JPH0225692A - Heat accumulating type heat transfer tube - Google Patents

Heat accumulating type heat transfer tube

Info

Publication number
JPH0225692A
JPH0225692A JP63173113A JP17311388A JPH0225692A JP H0225692 A JPH0225692 A JP H0225692A JP 63173113 A JP63173113 A JP 63173113A JP 17311388 A JP17311388 A JP 17311388A JP H0225692 A JPH0225692 A JP H0225692A
Authority
JP
Japan
Prior art keywords
heat
heat transfer
vessel
spiral
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63173113A
Other languages
Japanese (ja)
Inventor
Masakuni Sasaki
佐々木 雅國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63173113A priority Critical patent/JPH0225692A/en
Publication of JPH0225692A publication Critical patent/JPH0225692A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PURPOSE:To improve the utilizing rate of heat accumulating material during the operation of a heat exchanger and permit the distribution of voids, generated in accordance with the change of the phase of the heat accumulating material, into respective parts of a vessel by constituting an area, in which a heat transfer tube makes contact with the heat accumulat ing material in the vessel, is constituted so as to be spiral. CONSTITUTION:Heat accumulating material 12 is sealed into a vessel 11 while a first spiral heat transfer tube 13a, penetrating the vessel 11 lengthwisely, and a second spiral heat transfer tube 13b, pairing with the first spiral heat transfer tube 13a, are provided in the vessel 11 respectively. In this case, the first and second spiral heat transfer tubes 13a, 13b are formed so that a distance between the first and second spiral heat transfer tubes 13a, 13b and another distance L between the heat transfer tubes and the internal surface of the vessel 11 become given values. In above-described constitution, medium to be heated flows through the spiral heat transfer tubes 13a, 13b from the side of sunshine to the side of shade and the heat accumulating material at the side of shade is heated by the medium to be heated, whose temperature is increased, and, therefore, the utilizing rate of the heat accumulating material 12 may be increased. On the other hand, the distance L is kept in the vessel 11 and, therefore, initial solidified parts A appear between the spiral heat transfer tubes 13a, 13b and the like whereby voids are distributed in respective parts of the vessel 11.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は蓄熱式熱交換器に係り、さらに詳しくは宇宙空
間のように無重力、かつ真空の環境で用いられる熱交換
器に適用される螺旋状伝熱管を備えた蓄熱伝熱管に関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a regenerative heat exchanger, and more specifically to a heat exchanger used in a zero gravity and vacuum environment such as outer space. The present invention relates to a heat storage heat exchanger tube equipped with a spiral heat exchanger tube applied to.

(従来の技術) 典型的な蓄熱式熱交換器に適用される蓄熱伝熱管は第6
図に示されるように、内部に蓄熱材2を封入した容器1
を長手方向に貫通するように伝熱管3を設けたもので、
ここで、被加熱流体は伝熱管3の一方の開口aから伝熱
管3内に導かれ、内部を他端に向かって流れ、この間に
蓄熱材2から放出される熱を受は取り、他方の開口すか
ら回収されるようになっている。
(Prior art) The heat storage heat exchanger tube applied to a typical heat storage type heat exchanger is the 6th heat transfer tube.
As shown in the figure, a container 1 in which a heat storage material 2 is sealed
A heat exchanger tube 3 is provided so as to penetrate in the longitudinal direction.
Here, the fluid to be heated is guided into the heat exchanger tube 3 from one opening a of the heat exchanger tube 3, flows inside toward the other end, and during this period receives and absorbs the heat released from the heat storage material 2, and It is designed to be collected once it is opened.

