含浸後、600℃で水素還元処理をしたも
の、0印は水素還元処理をしないものを示す。
A catalyst was prepared by impregnating magnesia in a ruthenium chloride aqueous solution so that the ruthenium content was 2% by weight relative to magnesia, and impregnating it with a potassium nitrate aqueous solution so that the molar ratio to ruthenium was the number on the horizontal axis. The mark indicates that the sample was subjected to hydrogen reduction treatment at 600° C. after being impregnated with ruthenium, and the 0 mark indicates that no hydrogen reduction treatment was performed.

この触媒を使用してアンモニア合成した結果を第6図に
示す、これによると水素還元処理をしないものは塩素を
含有しているために、カリウムをルテニウムに対して一
定割合以上含有させないとアンモニア合成活性が極端に
低いことがわかる。
The results of ammonia synthesis using this catalyst are shown in Figure 6.It shows that since the catalyst that is not subjected to hydrogen reduction contains chlorine, ammonia cannot be synthesized unless potassium is contained above a certain ratio to ruthenium. It can be seen that the activity is extremely low.

更に600℃で水素還元処理をしたものでも、カリウム
塩の添加により更に活性が増加していることがわかる。
Furthermore, it can be seen that even in the case where the hydrogen reduction treatment was performed at 600° C., the activity was further increased by the addition of potassium salt.

〔発明の効果〕〔Effect of the invention〕

本発明のアンモニア製造用触媒は、従来の塩化ルテニウ
ム由来の触媒における塩素による触媒被毒作用を排除す
ることができ、また触媒担体としてマグネシアを使用す
ると触媒担体としての機能の外に反応促進機能を有する
ので更に反応活性の高い触媒となしえるものである。ま
た本発明の触媒においては、ルテニウムカルボニル錯体
、またアルカリ金属塩は、触媒担体との親和性が極めて
よいので、触媒担体細孔内にルテニウム金属成分、及び
アルカリ金属成分を容易に且つ均一に付着したものとな
り、活性金属成分の担持量の大きいものとすることがで
きる。また−酸化炭素による被毒作用に抵抗性を有する
ものであるので、反応ガス中に一酸化炭素を含有してい
るような場合でも有用な触媒である。
The catalyst for ammonia production of the present invention can eliminate the catalyst poisoning effect caused by chlorine in conventional catalysts derived from ruthenium chloride, and when magnesia is used as a catalyst carrier, it has a reaction promoting function in addition to its function as a catalyst carrier. It can be used as a catalyst with even higher reaction activity. Furthermore, in the catalyst of the present invention, the ruthenium carbonyl complex and the alkali metal salt have extremely good affinity with the catalyst carrier, so that the ruthenium metal component and the alkali metal component can be easily and uniformly deposited within the pores of the catalyst carrier. As a result, a large amount of active metal components can be supported. Moreover, since it is resistant to the poisoning effect of carbon oxide, it is a useful catalyst even when the reaction gas contains carbon monoxide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のルテニウム−セシウム−アルミナ触媒
における、セシウムの使用量のアンモニア収量に対する
影響を示す図、第2図は本発明のルテニウム−ルビジウ
ム、またはカリウム−アルミナ触媒における、ルビジウ
ム、またはカリウムの使用量のアンモニア収量に対する
影響を示す図、第3図は本発明の触媒の寿命について示
す図、第4図は触媒の還元温度による反応収量にたいす
る影響を示す図、第5図はマグネシア担体を使用し、ア
ルカリ金属化合物を含有しない場合のアンモニア合成活
性の還元温度依存性を示す図、第6図はルテニウム源と
して塩化ルテニウムを使用する場合の反応収率を示す図
である。 出 願 人  株式会社 新燃焼システム研究所代理人
弁理士 内1)亘彦 (外5名)手 続 (甫 正 書 (方式) %式% 1、事件の表示 平成 1年特許願第245429号 2、発明の名称  アンモニア製造用触媒3、補正をす
る者 事件との関係  特許出願人 名   称 株式会社 新燃焼システム研究所 代表者 鈴 木  孝 4゜ 代 理 人 5、補正命令の日付  平成 1年12月120発送日
  平成 1年12月26日 6、補正の対象 図   面(第5図)7、補正の内容
 別 紙 の 通 リ
FIG. 1 is a diagram showing the effect of the amount of cesium used on the ammonia yield in the ruthenium-cesium-alumina catalyst of the present invention, and FIG. 2 is a diagram showing the effect of rubidium or potassium in the ruthenium-rubidium or potassium-alumina catalyst of the present invention. Figure 3 is a graph showing the effect of the amount of use of the catalyst on the ammonia yield, Figure 3 is a graph showing the life of the catalyst of the present invention, Figure 4 is a graph showing the effect of the reduction temperature of the catalyst on the reaction yield, and Figure 5 is a graph showing the effect of the reduction temperature of the catalyst on the reaction yield. FIG. 6 is a diagram showing the reduction temperature dependence of the ammonia synthesis activity when ruthenium chloride is used as the ruthenium source and no alkali metal compound is used. FIG. 6 is a diagram showing the reaction yield when ruthenium chloride is used as the ruthenium source. Applicant: New Combustion System Research Institute Co., Ltd. Agent Patent Attorney (1) Nobuhiko (5 others) Procedure (Method) % Formula % 1, Incident Indication 1999 Patent Application No. 245429 2, Title of invention: Catalyst for producing ammonia 3. Relationship with the person making the amendment Patent applicant name: New Combustion System Research Institute Co., Ltd. Representative: Takashi Suzuki 4゜Representative: 5 Date of amendment order: Sent on December 120, 1999 December 26, 1999 6. Drawing subject to amendment (Fig. 5) 7. Details of amendment

