JPS60227834A - Manufacture of ruthenium catalyst - Google Patents

Manufacture of ruthenium catalyst

Info

Publication number
JPS60227834A
JPS60227834A JP59082809A JP8280984A JPS60227834A JP S60227834 A JPS60227834 A JP S60227834A JP 59082809 A JP59082809 A JP 59082809A JP 8280984 A JP8280984 A JP 8280984A JP S60227834 A JPS60227834 A JP S60227834A
Authority
JP
Japan
Prior art keywords
ruthenate
catalyst
carrier
ruthenium
organic substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59082809A
Other languages
Japanese (ja)
Inventor
Toshiya Okumura
奥村 俊哉
Akio Furuta
昭男 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP59082809A priority Critical patent/JPS60227834A/en
Publication of JPS60227834A publication Critical patent/JPS60227834A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To manufacture inexpensively the titled Ru catalyst showing high catalytic activity in the steam-reforming reaction of hydrocarbon or the like by adsorbing organic substances on a carrier previously and depositing ruthenate thereon. CONSTITUTION:Organic substances such as lower alcohol are previously saturated and adsorbed on a carrier of alumina or the like and ruthenate such as sodium ruthenate or potassium ruthenate is deposited thereon. It is reduced to RuO2 by performing the decomposition and reduction of the ruthenate by means of organic substances simultaneously with the deposition of the ruthenate. Then, the harmful metallic atoms such as Na and K are removed by washing it with water till the pH is reached to almost 8 and it is dried to manufacture the catalyst. By this method, the removal of chlorine being catalytic poison and metallic atoms such as Na or K which give adverse effect to the catalyst performance is made easy and the catalyst performance is improved and the Ru catalyst is inexpensively manufactured.

Description

【発明の詳細な説明】 本発明は、ルテニウム触媒の製造方法に関し、詳しくは
炭化水素等の水蒸気改質反応において高い触媒活性を示
すルテニウム触媒を安価に製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a ruthenium catalyst, and more particularly to a method for producing at a low cost a ruthenium catalyst that exhibits high catalytic activity in steam reforming reactions of hydrocarbons and the like.

従来のルテニウム触媒の製造方法としては、例えば、塩
化ルテニウムの水溶液を適当な担体に液相含浸法やボア
フィリング法等で含浸し乾燥した後、水素還元を行ない
、次いで水洗して塩素イオンを除去するかあるいは塩化
水素がなくなるまで水素を流し続けることにより脱塩素
を行なう方法が知られている。しかし、この方法では塩
素イオンを除くために多口の水による洗浄、あるいは長
時間の還元操作が必要となるため触媒の製造コストが高
くなる。また一般には、この方法では塩素イオンを完全
に除去することはできないという欠点がある。
Conventional methods for producing ruthenium catalysts include, for example, impregnating a suitable carrier with an aqueous solution of ruthenium chloride by a liquid phase impregnation method or a bore filling method, drying it, performing hydrogen reduction, and then washing with water to remove chloride ions. A method is known in which dechlorination is carried out by continuing to flow hydrogen until hydrogen chloride is removed or hydrogen chloride is exhausted. However, this method requires washing with many mouths of water or a long reduction operation in order to remove chloride ions, which increases the production cost of the catalyst. Additionally, this method generally has the disadvantage that chlorine ions cannot be completely removed.

また、塩化ルテニウムの代わりにルテニウム酸ナトリウ
ムやルテニウム酸カリウムを用いて予めルテニウム塩を
含浸し乾燥した後、還元を行ない、次いで水洗する方法
も知られている。しかし、この方法では、ルテニウム酸
ナトリウムやルテニウム酸カリウムの溶液が通常pl−
113,5〜14.0の強アルカリ性であることから、
含浸後の乾燥や還元等の加熱操作の際に担体がアルカリ
と反応して比表面積の減少や化学的な変質を起こし触媒
性能を劣化させる。
Also known is a method in which sodium ruthenate or potassium ruthenate is used instead of ruthenium chloride to pre-impregnate with ruthenium salt, dry, and then reduce, followed by washing with water. However, in this method, the solution of sodium ruthenate or potassium ruthenate is usually pl-
Since it is strongly alkaline with a value of 113.5 to 14.0,
During heating operations such as drying and reduction after impregnation, the carrier reacts with alkali, causing a decrease in specific surface area and chemical alteration, resulting in deterioration of catalyst performance.

