JPH0225786B2 - - Google Patents

Info

Publication number
JPH0225786B2
JPH0225786B2 JP60200084A JP20008485A JPH0225786B2 JP H0225786 B2 JPH0225786 B2 JP H0225786B2 JP 60200084 A JP60200084 A JP 60200084A JP 20008485 A JP20008485 A JP 20008485A JP H0225786 B2 JPH0225786 B2 JP H0225786B2
Authority
JP
Japan
Prior art keywords
foaming
foam
resin mixture
laminated
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60200084A
Other languages
Japanese (ja)
Other versions
JPS6259039A (en
Inventor
Tsutomu Nakamura
Koichi Myoshi
Kunio Fushimi
Junichi Tomiuga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP60200084A priority Critical patent/JPS6259039A/en
Publication of JPS6259039A publication Critical patent/JPS6259039A/en
Publication of JPH0225786B2 publication Critical patent/JPH0225786B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 この発明は、下面材および上面材の間にフエノ
ール樹脂発泡体の芯材を挟み込んだ積層構造を有
する複合板の製造方法、およびこの方法を実施す
るために用いる製造装置に関するものである。 〈従来の技術〉 従来からのウレタンフオーム、ポリスチレンフ
オーム、フエノールフオーム等の樹脂発泡体を芯
材とし、これをアスベスト紙、ガラスペーパー、
アルミ箔、石膏ボード、鋼板等の各種面材の間に
挟み込んだ積層構造を有する複合板が知られてい
る。 かような複合板を連続的に製造する一般的方法
は、連続的に移送されている下面材の上に樹脂混
合液を吐出し、この樹脂混合液の上にさらに上面
材を連続的に積層供給して積層連続体を形成す
る。次いでこの積層連続体をその上下面から押圧
しながらキユア炉に通して加熱することにより、
樹脂混合液の層を所定厚さに発泡硬化せしめ、キ
ユア炉から出てくる積層連続体を所定寸法に切断
することによつて樹脂発泡体複合板が得られる。 しかしながら、芯材となる樹脂発泡体のうちフ
エノール樹脂発泡体は、耐熱性、難燃性、低発煙
性等の優れた性能を有するにも拘らず、他の樹脂
発泡体に比較して非常に脆いために使用方法が難
しかつた。 フエノール樹脂発泡体のもつかような欠点を解
消するものとして、本願と同一出願人により新規
な発泡性フエノール樹脂混合液が提案されている
(特願昭59―43866号)。この発泡性フエノール樹
脂混合液は、ベンジリツクエーテル型フエノール
樹脂、ポリイソシアネート化合物、芳香族スルホ
ン酸化合物、水、発泡剤および整泡剤からなり、
この混合液を発泡硬化させることにより良好な機
械的物性を有するフエノール樹脂発泡体が得られ
る。 〈発明が解決しようとする問題点〉 本発明者等は、上記の発泡性フエノール樹脂混
合液を用いてフエノール樹脂発泡体複合板を製造
した。この製造に際しては前述したような一般的
方法を採用し、キユア炉の温度を60〜80℃として
行なつた。 かくして得られた複合板を調べたところ、フエ
ノール樹脂発泡体層は良好な機械的物性を有して
いたが、発泡体中で均一な発泡がなされていない
部分があり、密度の均一性の点で若干問題がある
ことがわかつた。また、上記の発泡性フエノール
樹脂混合液は各種面材と自己接着が良好である
が、条件によつては面材は発泡体との接着力が必
ずしも十分でないものもあつた。 そこで本発明の目的は、発泡体層が均一発泡
し、密度の均一性に優れ、さらには面材との十分
な接着力を有するフエノール樹脂発泡体複合板を
生産性よく製造することができる方法と装置を提
供することである。 〈問題点を解決するための手段〉 本発明者等は、前述したごとき従来の連続的な
複合板の製造方法において採用されているキユア
炉での発泡硬化工程を発泡工程と硬化工程の2段
階に完全に分離し、各々の工程に最適な条件を与
えることによつて、上記の目的を達成できること
を見出しこの発明を完成させたものである。 すなわち第1の発明であるフエノール樹脂発泡
体複合板の製造方法は、従来から採用されていた
発泡性フエノール樹脂混合液層の1段階での発泡
硬化工程を、温度20〜80℃でこの樹脂混合液層を
発泡させる工程と、発泡した樹脂混合液層を温度
50〜100℃で硬化させる工程とに分けて行なう。 また第2の発明であるフエノール樹脂発泡体複
合板の製造装置は、下面材の連続供給装置と;該
下面材上に発泡性フエノール樹脂混合液を吐出す
る吐出機と、該下面材上に吐出された該樹脂混合
液の上に上面材を連続的に積層、供給して積層連
続体を形成する上面材積層供給装置と;所定間隔
をもたせて上下に対向配置せしめたベルトコンベ
アまたはローラを備え、これらの間に該積層連続
体を連続的に通すことによつて該樹脂混合液の層
を加熱し所定厚さに発泡硬化せしめるキユア炉
と;発泡硬化した該積層連続体を所定寸法に切断
して複合体製品とする切断機とを順次配列してな
る装置において、前記キユア炉を、温度20〜80℃
に積層連続体を加熱して樹脂混合液層を発泡せし
める発泡室と、この発泡室から出た積層連続体を
温度50〜100℃に加熱して樹脂混合液の発泡層を
硬化せしめる硬化室とから構成したことを特徴と
するものである。 この発明においては、樹脂混合液層の発泡温度
より硬化温度の方が高い温度となるように設定す
ることが必要であり、これによつて発泡工程とそ
れに引続く硬化工程とを明確に2段階に分けて行
なうのである。 〈作 用〉 この種の複合板の製品の良否は、主として芯材
である樹脂発泡体の発泡の良否に影響されるが、
本発明によれば発泡工程と硬化工程とに完全に分
離したため、発泡性フエノール樹脂混合液の発泡
に最適な温度と、発泡後の硬化に最適な温度を
各々の工程で与えることができる。そのため、温
度20〜80℃の範囲内の発泡最適温度でライズタイ
ム(発泡体が最適の高さに到達するに要する時
間)直前まで効率よく発泡工程または発泡室にて
発泡させたフエノール樹脂発泡体層を、温度50〜
100℃の範囲内の硬化最適温度をもつ硬化工程ま
たは硬化室にて効率よく硬化させることが可能と
なる。 発泡温度が20℃より低いと、ライズタイムが非
常に長くなり、80℃より高いと発泡速度をコント
ロールできなくなり、均一な発泡がなされなく、
密度の均一性が悪くなる。一方、硬化温度が50℃
より低いと硬化が十分でなく、発泡体の機械的物
性が劣る。また、100℃より高いと発泡体中に亀
裂を発生する傾向がみられる。 〈実施例〉 以下にこの発明の好ましい実施例を挙げてさら
に詳述する。添付図面は、この発明の複合板製造
装置の一例を示すものであつて、下面材の連続供
給装置1、発泡性フエノール樹脂混合液の吐出機
2、上面材積層供給装置3、発泡室4、硬化室
5、切断機6がこの順で配列されてなる。下面材
供給装置1は、下面材を巻装したアンコイラ11
とピンチローラ12からなり、これによつて下面
材は図面の左から右へ連続的に供給される。吐出
機2は発泡性フエノール樹脂混合液の所定量を下
面材上に吐出する装置であり、1本または複数本
の吐出ノズルを備えている。上面材積層供給装置
3は、上面材を巻装したアンコイラ31とガイド