ところで、蓄熱式熱交換器が宇宙環境(地球を回る軌道
上)で使用されるのは次のことが問題になるからである
。すなわち、周回軌道が地球に近い、いわゆる低軌道の
宇宙基地等においては太陽光に直射される時間(日射時
間)と、地球の影に入って直射のない時間(日蝕時間)
との間に極端な開きはない。例えば、一つの仮定として
周回周期が90分の場合、日射時間は60分間、日蝕時
間は30分という具合に熱の供給を断たれる状態が長時
間続くことになり、熱交換器の機能が停止してしまう。
By the way, the reason why a regenerative heat exchanger is used in a space environment (in orbit around the earth) is because of the following problems. In other words, at a space base in a so-called low orbit, where the orbit is close to the Earth, there are two periods: the time when the sun is directly exposed to sunlight (solar radiation time), and the time when it is in the shadow of the earth and is not directly exposed to sunlight (solar eclipse time).
There is no extreme difference between the two. For example, if the orbital period is 90 minutes, the solar radiation time is 60 minutes and the solar eclipse time is 30 minutes, so the heat supply will be cut off for a long time, and the function of the heat exchanger will be affected. It stops.

このため、熱の供給が断たれる間も休むことなく熱交換
器を働かせるために蓄熱機能を備えた熱交換器の適用が
欠かせないものとなる。
For this reason, it is essential to use a heat exchanger with a heat storage function so that the heat exchanger can work continuously even when the heat supply is cut off.

一方、宇宙環境においては熱現宋もそれ特有の機構のも
とに成立し、相応の配慮が求められる。
On the other hand, in the space environment, heat-generating songs are established based on unique mechanisms, and appropriate consideration is required.

例えば外部から受は取る熱は太陽光からの輻射によるも
のが支配しており、このとき伝熱管の周囲には流体が存
1″[せず、対流による熱の移動は生じないため、伝熱
管の受熱面と【7ては太陽光に直射される面のみが有効
に働くことになる。し、たがって、第6図において、矢
印Xの方向から入射した太陽光により容器1の表面に熱
が伝えられたならば、内部に封入された蓄熱材2には容
器1から伝導により熱が伝えられる。この結果、蓄熱材
2は温度が上昇し、熱の一部は伝熱管3内を流れる被加
熱a体に伝えられ、余剰分はすべてそこに蓄えられて、
日蝕時に備えるようになっている。蓄熱方法としては、
通常、融解熱を利用した潜熱蓄熱が利用されるが、無重
力状態では融解した液相内でも対流が発生しないため、
容器1内の熱の移動は伝導のみに限られる。
For example, the heat received or taken from the outside is dominated by radiation from sunlight, and at this time, there is no fluid around the heat exchanger tube, so no heat transfer occurs by convection, so the heat exchanger tube Therefore, in Fig. 6, sunlight incident from the direction of arrow is transmitted, heat is transferred from the container 1 to the heat storage material 2 sealed inside by conduction.As a result, the temperature of the heat storage material 2 rises, and a part of the heat flows inside the heat transfer tube 3. It is transmitted to the heated body, and all the surplus is stored there,
It is designed to be ready for solar eclipses. As a heat storage method,
Normally, latent heat storage using heat of fusion is used, but in zero gravity, convection does not occur even within the molten liquid phase.
Heat transfer within the container 1 is limited to conduction only.

(発明が解決しようとする課題) 」二記したように低軌道」−での日射時間が60分と限
られていることを考えると、以」−に述べた熱移動形態
では日陰となる側の蓄熱材2の融解が充分に進まないう
ちに日蝕状態に移行し2て(2まう可能性があり、潜熱
の有効な利用が果たされない。
(Problem to be solved by the invention) Considering that the solar radiation time in low orbit is limited to 60 minutes as mentioned above, in the heat transfer mode described below, the shaded side There is a possibility that the solar eclipse state will occur before the heat storage material 2 has sufficiently melted, and the latent heat will not be effectively utilized.

これに対し、すべての蓄熱材2が融解するように容量を
決めでし、まうと、日射を受ける側で容器1を構成する
金属表面の温度が高くなり過ぎ、構成的に成立しないか
、大きな制約を負う結果を招くことになる。
On the other hand, if the capacity is determined so that all of the heat storage material 2 melts, the temperature of the metal surface that constitutes the container 1 on the side receiving solar radiation will become too high, and the structure will not be viable or the temperature will be too large. This will result in restrictions.