ところで、ルテニウム酸ナトリウムやルテニウム酸カリ
ウムが有機物により容易に二酸化ルテニウムに還元され
ることは古くから知られており、この化合物を担体に含
浸した後、有機物で処理する方法も考えられる。しかし
、この方法でもルテニウム酸ナトリウム等の水溶液を含
浸し、乾燥した後に有機物で処理する必要があり乾燥操
作中に担体とルテニウム酸塩の強アルカリが反応し、担
体の変質は避けられない。また乾燥せずに還元すると担
体は水溶液で充たされているため、担体内部まで十分に
還元されるまでには長時間を要し、さらには有機物が担
体内部まで浸透しない等の問題がある。
By the way, it has been known for a long time that sodium ruthenate and potassium ruthenate are easily reduced to ruthenium dioxide by organic substances, and a method of impregnating a carrier with this compound and then treating it with an organic substance is also considered. However, even with this method, it is necessary to impregnate the carrier with an aqueous solution such as sodium ruthenate, dry it, and then treat it with an organic substance. During the drying operation, the carrier reacts with the strong alkali of the ruthenate salt, and deterioration of the carrier is unavoidable. Furthermore, if the carrier is reduced without drying, the carrier is filled with an aqueous solution, so it takes a long time to be sufficiently reduced to the inside of the carrier, and furthermore, there are problems such as the organic matter not penetrating into the interior of the carrier.

本発明は、上述の従来技術の問題貞に鑑み、触媒毒であ
る塩素および触媒性能に悪影響をもたらすナトリウムま
たはカリウム等の金属原子の除去を容易にし触媒性能を
向上させ、かつ安価にルテニウム触媒を製造する方法を
提供することを目的とする。
In view of the problems of the prior art described above, the present invention facilitates the removal of chlorine, which is a catalyst poison, and metal atoms such as sodium or potassium that adversely affect catalyst performance, improves catalyst performance, and inexpensively produces ruthenium catalysts. The purpose is to provide a method for manufacturing.

本発明者らは、上記目的に沿って鋭意研究した結果、ル
テニウム酸ナトリウムまたはルテニウム酸カリウム等の
ルテニウム酸塩が容易に有機物により二酸化ルテニウム
まで還元されること、二酸化ルテニウムが水溶性でない
ことに着目し、ルテニウム原料として安価なルテニウム
酸ナトリウムまたはルテニウム酸カリウム等のルテニウ
ムMFAを用いる場合に、予め担体にメタノール等の有
機物を吸着させ、次いでルテニウム酸塩を加えることに
よりルテニウムが担体上に還元固定され、さらにナトリ
ウムやカリウム等がMwiするためこれを容易に洗浄、
除去できることを見出し本発明に到達した。
As a result of intensive research in line with the above objectives, the present inventors noticed that ruthenate salts such as sodium ruthenate or potassium ruthenate are easily reduced to ruthenium dioxide by organic substances, and that ruthenium dioxide is not water-soluble. However, when using inexpensive ruthenium MFA such as sodium ruthenate or potassium ruthenate as a ruthenium raw material, organic substances such as methanol are adsorbed onto the carrier in advance, and then ruthenate is added to reduce and fix ruthenium onto the carrier. Furthermore, since sodium, potassium, etc. are Mwi, they can be easily washed.
We have discovered that it can be removed and have arrived at the present invention.