Claims (2)

【特許請求の範囲】[Claims] (1)塩素を含有しないルテニウム化合物を難還元性酸
化物に担持させ、真空排気及び/又は水素気流下還元し
て金属状ルテニウム触媒を調製し、次いでアルカリ金属
化合物を担持させて製造されることを特徴とするアンモ
ニア製造用触媒。
(1) Produced by supporting a chlorine-free ruthenium compound on a refractory oxide, preparing a metallic ruthenium catalyst by reducing in vacuum and/or under a hydrogen stream, and then supporting an alkali metal compound. A catalyst for ammonia production characterized by:
(2)上記塩素を含有しないルテニウム化合物がルテニ
ウムカルボニル錯体又は硝酸ルテニウム、難還元性酸化
物がアルミナ、又はマグネシア、アルカリ金属化合物が
ルビジウム、セシウム、カリウムの硝酸塩であることを
特徴とする請求項1記載のアンモニア製造用触媒。
(2) Claim 1, wherein the chlorine-free ruthenium compound is a ruthenium carbonyl complex or ruthenium nitrate, the refractory oxide is alumina or magnesia, and the alkali metal compound is a nitrate of rubidium, cesium, or potassium. Catalyst for producing ammonia as described.
JP1245429A 1988-12-16 1989-09-21 Ammonia production catalyst Expired - Lifetime JP2532145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245429A JP2532145B2 (en) 1988-12-16 1989-09-21 Ammonia production catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31813988 1988-12-16
JP63-318139 1988-12-16
JP1245429A JP2532145B2 (en) 1988-12-16 1989-09-21 Ammonia production catalyst

Publications (2)

Publication Number Publication Date
JPH02258066A true JPH02258066A (en) 1990-10-18
JP2532145B2 JP2532145B2 (en) 1996-09-11

Family

ID=26537223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245429A Expired - Lifetime JP2532145B2 (en) 1988-12-16 1989-09-21 Ammonia production catalyst

Country Status (1)

Country Link
JP (1) JP2532145B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170255A3 (en) * 2000-07-06 2004-01-07 Haldor Topsoe A/S Process for catalytic ammonia production-preparation and recovery of ammonia synthesis catalyst
JP2006231229A (en) * 2005-02-25 2006-09-07 Honda Motor Co Ltd Ammonia synthesis catalyst and its production method
WO2012077658A1 (en) 2010-12-07 2012-06-14 国立大学法人東京工業大学 Ammonia synthesis catalyst and ammonia synthesis method
US10695751B2 (en) 2015-09-15 2020-06-30 Japan Science And Technology Agency Laves phase intermetallic compound, catalyst using intermetallic compound, and method for producing ammonia
US10759668B2 (en) 2015-11-10 2020-09-01 Japan Science And Technology Agency Supported metal material, supported metal catalyst, and ammonia synthesis method using the same
US10792645B2 (en) 2015-12-25 2020-10-06 Japan Science And Technology Agency Transition-metal-supporting intermetallic compound, supported metallic catalyst, and ammonia producing method
CN112387274A (en) * 2019-08-14 2021-02-23 中国科学院大连化学物理研究所 Preparation method of supported ruthenium-based catalyst
WO2021218048A1 (en) * 2020-04-27 2021-11-04 中国华能集团清洁能源技术研究院有限公司 Energy storage system and method for co-producing hydrogen and urea