次に、蓄熱材2の相変化に伴う構造」この配慮として欠
かせない問題に次のようなことがある。すなわち、潜熱
蓄熱の場合、同相と液相間に存在する融解潜熱を利用す
るごとになるが、固相から液相に変化する際には総じて
体積変化を伴うのが普通であり、その大きさが30%に
も達する場合がある。蓄熱伝熱管においても、仮に、固
相状態で容器1内を満た[、ている蓄熱材2が残らず液
相に変化したならば、その体積膨張を容器1の弾性変形
で吸収することは困難である。したがって、液相の多咳
を合わせて容器1の容量が決定され、固相時には容器1
内にボイドの発生を許容するようにしているが、この場
合、容器1内に発生するボイドの位置および大きさの分
布を適切な範囲に置くことが必要で、万一、その制御に
失敗すると、ボイド部と固相部の熱伝達の差により次回
の加熱時に局部的な過熱部分が生じて容器1に悪影響を
及ぼず。このように、潜熱蓄熱の場合には固相と液相と
の間で比容積が大きく変化することが構造的に問題を生
じ易く、特に同相と液相との分布に偏りが生じる傾向が
ある蓄熱伝熱管の場合には対応が難しくなっている。
Next, consider the following issues that must be taken into consideration: ``Structure associated with phase change of heat storage material 2.'' In other words, in the case of latent heat storage, the latent heat of fusion that exists between the same phase and the liquid phase is used, but when changing from the solid phase to the liquid phase, there is generally a change in volume, and its size is may reach up to 30%. In the heat storage heat transfer tube, if all of the heat storage material 2 that fills the container 1 in a solid state changes to a liquid phase, it is difficult to absorb the volumetric expansion by elastic deformation of the container 1. It is. Therefore, the capacity of container 1 is determined by including the liquid phase, and in the solid phase, the capacity of container 1 is determined.
However, in this case, it is necessary to keep the position and size distribution of the voids generated within the container 1 within an appropriate range, and in the unlikely event that control fails, , due to the difference in heat transfer between the void part and the solid phase part, a localized overheated part will occur during the next heating, and the container 1 will not be adversely affected. In this way, in the case of latent heat storage, the large change in specific volume between the solid phase and the liquid phase tends to cause structural problems, and in particular, the distribution between the same phase and the liquid phase tends to be biased. This is difficult to deal with in the case of heat storage and heat exchanger tubes.

本発明はこれらの問題を解決することを目的とし、てな
されたもので、熱交換器運転中の蓄熱材の利用率を向上
せしめると共に、蓄熱材の相変化に伴う体積変化による
構造上の諸問題を回避するのに好適な蓄熱伝熱管を提供
しようとするものである。
The present invention was developed with the aim of solving these problems, and it improves the utilization rate of the heat storage material during heat exchanger operation, and also improves the structural issues caused by the volume change accompanying the phase change of the heat storage material. The present invention aims to provide a heat storage and heat exchanger tube suitable for avoiding problems.

[発明の構成] (課題を解決するための手段) 本発明による蓄熱伝熱管は円筒状容器内に蓄熱材を封入
し、さらに容器を長手方向に貫通するように伝熱管を設
け、これにより容器の外側から与えられる熱を蓄熱材を
通(2て伝熱管内に流れる被加熱流体に伝えるとともに
、余剰分の熱を蓄熱材中に蓄えるようにした蓄熱伝熱管
において、伝熱管が容器内で蓄熱材と接する領域を螺旋
状に構成したことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The heat storage and heat transfer tube according to the present invention includes a heat storage material sealed in a cylindrical container, and a heat transfer tube that extends through the container in the longitudinal direction. In a heat storage heat exchanger tube that transfers heat from the outside through a heat storage material (2) to the heated fluid flowing inside the heat transfer tube and stores excess heat in the heat storage material, the heat transfer tube is placed inside the container. It is characterized in that the region in contact with the heat storage material is configured in a spiral shape.