すなわち、本発明は、予め担体に有機物を吸着させ、次
いでルテニウム酸塩を含浸担持させることを特徴とする
ルテニウム触媒の製造方法である。
That is, the present invention is a method for producing a ruthenium catalyst characterized by adsorbing an organic substance onto a carrier in advance, and then impregnating and supporting a ruthenate salt.

本発明においては、まず担体に有機物を吸着させる。吸
着法としては特に限定されることはないが、担体を有機
物蒸気を飽和させた容器内に入れ、有機物を飽和吸;1
弯させる方法が好ましく用いられる。
In the present invention, organic substances are first adsorbed onto a carrier. The adsorption method is not particularly limited; however, the carrier is placed in a container saturated with organic matter vapor, and the organic matter is absorbed in a saturated manner;
A method of curving is preferably used.

本発明において使用できる担体は、アルミナ、シリカ・
アルミナ、ジルコニア、チタニア、活性炭等が例示され
るが、特にγ−アルミナが好ましく用いられる。
Supports that can be used in the present invention include alumina, silica,
Examples include alumina, zirconia, titania, activated carbon, etc., and γ-alumina is particularly preferably used.

有機物としては、メタノール、丁タノール等のアルコー
ル類または酢酸等のカルボン酸あるいはアセトン等のケ
トン類等を用いることができる。
As the organic substance, alcohols such as methanol and tanol, carboxylic acids such as acetic acid, or ketones such as acetone can be used.

しかし、コストの面、常温でも蒸気圧が高いことおよび
危険性等の性質を考慮するとメタノールが好適である。
However, methanol is preferred in view of cost, high vapor pressure even at room temperature, and danger.

また、メタノールの場合も高温はど吸着速度が早くなる
が、室温でも十分に速い速度で吸着するため特に加熱の
必要はなく、担体を変質させないという面からも有利で
ある。
Furthermore, in the case of methanol, the adsorption rate increases at high temperatures, but since it adsorbs at a sufficiently high rate even at room temperature, there is no particular need for heating, which is advantageous in that it does not alter the quality of the carrier.

次に、有機物を吸着させた担体をルテニウム酸塩の水溶
液に浸漬させるか、あるいは担体にルテニウム酸塩をボ
アフィリング払等によって注加して、ルテニウム酸塩の
含浸と同時にルテニウム酸塩の分解還元を行なう。本発
明で使用できるルテニウム酸塩としてはルテニウム酸ナ
トリウム、ルテニウム酸カリウム、ルテニウム酸ルビジ
ウムまたはルテニウム酸セシウム等が挙げられるが、コ
ストの面を考慮覆るとルテニウム酸ナトリウムまたはル
テニウム酸カリウムが好ましい。
Next, the carrier adsorbed with organic matter is immersed in an aqueous solution of ruthenate, or ruthenate is poured into the carrier by bore filling, etc., and at the same time the ruthenate is impregnated, the ruthenate is decomposed and reduced. Do the following. Examples of ruthenate salts that can be used in the present invention include sodium ruthenate, potassium ruthenate, rubidium ruthenate, and cesium ruthenate. From the viewpoint of cost, sodium ruthenate or potassium ruthenate is preferred.

次に、水でI)H’=8になるまで洗浄してナトリウム
等の有害な金属原子を除去し、乾燥して触媒を調製する
Next, harmful metal atoms such as sodium are removed by washing with water until I)H'=8, and the catalyst is prepared by drying.

本発明において、ルテニウムの担持量を増加させたいと
ぎには上記の洗浄、除去までの操作を繰り返せばよい。
In the present invention, in order to increase the amount of ruthenium supported, the above-mentioned operations up to washing and removal may be repeated.

以下、本発明を実施例、比較例および実験例に基づいて
詳細に説明する。
Hereinafter, the present invention will be explained in detail based on Examples, Comparative Examples, and Experimental Examples.