ローラ32を有し、これによつて下面材上に吐出
された樹脂混合液の上に上面材を連続的に積層、
供給して積層連続体を形成するための装置であ
る。発泡室4は、ベルトコンベア41と複数ロー
ラ42とを所定間隙をもたせて上下に対向装置せ
しめた押圧搬送装置を有しており、硬化室5は所
定間隙をもたせてベルトコンベア51,52を上
下に対向配置した二軸ベルトコンベアからなる押
圧搬送装置を有している。なお図示の例では、吐
出機2の前にプレヒーター7を設置して下面材を
予熱するようになつている。また、下面材として
鋼板等を使用する場合には、必要に応じてピンチ
ローラ12とプレヒーター7の間にエンボスロー
ルおよび成形機を設置することができる。 この装置の動作を説明すると、下面材供給装置
1から連続的に供給される下面材は、プレヒータ
ー7を通つて予熱されたのち連続的にラインに送
り込まれる。次いでこの下面材の上に吐出機2か
ら発泡性フエノール樹脂混合液の所定量を連続的
に吐出し、この樹脂混合液の上にさらに上面材供
給装置3から連続的に供給される上面材を被せる
ことによつて、樹脂混合液の層が上面材と下面材
の間に挟み込まれた積層連続体が形成される。積
層連続体はその上下面から押圧されて所定の厚さ
を保持されながら発泡室4内を通つて運ばれる。
この間、積層連続体の樹脂混合液は下面材と上面
材の間で均一に拡げられるとともに、ベルトコン
ベア41およびローラ42を介して20〜80℃に加
熱されて、発泡室4出口付近でライズタイム直前
に達して所定の厚みに到達せしめる。発泡室4を
出た発泡済の積層連続体は次に硬化室5へ送ら
れ、ここで二軸ベルトコンベア51,52を介し
て50〜100℃に加熱することにより硬化が完了す
る。硬化室5から連続的に送り出される発泡硬化
済の積層連続体は切断機6によつて所定寸法に切
断されて複合板製品となる。 この発明において好ましく使用できるフエノー
ル樹脂としては、ベンジリツクエーテル型フエノ
ール樹脂およびレゾール型フエノール樹脂が挙げ
られ、これらは接着剤を使用せずに面材との自己
接着が可能である。 面材としては、アスベスト紙、ガラスペーパ
ー、アルミ箔、各種の耐熱、耐炎性ラミネート
紙、石膏ボード、金属面材等を適宜使用すること
ができる。 以下にこの発明方法を実施例および比較例によ
つて更に詳細に説明する。 実施例 ベンジリツクエーテル型フエノール樹脂の合
成: フエノール357g、パラホルムアルデヒド174
g、ナフテン酸鉛1.5g、ナフテン酸亜鉛3.0gを
撹拌混合し、110〜114℃にて3時間反応せしめた
後速やかに減圧下に脱水し、粘度30000cps(at25
℃)のベンジリツクエーテル型フエノール樹脂を
得た。 発泡性フエノール樹脂混合液の調製: A成分 ベンジリツクエーテル型フエノール樹脂(上記
で合成したもの) 88.5重量部 発泡剤“フレオンR―11”(三井フロロケミカ
ル社製) 8.8重量部 整泡剤“Tween―40”(花王アトラス社製)
2.7重量部 B成分 硬化剤(p―トルエンスルホン酸70%水溶液)
30重量部 C成分 粗製ジフエニルメタンジイソシアネート(“ミ
リオネートMR―200”、日本ポリウレタン社
製) 10重量部 上記A,B,C成分をキキサー(東邦機械社製
P―306型)で混合し、発泡性フエノール樹脂混
合液を調製した。 複合板の製造: 添付図面のごとき装置により、下面材としてカ
ラー鋼板、上面材としてアルミ箔張りクラフト紙
を用いて各種寸法の複合板を製造した。このとき
の発泡性フエノール樹脂混合液の仕込み量は39
Kg/m3、ラインスピードは15m/min、発泡室の
長さは11.3m、硬化室の長さは22.3mとした、複
合板寸法と製造条件を第1表にまとめて示す。
<Industrial Application Field> The present invention relates to a method for manufacturing a composite plate having a laminated structure in which a core material of phenolic resin foam is sandwiched between a bottom material and a top material, and a manufacturing apparatus used to carry out this method. It is related to. <Conventional technology> Conventional resin foams such as urethane foam, polystyrene foam, and phenol foam are used as core materials, and this is used as asbestos paper, glass paper,
Composite boards are known that have a laminated structure sandwiched between various facing materials such as aluminum foil, gypsum board, and steel plates. The general method for continuously manufacturing such composite boards is to discharge a resin mixture onto the bottom material that is being transported continuously, and then continuously layer the top material on top of this resin mixture. supply to form a laminate continuum. Next, this laminated continuous body is heated by passing it through a curing furnace while pressing it from the top and bottom surfaces.
A resin foam composite plate is obtained by foaming and curing a layer of the resin mixture to a predetermined thickness and cutting the laminated continuous body coming out of the curing furnace into a predetermined size. However, among resin foams that serve as core materials, phenolic resin foams have excellent properties such as heat resistance, flame retardance, and low smoke emission, but compared to other resin foams, they are very It was difficult to use because it was brittle. In order to overcome the drawbacks of phenolic resin foams, a novel foamable phenolic resin mixture has been proposed by the same applicant as the present application (Japanese Patent Application No. 43866/1983). This foamable phenolic resin mixture consists of a benzyl ether type phenolic resin, a polyisocyanate compound, an aromatic sulfonic acid compound, water, a foaming agent, and a foam stabilizer.