(作用) 蓄熱材を封入した容器の日射側表面で受けた熱は、蓄熱
材の内部に、さらには伝熱管の内側を流れる被加熱流体
へと伝導により伝えられる。ここで、伝熱管は螺旋状に
構成されているから、加熱されて温度の」−昇した被加
熱流体は容器の[1陰側へと導かれる。日陰側では蓄熱
材は未だ低温のままであるから、伝熱管内部の被加熱流
体は、T、の部分では蓄熱材に対する加熱源と12で作
用する。
(Function) The heat received on the solar radiation side surface of the container containing the heat storage material is transferred by conduction to the inside of the heat storage material and further to the heated fluid flowing inside the heat transfer tube. Here, since the heat transfer tube has a spiral configuration, the heated fluid whose temperature has increased is guided to the negative side of the container. Since the heat storage material still remains at a low temperature on the shaded side, the heated fluid inside the heat transfer tube acts as a heating source 12 on the heat storage material at the portion T.

すなわち、被加熱流体は、この場合、容器内の熱輸送媒
体と(7、て機能することになる1、この流体による熱
輸送作用によ、す、従来利用されていなか−)た部分の
蓄熱材が有効に利用されるため、その利用率の向上が図
れ、併せて蓄熱材の必要量が減少するという副次的効果
も得られる。
In other words, in this case, the fluid to be heated functions as a heat transport medium in the container (1). Since the material is used effectively, its utilization rate can be improved, and the secondary effect of reducing the required amount of heat storage material can also be obtained.

一方、蓄熱材の相変化に伴う構造上の諸問題に対して本
発明が有効であるとする理由は以下の通りである。すな
わち、第2図は本発明の構造によった場合の凝固の初期
状態を示したものであるが、ここで、斜線部分は蓄熱材
12の初期凝固部Aを示している。螺旋状伝熱管13は
伝熱管相互および伝熱管と容器11との間で間隔の狭い
部分が存在することになり、凝固の開始点をここに規定
することができる。図のように初期凝固部Aが決まった
位置に現われる結果、その後で発生するボイドは容器1
1の各部に適当に分散され、局部的な過熱部分を容器1
1に生じさせない。なお、かかる螺旋状伝熱管13を用
いた構成は容器11と伝熱管との間の熱膨張差を吸収し
得る点においても優れて有利な方法であるということが
できる。
On the other hand, the reason why the present invention is effective against various structural problems associated with phase changes of heat storage materials is as follows. That is, FIG. 2 shows the initial state of solidification in the structure of the present invention, where the shaded area indicates the initial solidification part A of the heat storage material 12. In the helical heat exchanger tube 13, a narrow space exists between the heat exchanger tubes and between the heat exchanger tube and the container 11, and the starting point of solidification can be defined here. As shown in the figure, as a result of the initial solidification part A appearing at a fixed position, the voids that occur thereafter are
1, and the locally overheated parts are transferred to the container 1.
1 will not occur. Note that the configuration using such a spiral heat exchanger tube 13 can be said to be an excellent and advantageous method in that it can absorb the difference in thermal expansion between the container 11 and the heat exchanger tube.

(実施例) 以下、本発明の実施例を図面を参照して説明する。第1
図において、符号11は円筒状に構成された容器であり
、この容器11内には蓄熱材12が封入されている。さ
らに、容器11を長手方向に貫通する第1の螺旋状伝熱
管13aおよびこの第1の螺旋状伝熱管13aと対をな
す第2の螺旋状伝熱管13bがそれぞれ設けられている
。ここで、第1および第2の螺旋状伝熱管13a、13
bは相互の間、またそれらと容器11の内面との間の距
離りが一定した値となるように各々形成されている。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
In the figure, reference numeral 11 is a cylindrical container, and a heat storage material 12 is sealed inside the container 11. Furthermore, a first helical heat exchanger tube 13a that penetrates the container 11 in the longitudinal direction and a second helical heat exchanger tube 13b that is paired with the first helical heat exchanger tube 13a are provided, respectively. Here, the first and second spiral heat exchanger tubes 13a, 13
b are formed so that the distances between them and between them and the inner surface of the container 11 are constant values.