実 施 例 1 デシケータの底部にメタノールを入れ、上部に比表面v
4170m10 、llr孔u積0.6CC/(] (
7) T−アルミナ100(lを入れたビーカーを置い
て、室温にてγ−アルミナにメタノールを飽和吸着させ
た。
Example 1 Pour methanol into the bottom of the desiccator, and add specific surface v to the top of the desiccator.
4170m10, llr hole u product 0.6CC/(] (
7) A beaker containing 100 liters of T-alumina was placed, and methanol was saturatedly adsorbed onto the γ-alumina at room temperature.

この際、吸着平衡に達するのに 1〜2時間を要し、メ
タノールの吸着量は約1mmoJ10であった。
At this time, it took 1 to 2 hours to reach adsorption equilibrium, and the amount of methanol adsorbed was about 1 mmoJ10.

このγ−アルミナにルテニウム酸ナトリウム水溶液を注
加し、ボアフィリング法でルテニウムを担持した。
A sodium ruthenate aqueous solution was poured into this γ-alumina, and ruthenium was supported by a bore filling method.

次に、この触媒をpH8以下になるまで水洗し、110
℃で15時間乾燥し、触媒Aを調製した。
Next, this catalyst was washed with water until the pH became 8 or less, and
Catalyst A was prepared by drying at ℃ for 15 hours.

得られた触媒AのNa含有量はo、i wt0%以下で
、ルテニウムの担持口は2Wt 、%であった。また、
乾燥後の触媒AをX線回折により観察したところγ−ア
ルミナの変質は認められなかった。
The Na content of the obtained catalyst A was 0% by weight or less, and the amount of ruthenium supported was 2% by weight. Also,
When catalyst A after drying was observed by X-ray diffraction, no alteration of γ-alumina was observed.

実 施 例 2 メタノールの代わりにエタノールを用いた以外は実施例
1と同様の方法により触媒Bを調製した。
Example 2 Catalyst B was prepared in the same manner as in Example 1 except that ethanol was used instead of methanol.

得られた触媒BのNa含有量は0.1 wt、%以下で
、γ−アルミナの変質は認められなかった。
The Na content of the obtained catalyst B was 0.1 wt.% or less, and no alteration of γ-alumina was observed.

実 施 例 3 ルテニウム酸ブトリウムの代りにルテニウム酸カリウム
を用いた以外は実施例1と同様の方法により触媒Cを調
製した。
Example 3 Catalyst C was prepared in the same manner as in Example 1 except that potassium ruthenate was used instead of butrium ruthenate.

1qられた触媒Cのに含有量は0.1 wt、%以下で
、γ−ノフルミナの変質は認められなかった。
The content of 1q of catalyst C was less than 0.1 wt.%, and no alteration of γ-noflumina was observed.

実 施 例 4 ルテニウムの担持ωを増加させた触媒を作るために、ま
ず実施例1と同様の方法でルテニウムの担持量が2 w
t、%の触媒を調製し十分乾燥した後、メタノールの吸
着およびルテニウム酸すl〜リウムのボアフィリング操
作を繰り返し、ルテニウムの担持量が4 wt、%の触
媒りを調製した。
Example 4 In order to produce a catalyst with increased ruthenium supported amount ω, first, the same method as in Example 1 was used until the amount of ruthenium supported was 2 w.
After preparing and sufficiently drying a catalyst of 4 wt.% of ruthenium, adsorption of methanol and bore filling of sulfur to lithium ruthenium acid were repeated to prepare a catalyst having a supported amount of 4 wt.% of ruthenium.

比 較 例 1 γ−アルミナにルテニウム酸ナトリウム溶液をポアフィ
リング法で含浸担持した後、110℃で15時間乾燥し
た。
Comparative Example 1 γ-Alumina was impregnated with a sodium ruthenate solution by a pore filling method, and then dried at 110° C. for 15 hours.

次いで、ルテニウム酸ナトリウムを還元するために、メ
タノール中に投入した。室温で1詩間静止した後メタノ
ールを除去し、1)H8Jy、下になるまで水洗し、さ
らに110℃で15時間乾燥し、触媒Eを調製した。
The sodium ruthenate was then poured into methanol to reduce it. After standing still at room temperature for one minute, methanol was removed, and 1) H8Jy was washed with water until it reached the bottom, and further dried at 110° C. for 15 hours to prepare catalyst E.

