JPH02149772A - Thermal accumulator system for solar thermal electric conversion - Google Patents

Thermal accumulator system for solar thermal electric conversion

Info

Publication number
JPH02149772A
JPH02149772A JP63300568A JP30056888A JPH02149772A JP H02149772 A JPH02149772 A JP H02149772A JP 63300568 A JP63300568 A JP 63300568A JP 30056888 A JP30056888 A JP 30056888A JP H02149772 A JPH02149772 A JP H02149772A
Authority
JP
Japan
Prior art keywords
heat
medium
fusing point
temperature
thermal accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63300568A
Other languages
Japanese (ja)
Inventor
Moriaki Tsukamoto
守昭 塚本
Takashi Ikeda
孝志 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63300568A priority Critical patent/JPH02149772A/en
Publication of JPH02149772A publication Critical patent/JPH02149772A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Abstract

PURPOSE:To stabilize a temperature of circulating heating medium at the inlet of an heat engine by dividing a thermal accumulator into a plurality of areas and arranging the first latent heat type thermal accumulator having a fusing point TH at the upper stream side of the circulating heating medium and the secondary latent heat type thermal accumulator having a fusing point TL at the downstream side to be TH>TL. CONSTITUTION:The circulating heating medium of a heat receiver 2 is heated to near a fusing point TH by the heat radiation of a high fusing point latent heat type thermal accumulator 4 at the time of starting the shade and a temperature TR at the outlet of the heat receiver 2 is suddenly lowered as time passes. A low fusing point latent heat type thermal accumulator 7 accumulates heat the lowers a temperature at the inlet of a turbine while medium having higher temperature than the fusing point TL of heat accumulating material and when TR becomes lower than TL, heat radiation is started to increase TT. Sunshine starts and then the high fusing point latent heat type thermal accumulator 4 accumulates heat and also heats the medium 5 to near TH. The heat accumulating capacity of the high fusing point latent heat type thermal accumulator 4 lowers to that TR becomes further higher. At this time, the low fusing point latent heat type thermal accumulator 7 radiates heat to heat the medium 5 while TR is lower than TL, and when TR is over TL, it accumulates heat to release heat from the medium 5. Consequently, the change of the steam temperature TT at the inlet of the turbine can be made small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は太陽熱発電システムに係り、特に、宇宙空間で
用いるのに好適な太陽熱発電用の蓄熱システムに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solar thermal power generation system, and particularly to a heat storage system for solar thermal power generation suitable for use in outer space.

〔従来の技術〕[Conventional technology]

宇宙で用いる太陽熱発電システムでは、人工衛星の地球
周回に伴って発生する日照時、日陰時にかかわらず、安
定して発電する必要があるため、蓄熱システムが必要と
なる。
Solar thermal power generation systems used in space require a heat storage system because they need to generate power stably regardless of whether there is sunshine or shade as the satellite orbits the earth.

従来、宇宙での太陽熱発電システム用の蓄熱システムに
ついては、第25回日本伝熱シンポジウム講演論文集、
pp133−135.(1988−6)で論じられてい
る。同文献では、循環熱媒体としてガスを用いるクロー
ズド・プレイトン・サイクル(CB C)による宇宙太
陽熱発電システムのための蓄熱システムとして、潜熱型
の蓄熱材を充填した蓄熱カプセルと伝熱管とを内蔵した
ヒートパイプとを受熱器内に配置し、日陰および日照の
繰り返しによる循環熱媒体の温度変化を緩和している。
Conventionally, regarding heat storage systems for solar thermal power generation systems in space, the Proceedings of the 25th Japan Heat Transfer Symposium,
pp133-135. (1988-6). This document describes a heat storage system for a space solar power generation system using a closed Playton cycle (CBC) that uses gas as a circulating heat medium, and a heat storage capsule filled with a latent heat storage material and a heat transfer tube. A heat pipe is placed inside the heat receiver to alleviate temperature changes in the circulating heat medium due to repeated exposure to shade and sunlight.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来技術では、下記の理由により循環熱媒体の温
度変化の緩和には限界がある。すなわち、潜熱型の蓄熱
材は熱伝導率が金属類に比較して二桁程度小さい。また
、宇宙空間では溶融状態でも、熱対流による伝熱促進効
果を期待できない。そのため、日陰時の放熱時には、蓄
熱材の凝固の進展に伴って同相部分が厚くなるため、溶
融している蓄熱材と循環熱媒体の間の熱抵抗が急激に増
加し、放熱能力が低下する。これにより、放熱開始直後
には循環熱媒体は蓄熱材の融点に近い温度まで加熱され
るが、その後、熱抵抗の増加により急激に蓄熱材の放熱
能力が低下して循環熱媒体を十分加熱できなくなる。
In the above-mentioned conventional technology, there is a limit to the relaxation of the temperature change of the circulating heat medium due to the following reasons. That is, the thermal conductivity of the latent heat type heat storage material is about two orders of magnitude lower than that of metals. Furthermore, in space, even in a molten state, the effect of promoting heat transfer due to thermal convection cannot be expected. Therefore, during heat dissipation in the shade, the in-phase portion becomes thicker as the heat storage material solidifies, and the thermal resistance between the molten heat storage material and the circulating heat medium increases rapidly, reducing heat dissipation ability. . As a result, the circulating heat medium is heated to a temperature close to the melting point of the heat storage material immediately after heat dissipation starts, but after that, the heat dissipation ability of the heat storage material rapidly decreases due to the increase in thermal resistance, and the circulating heat medium cannot be sufficiently heated. It disappears.