By foaming and curing this liquid mixture, a phenolic resin foam having good mechanical properties can be obtained. <Problems to be Solved by the Invention> The present inventors manufactured a phenolic resin foam composite board using the above-described foamable phenolic resin mixture. For this production, the general method described above was adopted, and the temperature of the cure furnace was set at 60 to 80°C. When the composite board thus obtained was examined, it was found that the phenolic resin foam layer had good mechanical properties, but there were some areas where the foam was not uniformly foamed, and the uniformity of the density was poor. I found out that there was a slight problem. Further, although the above-mentioned foamable phenolic resin mixture has good self-adhesion to various face materials, the adhesion of the face material to the foam may not always be sufficient depending on the conditions. Therefore, the object of the present invention is to produce a phenolic resin foam composite board with high productivity, in which the foam layer foams uniformly, has excellent density uniformity, and has sufficient adhesion to the facing material. and equipment. <Means for Solving the Problems> The present inventors have developed the foam hardening process in a curing furnace, which is adopted in the conventional continuous composite plate manufacturing method as described above, into two stages: a foaming process and a hardening process. The inventors have completed this invention by discovering that the above object can be achieved by completely separating the two steps and providing optimal conditions for each step. In other words, the method for manufacturing a phenolic resin foam composite board, which is the first invention, replaces the conventional one-step foaming and curing process of forming a foamable phenolic resin mixed liquid layer with this resin mixture at a temperature of 20 to 80°C. The process of foaming the liquid layer and the temperature of the foamed resin mixture liquid layer
The process is divided into a step of curing at 50 to 100°C. Further, the second invention, a manufacturing apparatus for a phenolic resin foam composite board, includes: a continuous supply device for a bottom material; a discharge machine for discharging a foamable phenolic resin mixture onto the bottom material; a top material lamination supply device that continuously laminates and supplies the top material on top of the resin mixture to form a continuous layered body; and a belt conveyor or rollers arranged vertically facing each other with a predetermined interval. , a curing furnace that heats the layer of the resin mixture and foams and hardens it to a predetermined thickness by continuously passing the laminated continuum between these; and cutting the foamed and hardened laminated continuum into a predetermined size. In this apparatus, the curing furnace is heated at a temperature of 20 to 80°C.
a foaming chamber that heats the laminated continuum to foam the resin mixed liquid layer, and a curing chamber that heats the laminated continuum coming out of this foaming chamber to a temperature of 50 to 100°C to harden the foamed resin mixed liquid layer. It is characterized by being composed of the following. In this invention, it is necessary to set the curing temperature to be higher than the foaming temperature of the resin mixed liquid layer, thereby clearly dividing the foaming process and the subsequent curing process into two stages. This will be done separately. <Function> The quality of this type of composite board product is mainly influenced by the quality of foaming of the resin foam that is the core material.