また、図に示されるように螺旋状伝熱管13a、13b
は容器11内で蓄熱材12と接する領域が螺旋状に構成
されるもので、それ以外については一直線状につくられ
る。
In addition, as shown in the figure, spiral heat exchanger tubes 13a, 13b
The area in contact with the heat storage material 12 inside the container 11 is configured in a spiral shape, and the other area is configured in a straight line.

上記の構成において、日射側から日陰側へ被加熱媒体が
螺旋状伝熱管13・a、13b内を流れ、日陰側の蓄熱
材にはこの温度の高くなった被加熱媒体によって加熱さ
れる。これにより、日陰側の蓄熱材12が利用される割
合いが高くなり、一方、容器11内で距離りが保たれて
いるので、初期凝固部A(第2図参照)が螺旋状伝熱管
13a、13b同士の間等に現われ、ボイドは容器11
の各部に分散される。
In the above configuration, the heated medium flows through the spiral heat transfer tubes 13.a, 13b from the sunlight side to the shaded side, and the heat storage material on the shaded side is heated by the heated medium whose temperature has increased. This increases the rate at which the heat storage material 12 on the shaded side is used, and on the other hand, since the distance is maintained within the container 11, the initial solidification part A (see FIG. 2) , 13b, etc., and voids appear between containers 11 and 13b.
distributed to various parts.

次に、第3図を参照して本発明の別な実施例を説明する
。上記実施例は特に日陰側の蓄熱材12の有効利用に大
いに役立つものといえるが、被加熱流体の入口近傍には
利用されずに残ってしまう蓄熱材12がある。そこで、
第3図に示されるように往路および復路が第1の螺旋状
伝熱管14aおよび第2の螺旋状伝熱管14bにより各
々形成されるように構成する。
Next, another embodiment of the present invention will be described with reference to FIG. Although the above embodiment can be said to be very useful for effectively utilizing the heat storage material 12 especially on the shade side, there is some heat storage material 12 that remains unused near the inlet of the fluid to be heated. Therefore,
As shown in FIG. 3, the forward path and the return path are configured to be formed by first spiral heat exchanger tubes 14a and second spiral heat exchanger tubes 14b, respectively.

被加熱媒体は、最初、開口aから第1の螺旋状伝熱管1
4aに導かれ、内部を0字端に向かって流れて反転し、
次に第2の螺旋状伝熱管14bに導かれ、内部を他端に
向かって流れ、開口すで回収される。すなわち、被加熱
流体の入口近傍では流体の温度が低く、日陰側の蓄熱材
12を溶かすだけの熱量をもっていないが、本実施例に
おいては往路を通って高温となった被加熱媒体が復路を
通って戻されるときに日陰側の蓄熱材12が加熱され、
液相への移行が図られる。このような往路および復路の
配置は使用温度条件、蓄熱材12の種類、運転方法等に
より決められるが、例としては第4図(a)、(b)、
(c)の配置が考えられる。すなわち、同(a)の配置
は第1の螺旋状伝熱管14a(往路)と第2の螺旋状伝
熱管14b(復路)とを交互に並べたもの、同(b)は
第2の螺旋状伝熱管14bを内側とした同心円配列、同
(c)は第2の螺旋状伝熱管14bを一本の管で構成し
、これを容器11の軸心に置いたものである。このよう
に本実施例によれば、蓄熱材12の利用率は一層向上さ
せられ、またボイドの分布の偏りが小さいのは上記実施
例と同様である。
The medium to be heated is first introduced into the first spiral heat exchanger tube 1 through the opening a.
Guided by 4a, it flows inside toward the 0-shaped end and reverses,
Next, it is guided to the second spiral heat exchanger tube 14b, flows inside toward the other end, and is recovered at the opening. That is, near the inlet of the heated fluid, the temperature of the fluid is low and does not have enough heat to melt the heat storage material 12 on the shade side, but in this embodiment, the heated medium that has become high temperature through the outward path passes through the return path. When it is returned, the heat storage material 12 on the shade side is heated,
A transition to a liquid phase is attempted. The arrangement of such outward and return routes is determined by the operating temperature conditions, the type of heat storage material 12, the operating method, etc.
Arrangement (c) is possible. That is, the arrangement in (a) is one in which the first spiral heat exchanger tubes 14a (outward path) and the second spiral heat exchanger tubes 14b (inward path) are arranged alternately, and the arrangement in (b) is in which the first spiral heat exchanger tubes 14a (outward path) and the second spiral heat exchanger tubes 14b (inward path) are arranged alternately. In the concentric arrangement with the heat exchanger tubes 14b inside, the second spiral heat exchanger tube 14b is constructed of a single tube and is placed at the axis of the container 11. As described above, according to this embodiment, the utilization rate of the heat storage material 12 is further improved, and the bias in the distribution of voids is small, as in the above embodiment.