得られた触媒FのNa含有量は0.1 wt、%以下に
することができたが、γ−アルミナの大半の部分がバイ
ヤライトに変質し比表面積が130TIt/(]に低下
した。
Although the Na content of the obtained catalyst F could be reduced to 0.1 wt.% or less, most of the γ-alumina was transformed into bayerite and the specific surface area was reduced to 130 TIt/(].

比 較 例 2 γ−アルミナにルテニウム酸ナトリウム溶液をポアフィ
リング法で含浸担持した後、110℃で15時間乾燥し
た。次いで、300℃で水素により還元し、触媒Fを調
製した。
Comparative Example 2 A sodium ruthenate solution was impregnated and supported on γ-alumina by a pore filling method, and then dried at 110° C. for 15 hours. Next, catalyst F was prepared by reducing with hydrogen at 300°C.

得られた触媒FのNa含有量は3.5 wt、%で、γ
−アルミナの大半の部分がバイヤライトに変質し、さら
に比表面積は110−rI!、7gまで低下した。
The Na content of the obtained catalyst F was 3.5 wt%, and γ
-Most of the alumina is transformed into bayerite, and the specific surface area is 110-rI! , decreased to 7g.

実 験 例 外型20IIIIIlのステンレス反応管に触媒30 
rnJを充填し、反応温度450℃、圧力20に9 /
 ci−(Jで炭化水素の水蒸気改質反応を行なった。
Experiment 30 catalysts were placed in an exceptional type 20 III stainless steel reaction tube.
Filled with rnJ, reaction temperature 450°C, pressure 20/9/
A steam reforming reaction of hydrocarbons was carried out in ci-(J.

原料炭化水素としてはライトナフサを用い、ライトナフ
サの供給量(F eed量)は、150cm’ /h 
、 H20/ C−1,71110J /at0111
で行なった。
Light naphtha is used as the raw material hydrocarbon, and the supply amount (Feed amount) of light naphtha is 150 cm'/h.
, H20/C-1,71110J/at0111
I did it.

触媒活性は、上記ナフサを100%添加するのに要する
触媒量(W(触媒重り/F(原料送入速度> ((1−
cat /Q −Feed h −’ ) )を温度分
布よりめた。この値が小さい程触媒の活性が高いことを
意味する。以下、それぞれの触媒についての10時間後
、100時間後の水蒸気改質における触媒活性を第1表
に示す。
The catalytic activity is determined by the amount of catalyst required to add 100% of the above naphtha (W(catalyst weight/F(raw material feed rate>((1-
cat /Q-Feedh-')) was determined from the temperature distribution. The smaller this value is, the higher the activity of the catalyst is. Table 1 below shows the catalytic activity of each catalyst in steam reforming after 10 hours and 100 hours.

第1表 第1表に示されるように本発明の実施例である触媒A−
Dは触媒活性も高く、100時間後の活性劣化も小さい
ことが判る。これに対し、比較例である触媒E、Fでは
10時間後の活性も低く、100時間後の活性劣化も大
きい。
Table 1 As shown in Table 1, catalyst A-
It can be seen that D has high catalytic activity and little deterioration in activity after 100 hours. On the other hand, in catalysts E and F, which are comparative examples, the activity after 10 hours was low, and the activity deterioration after 100 hours was also large.

以上説明した如く、本発明によれば以下のような効果を
奏する。
As explained above, the present invention provides the following effects.

■ 従来原料としていた塩化ルテニウムより安価なルテ
ニウム酸塩を原料として使用し、さらに触媒製造時の原
料のロスが少ないためコストダウンが可能となる。
■ Ruthenate, which is cheaper than the conventional raw material ruthenium chloride, is used as a raw material, and there is less loss of raw materials during catalyst production, making it possible to reduce costs.