According to the present invention, since the foaming step and the curing step are completely separated, the optimal temperature for foaming the foamable phenolic resin mixture and the optimal temperature for curing after foaming can be provided in each step. Therefore, the phenolic resin foam is efficiently foamed in the foaming process or foaming chamber at the optimal foaming temperature within the temperature range of 20 to 80°C until just before the rise time (the time required for the foam to reach the optimal height). layer, temperature 50~
Efficient curing can be performed in a curing process or curing chamber with an optimum curing temperature within the range of 100°C. If the foaming temperature is lower than 20℃, the rise time will be very long, and if it is higher than 80℃, the foaming speed cannot be controlled and uniform foaming will not be achieved.
Density uniformity deteriorates. On the other hand, the curing temperature is 50℃
If it is lower, curing will not be sufficient and the mechanical properties of the foam will be poor. Furthermore, if the temperature is higher than 100°C, there is a tendency for cracks to occur in the foam. <Examples> Preferred examples of the present invention will be described below in further detail. The attached drawing shows an example of the composite plate manufacturing apparatus of the present invention, which includes a continuous supply device 1 for bottom material, a discharge device 2 for foamable phenolic resin mixture, a layered supply device 3 for top material, a foaming chamber 4, A curing chamber 5 and a cutting machine 6 are arranged in this order. The bottom material supply device 1 includes an uncoiler 11 wrapped with the bottom material.
and pinch rollers 12, whereby the bottom material is continuously fed from left to right in the drawing. The discharge machine 2 is a device that discharges a predetermined amount of the foamable phenolic resin mixture onto the lower surface material, and includes one or more discharge nozzles. The top material lamination supply device 3 has an uncoiler 31 wrapped with the top material and a guide roller 32, and thereby continuously laminates the top material on top of the resin mixture discharged onto the bottom material.
This is a device for supplying and forming a laminated continuous body. The foaming chamber 4 has a pressing conveyor device in which a belt conveyor 41 and a plurality of rollers 42 are arranged vertically facing each other with a predetermined gap, and the curing chamber 5 has a belt conveyor 41 and a plurality of rollers 42 facing each other vertically with a predetermined gap. It has a press conveyance device consisting of a two-shaft belt conveyor placed opposite to each other. In the illustrated example, a preheater 7 is installed in front of the discharge machine 2 to preheat the lower surface material. Further, when a steel plate or the like is used as the lower surface material, an embossing roll and a molding machine can be installed between the pinch roller 12 and the preheater 7 as necessary. To explain the operation of this device, the bottom material that is continuously supplied from the bottom material supply device 1 is preheated