また、第5図に本発明の効果を高める螺旋状伝熱管の特
別な構成を示している。ここで、螺旋状伝熱管15は外
面にフィン状突起16を備えている。
Further, FIG. 5 shows a special configuration of a spiral heat exchanger tube that enhances the effects of the present invention. Here, the spiral heat exchanger tube 15 is provided with fin-like protrusions 16 on its outer surface.

本実施例ではフィン状突起16により伝熱管表面積を増
大させて伝熱性能の一層の改善を図ることを意図するの
みならず、この手段の適用により凝固の開始点を規定す
ることについて、はぼ理想の状態に持って行くことが可
能である。
In this embodiment, not only is it intended to further improve the heat transfer performance by increasing the surface area of the heat transfer tube by using the fin-like protrusions 16, but also the purpose is to specify the starting point of solidification by applying this means. It is possible to bring it to the ideal state.

[発明の効果] 以上の説明から明らかなように本発明は伝熱管が容器内
で蓄熱材と接する領域を螺旋状に構成するようにしてい
るから、伝熱管内部の被加熱流体が日陰側にある蓄熱材
に対して加熱源として作用し、日射側および日陰側の双
方の蓄熱材を有効に利用することが=U能であり、蓄熱
材の利用率向上に大きく寄与するものである。一方、蓄
熱材の相変化に伴う体積変化による構造上の諸問題もボ
イドを広範に分散させることにより容器の安全性が確保
され、蓄熱式熱交換器の信頼性を高めるのに大いに効果
があり、優れて有用なものである。
[Effects of the Invention] As is clear from the above description, in the present invention, the region where the heat transfer tube contacts the heat storage material in the container is configured in a spiral shape, so that the heated fluid inside the heat transfer tube is directed to the shaded side. Acting as a heating source for a certain heat storage material and effectively utilizing the heat storage material on both the solar radiation side and the shaded side is an ability that greatly contributes to improving the utilization rate of the heat storage material. On the other hand, by dispersing voids over a wide range of structural problems caused by volume changes associated with phase changes in the heat storage material, the safety of the container is ensured, which is highly effective in increasing the reliability of the regenerative heat exchanger. , excellent and useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る蓄熱伝熱管の一実施例を示す構成
図、第2図は伝熱管の周囲に生じた凝固部について示す
作用説明図、第3図ないし第5図はそれぞれ異なる本発
明の他の実施例を示す構成図、第6図は従来の蓄熱伝熱
管の一例を示す構成図である。 11・・・・・・・・・容器 12・・・・・・・・・蓄熱材 13a、14a・・・第1の螺旋状伝熱管13b、14
b・・・第2の螺旋状伝熱管15・・・・・・・・・螺
旋状伝熱管 16・・・・・・・・・フィン状突起
Fig. 1 is a configuration diagram showing one embodiment of the heat storage heat exchanger tube according to the present invention, Fig. 2 is an explanatory diagram showing the effect of the solidified portion generated around the heat exchanger tube, and Figs. 3 to 5 are from different books. FIG. 6 is a block diagram showing another embodiment of the invention. FIG. 6 is a block diagram showing an example of a conventional heat storage heat transfer tube. 11... Container 12... Heat storage material 13a, 14a... First spiral heat exchanger tube 13b, 14
b...Second helical heat exchanger tube 15......Spiral heat exchanger tube 16...Fin-like protrusion