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119386A (en) * 1978-03-09 1979-09-17 Nikki Chem Co Ltd Manufacture of ammonia synthesis catalyst
JPS60227834A (en) * 1984-04-26 1985-11-13 Jgc Corp Manufacture of ruthenium catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119386A (en) * 1978-03-09 1979-09-17 Nikki Chem Co Ltd Manufacture of ammonia synthesis catalyst
JPS60227834A (en) * 1984-04-26 1985-11-13 Jgc Corp Manufacture of ruthenium catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170255A3 (en) * 2000-07-06 2004-01-07 Haldor Topsoe A/S Process for catalytic ammonia production-preparation and recovery of ammonia synthesis catalyst
JP2006231229A (en) * 2005-02-25 2006-09-07 Honda Motor Co Ltd Ammonia synthesis catalyst and its production method
WO2012077658A1 (en) 2010-12-07 2012-06-14 国立大学法人東京工業大学 Ammonia synthesis catalyst and ammonia synthesis method
US9150423B2 (en) 2010-12-07 2015-10-06 Tokyo Institute Of Technology Ammonia synthesis catalyst and ammonia synthesis method
US10695751B2 (en) 2015-09-15 2020-06-30 Japan Science And Technology Agency Laves phase intermetallic compound, catalyst using intermetallic compound, and method for producing ammonia
US10759668B2 (en) 2015-11-10 2020-09-01 Japan Science And Technology Agency Supported metal material, supported metal catalyst, and ammonia synthesis method using the same
US10792645B2 (en) 2015-12-25 2020-10-06 Japan Science And Technology Agency Transition-metal-supporting intermetallic compound, supported metallic catalyst, and ammonia producing method
CN112387274A (en) * 2019-08-14 2021-02-23 中国科学院大连化学物理研究所 Preparation method of supported ruthenium-based catalyst
WO2021218048A1 (en) * 2020-04-27 2021-11-04 中国华能集团清洁能源技术研究院有限公司 Energy storage system and method for co-producing hydrogen and urea

Also Published As

Publication number Publication date
JP2532145B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
RU2259234C2 (en) Cobalt-based catalyst precursor preparation method and fischer-tropsch catalyst preparation method
JP4750283B2 (en) Catalyst for the production of vinyl acetate by vapor phase oxidation of ethylene and acetic acid, its production and its use
US5559071A (en) Catalyst, process for the production thereof, and use thereof for the preparation of vinyl acetate
JP4165661B2 (en) Ammonia oxidation catalyst
JPH11513305A (en) Production method of epoxidation catalyst
AU2001262578A1 (en) Cobalt catalysts
JPS5929293B2 (en) Method for producing silver-supported catalyst for producing ethylene oxide
US3825654A (en) Process for reducing the content of nitrogen oxides in the exhaust gases from internal combustion engines
JPH02258066A (en) Catalyst for preparing ammonia
JPH0679177A (en) Catalyst and process for synthesizing ammonia
US5665668A (en) Method of making a catalyst
JP3552766B2 (en) Ammonia synthesis catalyst and its preparation method
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP3672367B2 (en) Ammonia synthesis catalyst and production method thereof
EP0741607B1 (en) Method of making a catalyst
JPH09239272A (en) Production of ammonia synthesis catalyst
JPH03106445A (en) Catalyst for preparing ammonia
JP3636912B2 (en) Method for producing catalyst for producing ethylene oxide
JP3302402B2 (en) Ammonia decomposition catalyst
JPH04346835A (en) Silver catalyst for production of ethylene oxide
JPH05329370A (en) Ammonia decomposition catalyst
JP3837482B2 (en) Catalyst for producing hydrogen and method for producing hydrogen using the same
JPH04363141A (en) Catalyst for catalytic reduction of carbon dioxide and production of methanol using the same
JP2768971B2 (en) Ammonia production catalyst
JPH07188096A (en) Production of acetic acid