through a preheater 7 and then continuously fed into the line. Next, a predetermined amount of the foamable phenolic resin mixture is continuously discharged from the dispensing machine 2 onto the bottom material, and the top material, which is continuously supplied from the top material supplying device 3, is further poured onto this resin mixture. By covering, a laminated continuous body in which a layer of the resin mixture is sandwiched between the upper surface material and the lower surface material is formed. The laminated continuous body is conveyed through the foaming chamber 4 while being pressed from its upper and lower surfaces to maintain a predetermined thickness.
During this time, the resin mixture in the laminated continuous body is spread uniformly between the lower surface material and the upper surface material, and is heated to 20 to 80°C via the belt conveyor 41 and rollers 42, and rise time is reached near the exit of the foaming chamber 4. The thickness is reached immediately before reaching the predetermined thickness. The foamed continuous laminate that has left the foaming chamber 4 is then sent to a curing chamber 5, where it is heated to 50 to 100° C. via twin-shaft belt conveyors 51 and 52 to complete curing. The foamed and cured continuous laminated body continuously sent out from the curing chamber 5 is cut into a predetermined size by a cutter 6 to produce a composite board product. Phenolic resins that can be preferably used in this invention include benzyl ether type phenolic resins and resol type phenolic resins, which can self-adhere to the surface material without using an adhesive. As the surface material, asbestos paper, glass paper, aluminum foil, various heat-resistant and flame-resistant laminated papers, gypsum board, metal surface material, etc. can be used as appropriate. The method of this invention will be explained in more detail below using Examples and Comparative Examples. Example Synthesis of benzyl ether type phenolic resin: 357 g of phenol, 174 g of paraformaldehyde
g, lead naphthenate, 1.5 g, and zinc naphthenate, 3.0 g, were stirred and mixed, reacted at 110 to 114°C for 3 hours, and then immediately dehydrated under reduced pressure to obtain a viscosity of 30,000 cps (at25
A benzyl ether type phenolic resin was obtained. Preparation of foamable phenolic resin mixture: Component A: benzyl ether type phenolic resin (synthesized above) 88.5 parts by weight Foaming agent "Freon R-11" (manufactured by Mitsui Fluorochemical Co., Ltd.) 8.8 parts by weight foam stabilizer "Tween" -40” (manufactured by Kao Atlas)
2.7 parts by weight Component B curing agent (p-toluenesulfonic acid 70% aqueous solution)
30 parts by weight Component C crude diphenylmethane diisocyanate (“Millionate MR-200”, manufactured by Nippon Polyurethane Co., Ltd.) 10 parts by weight The above A, B, and C components were mixed in a Kixer (P-306 type manufactured by Toho Kikai Co., Ltd.) and foamed. A mixed phenolic resin mixture was prepared. Manufacture of composite boards: Composite boards of various sizes were manufactured using a device as shown in the attached drawings, using a colored steel plate as the bottom material and aluminum foil-covered kraft paper as the top material. The amount of foamable phenolic resin mixture at this time was 39
Table 1 summarizes the dimensions and manufacturing conditions of the composite plate, with a line speed of 15 m/min, a foaming chamber length of 11.3 m, and a curing chamber length of 22.3 m.