■ 従来法では、塩素イオンの除去が非常に困難であっ
たが、本発明の方法によれば触媒毒である塩素イオンの
除去が簡単で、さらに触媒性能に悪影響を及ぼすナトリ
ウムやカリウム等の金属原子の除去も容易にできる。
■ With conventional methods, it was very difficult to remove chlorine ions, but with the method of the present invention, chlorine ions, which are catalyst poisons, can be easily removed, and metals such as sodium and potassium, which have a negative effect on catalyst performance, can be removed easily. Atom removal is also easy.

■ 触媒が強塩基性の条件に晒される時間が短いので担
体の変質が極めて少なく触wi活性が良好となる。
(2) Since the time during which the catalyst is exposed to strongly basic conditions is short, there is very little deterioration of the carrier and good catalytic activity is achieved.

■ 従来法の塩化ルテニウム原料のときは、還元反応の
際に塩酸が生成するため装置に耐食性のある材料を用い
る必要があったが、本発明では特殊な材料を用いる必要
はない。従って製造コストを下げることができる。
(2) When using the ruthenium chloride raw material in the conventional method, it was necessary to use corrosion-resistant materials in the equipment because hydrochloric acid was produced during the reduction reaction, but in the present invention, there is no need to use special materials. Therefore, manufacturing costs can be reduced.

特許出願人 日 揮 株 式 会 社 代理人 弁理士 伊 東 辰 雄 代理人 弁理士 伊 東 哲 也Patent applicant: JGC Corporation Agent: Patent Attorney Tatsuo Ito Agent: Patent Attorney Tetsuya Ito

Claims (1)

【特許請求の範囲】 1、予め担体に有機物を吸着させ、次いでルテニウム酸
塩を担持させることを特徴とするルテニウム触媒の製造
方法。 2、前記吸着が飽和吸着である前記特許請求の範囲第1
項に記載のルテニウム触媒の製造方法。 3、前記有機物が低級アルコールである前記特許請求の
範囲第1項または第2項に記載のルテニウム触媒の製造
方法。 4、前記低級アルコールがメタノールである前記特許請
求の範囲第3項に記載のルテニウム触媒の製造方法。 5、前記ルテニウムM塩がルテニウム酸ナトリウムまた
はルテニウム酸カリウムである前記特許請求の範囲第1
〜4項のいずれかに記載のルテニウム触媒の製造方法。
[Claims] 1. A method for producing a ruthenium catalyst, which comprises adsorbing an organic substance onto a carrier in advance, and then supporting a ruthenate. 2. Claim 1, wherein the adsorption is saturated adsorption
The method for producing the ruthenium catalyst described in 2. 3. The method for producing a ruthenium catalyst according to claim 1 or 2, wherein the organic substance is a lower alcohol. 4. The method for producing a ruthenium catalyst according to claim 3, wherein the lower alcohol is methanol. 5. Claim 1, wherein the ruthenium M salt is sodium ruthenate or potassium ruthenate.
4. The method for producing a ruthenium catalyst according to any one of items 4 to 4.
JP59082809A 1984-04-26 1984-04-26 Manufacture of ruthenium catalyst Pending JPS60227834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59082809A JPS60227834A (en) 1984-04-26 1984-04-26 Manufacture of ruthenium catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59082809A JPS60227834A (en) 1984-04-26 1984-04-26 Manufacture of ruthenium catalyst

Publications (1)

Publication Number Publication Date
JPS60227834A true JPS60227834A (en) 1985-11-13

Family

ID=13784738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59082809A Pending JPS60227834A (en) 1984-04-26 1984-04-26 Manufacture of ruthenium catalyst

Country Status (1)