Claims (1)

【特許請求の範囲】[Claims] 円筒状容器内に蓄熱材を封入し、さらに前記容器を長手
方向に貫通するように伝熱管を設け、これにより該容器
の外側から与えられる熱を前記蓄熱材を通して前記伝熱
管内を流れる被加熱流体に伝えるとともに、余剰分の熱
を前記蓄熱材中に蓄えるようにした蓄熱伝熱管において
、前記伝熱管が該容器内で蓄熱材と接する領域を螺旋状
に構成したことを特徴とする蓄熱伝熱管。
A heat storage material is sealed in a cylindrical container, and a heat transfer tube is provided so as to penetrate the container in the longitudinal direction, whereby heat given from the outside of the container is passed through the heat storage material and flows into the heat transfer tube. A heat storage heat transfer tube configured to transfer heat to a fluid and store surplus heat in the heat storage material, wherein a region of the heat transfer tube in contact with the heat storage material within the container is configured in a spiral shape. heat tube.
JP63173113A 1988-07-12 1988-07-12 Heat accumulating type heat transfer tube Pending JPH0225692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63173113A JPH0225692A (en) 1988-07-12 1988-07-12 Heat accumulating type heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63173113A JPH0225692A (en) 1988-07-12 1988-07-12 Heat accumulating type heat transfer tube

Publications (1)

Publication Number Publication Date
JPH0225692A true JPH0225692A (en) 1990-01-29

Family

ID=15954393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63173113A Pending JPH0225692A (en) 1988-07-12 1988-07-12 Heat accumulating type heat transfer tube

Country Status (1)

Country Link
JP (1) JPH0225692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211756A (en) * 2011-03-30 2012-11-01 Tseng-Tung Hung Heat storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211756A (en) * 2011-03-30 2012-11-01 Tseng-Tung Hung Heat storage device

Similar Documents

Publication Publication Date Title
US3152774A (en) Satellite temperature stabilization system
US4469088A (en) Solar collector
US3548930A (en) Isothermal cover with thermal reservoirs
US3089318A (en) Hypersonic cooling system
JP2588633B2 (en) Temperature control mechanism for electronic equipment mounted on satellites and spacecraft
US5323843A (en) Lih thermal energy storage device
GB1532109A (en) Solar collectors
US4193441A (en) Variable capacity thermal storage system employing thermal switching
JPH0225692A (en) Heat accumulating type heat transfer tube
JPS62294897A (en) Heat accumulation type heat exchanger
JPS58221385A (en) Heat siphon type heat pipe
JPH0192557A (en) Heater for stirling engine
JPS60256797A (en) Heat accumulating and heat exchanging device
Phillips et al. Alkali metal/halide thermal energy storage systems performance evaluation
JPH02149772A (en) Thermal accumulator system for solar thermal electric conversion
JPS57207792A (en) Heat pipe
Consolmagno An Io thermal model with intermittent volcanism
JPS6242295Y2 (en)
JPS59107189A (en) Regenerative heat pipe
JPH04113191A (en) Heat accepting and accumulating device
JPS6250758B2 (en)
Byrd Isothermal cover with thermal reservoirs Patent
JP2580621B2 (en) Stirling engine heating device
JPH03227800A (en) Temperature control device of lunar vehicle
RU2034756C1 (en) Thermostating system for equipment of untight heat-insulated container of space vehicle