【表】【table】

【表】 得られた複合板のフエノール樹脂発泡体層はい
ずれもスキン層が少なく、かつ発泡体断面には層
状部分がなく、均一発泡しており、密度は34〜35
Kg/m3であつた。また、得られた複合板はジグソ
ー、丸ノコ等による切断、入隅出隅加工に十分耐
え得る接着力をもつていた。 比較例 添付図面の装置における発泡室の温度と硬化室
の温度をともに80℃とした以外は、上記実施例と
同じ操作によつてフエノール樹脂発泡体複合板
(巾250±2mm、厚さ15±2mm)を製造した。 得られた複合板のフエノール樹脂発泡体は、粗
密度が多く、かつ断面には層状部分ができてい
た。密度も、部位によつては20Kg/m3から40Kg/
m3までの場合があつた。また、この複合板の一部
には、ジグソー、丸ノコ等の切断、入隅出隅加工
に不適当なものがあつた。 〈発明の効果〉 以上説明したようにこの発明によれば、従来は
1段階で行なつていた発泡硬化工程を、発泡に最
適な温度を与える発泡工程と、発泡後の硬化に最
適な温度を与える硬化工程との2段階に分けて行
なうことによつて、フエノール樹脂発泡体層での
効果的かつ均一な発泡がなされるため密度の均一
性に優れ、さらには面材と発泡体層との接着力も
良好なフエノール樹脂発泡体複合板を得ることが
できる。
[Table] The phenolic resin foam layer of the obtained composite board has a small skin layer, and there is no layered part in the cross section of the foam, and it is uniformly foamed, and the density is 34 to 35.
It was Kg/ m3 . Furthermore, the obtained composite board had sufficient adhesive strength to withstand cutting with a jigsaw, circular saw, etc., and machining of inside and outside corners. Comparative Example A phenolic resin foam composite board (width 250 ± 2 mm, thickness 15 ± 2mm) was manufactured. The phenolic resin foam of the obtained composite plate had a high coarse density and a layered portion in the cross section. The density also varies from 20Kg/ m3 to 40Kg/m3 depending on the area.
In some cases, the size was up to 3 m. In addition, some of these composite plates were unsuitable for cutting with a jigsaw, circular saw, etc., and for machining inside and outside corners. <Effects of the Invention> As explained above, according to the present invention, the foaming and curing process, which was conventionally performed in one step, can be replaced with a foaming process that provides the optimum temperature for foaming, and a foaming process that provides the optimum temperature for curing after foaming. By carrying out the curing process in two stages, the phenolic resin foam layer is effectively and uniformly foamed, resulting in excellent density uniformity, and the bond between the face material and the foam layer is improved. A phenolic resin foam composite board with good adhesive strength can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面はこの発明の装置の実施例を示す説明
図である。 1…下面材連続供給装置、2…吐出機、3…上
面材積層供給装置、4…発泡室、5…硬化室、6
…切断機。
The accompanying drawings are explanatory views showing embodiments of the apparatus of the present invention. DESCRIPTION OF SYMBOLS 1... Bottom material continuous supply device, 2... Discharge machine, 3... Top material lamination supply device, 4... Foaming chamber, 5... Curing chamber, 6
…Cutting machine.