Country Link
JP (1) JPS60227834A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022879A (en) * 1988-03-12 1990-01-08 Satoru Igarashi Catalyst for steam reforming of hydrocarbon
JPH02258066A (en) * 1988-12-16 1990-10-18 Shinnenshiyou Syst Kenkyusho:Kk Catalyst for preparing ammonia
JP2001179097A (en) * 1999-12-24 2001-07-03 Idemitsu Kosan Co Ltd Method for manufacturing catalyst for removing co in hydrogen-containing gas, catalyst manufactured thereby and method for removing co in hydrogen gas
US6652830B2 (en) 2001-02-16 2003-11-25 Battelle Memorial Institute Catalysts reactors and methods of producing hydrogen via the water-gas shift reaction
US6936237B2 (en) 1999-08-17 2005-08-30 Battelle Memorial Institute Reforming catalysts and methods of alcohol steam reforming

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022879A (en) * 1988-03-12 1990-01-08 Satoru Igarashi Catalyst for steam reforming of hydrocarbon
JPH02258066A (en) * 1988-12-16 1990-10-18 Shinnenshiyou Syst Kenkyusho:Kk Catalyst for preparing ammonia
US6936237B2 (en) 1999-08-17 2005-08-30 Battelle Memorial Institute Reforming catalysts and methods of alcohol steam reforming
JP2001179097A (en) * 1999-12-24 2001-07-03 Idemitsu Kosan Co Ltd Method for manufacturing catalyst for removing co in hydrogen-containing gas, catalyst manufactured thereby and method for removing co in hydrogen gas
US6652830B2 (en) 2001-02-16 2003-11-25 Battelle Memorial Institute Catalysts reactors and methods of producing hydrogen via the water-gas shift reaction

Similar Documents

Publication Publication Date Title
RU2132230C1 (en) Method of preparing catalyst for synthesis or vinyl acetate and method of preparing vinyl acetate
TW408035B (en) Vinyl acetate catalyst comprising metallic palladium, gold and copper supported on a carrier and prepared with potassium aurate
JP3957759B2 (en) Palladium-gold catalyst for vinyl acetate production
JP5363175B2 (en) Highly selective shell impregnated catalyst with improved space-time yield for vinyl acetate production
US4916108A (en) Catalyst preparation using supercritical solvent
TW516975B (en) Catalyst for the production of vinyl acetate and process for the production of vinyl acetate by reaction of ethylene, oxygen and acetic acid as reactants
JPS5926338B2 (en) Method for improving the activity of used silver-supported catalysts
KR960002189B1 (en) Process for preparation a hydrogenation and/or dehydrogenation
JP2009108094A (en) Method for preparing vinyl acetate utilizing catalyst comprising palladium, gold, and any of certain third metal
US4467110A (en) Process for purification of crude terephthalic acid
TW474914B (en) Catalyst, process for producing the catalyst and process for preparing vinyl acetate using the catalyst
UA69410C2 (en) Method for production of catalyst for the production of vinyl acetate (variants) and method for production of vinyl acetate
US5435984A (en) Catalyst for the synthesis of chlorine dioxide
JPS58174238A (en) Catalyst for oxidizing ethylene to ethylene oxide in gaseous phase and production and use thereof
RU2198731C2 (en) Method of preparing catalyst for production of vinyl acetate including palladium and gold on copper-containing support, and method for production of vinyl acetate using above catalyst (options)
GB940666A (en) Improvements in or relating to the preparation of supported catalysts
JPS60227834A (en) Manufacture of ruthenium catalyst
US4078743A (en) Catalyst for dehydrogenation of paraffin hydrocarbons to olefins and method of preparing same
JP3046865B2 (en) Method for producing chloroform from carbon tetrachloride and catalyst composition used therefor
JP2003525723A (en) Catalyst for vinyl acetate containing metallic palladium and gold and copper acetate
JPH0557023B2 (en)
JP4377458B2 (en) Preparation of vinyl acetate using palladium-gold-copper catalyst
US3850843A (en) Process for preparing carbonyl catalyst
EP0025787A1 (en) Catalytic processes and catalysts
JPS6039653B2 (en) Method for producing oxygen-containing hydrocarbon compound