Claims (1)

【特許請求の範囲】 1 連続的に移送されている下面材上に発泡性フ
エノール樹脂混合液を吐出し、該樹脂混合液の上
にさらに上面材を連続的に積層供給して積層連続
体を形成し、該積層連続体をその上下面から押圧
しながらキユア炉に通して加熱することにより該
樹脂混合液の層を所定厚さに発泡硬化せしめたの
ち、該積層連続体を所定寸法に切断することから
なるフエノール樹脂発泡体複合板の製造方法にお
いて、前記発泡硬化工程を、温度20〜80℃で前記
樹脂混合液層を発泡させる工程と発泡した前記樹
脂混合液層を温度50〜100℃で硬化させる工程と
に分けて行なうことを特徴とするフエノール樹脂
発泡体複合板の製造方法。 2 下面材の連続供給装置と;該下面材上に発泡
性フエノール樹脂混合液を吐出する吐出機と;該
下面材上に吐出された該樹脂混合液の上に上面材
を連続的に積層、供給して積層連続体を形成する
上面材積層供給装置と;所定間隔をもたせて上下
に対向配置せしめたベルトコンベアまたはローラ
を備え、これらの間に該積層連続体を連続的に通
すことによつて該樹脂混合液の層を加熱し所定厚
さに発泡硬化せしめるキユア炉と;発泡硬化した
該積層連続体を所定寸法に切断して複合板製品と
する切断機とを順次配列してなるフエノール樹脂
発泡体複合板の製造装置において、前記キユア炉
を、温度20〜80℃に前記積層連続体を加熱して前
記樹脂混合液層を発泡せしめる発泡室と、該発泡
室から出た積層連続体を温度50〜100℃に加熱し
て該樹脂混合液の発泡層を硬化せしめる硬化室と
から構成したことを特徴とするフエノール樹脂発
泡体複合板の製造装置。
[Claims] 1. A foamable phenolic resin mixture is discharged onto the continuously conveyed bottom material, and the top material is continuously supplied on top of the resin mixture to form a continuous laminated body. The layer of the resin mixture is foamed and cured to a predetermined thickness by heating the laminated continuum to a predetermined thickness by pressing the laminated continuum from its upper and lower surfaces, and then cutting the laminated continuum into a predetermined size. In the method for producing a phenolic resin foam composite board, the foaming and curing step is performed by foaming the resin mixed liquid layer at a temperature of 20 to 80°C, and foaming the foamed resin mixed liquid layer to a temperature of 50 to 100°C. A method for manufacturing a phenolic resin foam composite board, characterized in that the process is carried out separately from curing process. 2. a continuous supply device for the bottom material; a discharge machine that discharges the foamable phenolic resin mixture onto the bottom material; and a top material continuously laminated on the resin mixture discharged onto the bottom material; A top material laminate supply device that feeds to form a laminate continuous body; and belt conveyors or rollers arranged vertically facing each other with a predetermined interval, and the laminate continuous body is continuously passed between them. A curing furnace that heats the layer of the resin mixture to foam and harden it to a predetermined thickness; and a cutting machine that cuts the foam-hardened laminated continuous body into a predetermined size to produce a composite plate product. In an apparatus for manufacturing a resin foam composite board, the curing furnace is configured to include a foaming chamber that heats the laminated continuum to a temperature of 20 to 80°C to foam the resin mixed liquid layer, and a laminated continuum that comes out of the foaming chamber. and a curing chamber for heating the resin mixture to a temperature of 50 to 100°C to harden the foam layer of the resin mixture.
JP60200084A 1985-09-10 1985-09-10 Method and device for manufacturing phenol resin foam composite board Granted JPS6259039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60200084A JPS6259039A (en) 1985-09-10 1985-09-10 Method and device for manufacturing phenol resin foam composite board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60200084A JPS6259039A (en) 1985-09-10 1985-09-10 Method and device for manufacturing phenol resin foam composite board

Publications (2)

Publication Number Publication Date
JPS6259039A JPS6259039A (en) 1987-03-14
JPH0225786B2 true JPH0225786B2 (en) 1990-06-05

Family

ID=16418586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60200084A Granted JPS6259039A (en) 1985-09-10 1985-09-10 Method and device for manufacturing phenol resin foam composite board

Country Status (1)

Country Link
JP (1) JPS6259039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003502A (en) * 2014-06-18 2016-01-12 ケイミュー株式会社 Method of manufacturing metallic siding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6081188B2 (en) * 2012-12-25 2017-02-15 旭化成建材株式会社 Phenol resin foam laminate and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003502A (en) * 2014-06-18 2016-01-12 ケイミュー株式会社 Method of manufacturing metallic siding

Also Published As

Publication number Publication date
JPS6259039A (en) 1987-03-14

Similar Documents

Publication Publication Date Title
CZ286344B6 (en) Process for preparing difficult to ignite almost incombustible multilayer board and apparatus for making the same
JPH0225786B2 (en)
JPS63199618A (en) Manufacturing device for composite plate of phenolic resin foam
US8372324B2 (en) Binding of particulate materials to manufacture articles
JP3008108B1 (en) Method for producing phenolic resin foam panel
JPH0572925B2 (en)
CN114290471B (en) Light melamine-grade flame-retardant foam wood chip board and preparation method thereof
KR930001512B1 (en) Production equipment of panel
JPS6316263B2 (en)
JPH0684021B2 (en) Composite board manufacturing equipment
RU2223178C1 (en) Method of production of sheet molding material on base of thermosetting binders and hollow glass micro-spheres
JPS5917675B2 (en) Architectural composite panel manufacturing equipment
JPH023690B2 (en)
SU903163A1 (en) Plant for manufacturing laminate panels
JPH0462265B2 (en)
JPS6362365B2 (en)
JPH023689B2 (en)
JPH0611497B2 (en) Composite board manufacturing equipment
JPH0880578A (en) Production of foamed resin panel
JPS62286715A (en) Manufacture of composite sheet
JPS62174136A (en) Production device of composite board
JPH0237294B2 (en)
JPS61152743A (en) Production of asphalt foam composite material
JPH01105731A (en) Method and apparatus for continuously manufacturing composite panel for building
JPS6116624B2 (en)