また、日照時には、受熱器で集熱された太陽熱は、蓄熱
器に蓄熱されると同時に、その残りの熱により循環熱媒
体を加熱する。このときは蓄熱材の融解の進展に伴って
液相部分が厚くなるため、溶融している蓄熱材と循環熱
媒体の間の熱抵抗が伝熱管全体にわたって急激に増加し
、蓄熱能力が低下する。これにより、日照開始直後は蓄
熱材の融点付近以上には循環熱媒体の温度は上昇しない
が、その後、蓄熱能力の低下により循環熱媒体の温度が
大きく上昇する。
Furthermore, during sunshine, the solar heat collected by the heat receiver is stored in the heat storage device, and at the same time, the remaining heat heats the circulating heat medium. At this time, as the heat storage material melts, the liquid phase part becomes thicker, so the thermal resistance between the molten heat storage material and the circulating heat medium increases rapidly throughout the heat transfer tube, and the heat storage capacity decreases. . As a result, the temperature of the circulating heat medium does not rise above the melting point of the heat storage material immediately after the start of sunlight, but thereafter the temperature of the circulating heat medium increases significantly due to a decrease in heat storage capacity.

そのため、熱機関の入口の循環熱媒体の温度が大きく変
動するとどう問題点があった。この温度変動は、受熱器
、熱機関などの信頼性や性能に悪影響を与える。
Therefore, problems arise when the temperature of the circulating heat medium at the inlet of the heat engine fluctuates significantly. This temperature fluctuation adversely affects the reliability and performance of heat receivers, heat engines, and the like.

本発明の目的は、熱機関入口の循環熱媒体の温度を安定
にできる宇宙太陽熱発電用の蓄熱システムを提供するこ
とにある。
An object of the present invention is to provide a heat storage system for space solar power generation that can stabilize the temperature of a circulating heat medium at the inlet of a heat engine.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、集光器、受熱器、蓄熱器、熱機関、及び
、循環熱媒体の配管を含む宇宙太陽熱発電システムにお
いて、蓄熱器を複数の領域に分割し、循環熱媒体の上流
側に融点THの第一潜熱型蓄熱器を、下流側に融点TL
の第二潜熱型蓄熱器を配置し、それぞれの融点をT o
 > T Lとすることにより達成される。
The above purpose is to divide the heat storage device into multiple regions in a space solar power generation system that includes a concentrator, a heat receiver, a heat storage device, a heat engine, and piping for a circulating heat medium. A first latent heat type heat storage device with a melting point TH is placed on the downstream side, with a melting point TL.
A second latent heat type heat storage device is arranged, and the melting point of each is T o
> T L.

〔作用〕[Effect]

本発明の蓄熱システムの作用原理を、循環熱媒体として
ヘリウム等のガスを用いた場合について説明する。これ
は、有機熱媒体などの相変化物質を用い、その臨界圧以
上の運転圧力で運転する場合とほぼ同様である。
The principle of operation of the heat storage system of the present invention will be explained in the case where a gas such as helium is used as the circulating heat medium. This is almost the same as when using a phase change material such as an organic heating medium and operating at an operating pressure higher than its critical pressure.

日陰時には、上流側の第一の潜熱型蓄熱器は、日陰開始
直後よりしばらくの間は融点TMの近くまで循環熱媒体
を加熱する。放熱能力が低下してくると時間の経過と共
にその温度は低下する。
When in the shade, the first latent heat type heat storage device on the upstream side heats the circulating heat medium to near the melting point TM for a while immediately after the start of the shade. As the heat dissipation capacity decreases, the temperature decreases over time.

方、下流の第二潜熱型蓄熱器は流入する循環熱媒体の温
度Tが15以上である間は蓄熱することにより循環熱媒
体より除熱し、流入する@慄然媒体の温度TがTL以下
となると放熱することにより循環熱媒体を加熱する。
On the other hand, the downstream second latent heat type heat storage device removes heat from the circulating heat medium by storing heat while the temperature T of the inflowing circulating heat medium is 15 or more, and when the temperature T of the inflowing @terrifying medium becomes TL or less. The circulating heat medium is heated by radiating heat.

日照時には、受熱器で受熱された熱は第一潜熱型蓄熱器
に蓄熱されると共に、循環熱媒体を融点T oに近い温
度まで加熱する。第一潜熱型蓄熱器の蓄熱能力が低下し
てくると循環熱媒体の温度がさらに高くなる。この時、
下流の第二の潜熱型蓄熱器は流入する循環熱媒体の温度
TがTし以下である間は放熱することにより循環熱媒体
を加熱し、15以上となると蓄熱することにより循環熱
媒体より除熱する。
During sunshine, the heat received by the heat receiver is stored in the first latent heat type heat storage device and heats the circulating heat medium to a temperature close to the melting point T o. As the heat storage capacity of the first latent heat type heat storage device decreases, the temperature of the circulating heat medium further increases. At this time,
The downstream second latent heat type heat storage device heats the circulating heat medium by dissipating heat while the temperature T of the circulating heat medium flowing in is below T, and when it becomes 15 or higher, heat is removed from the circulating heat medium by storing heat. heat.

すなわち、上流側の第一潜熱型蓄熱器の蓄/放熱能力の
変化による循環熱媒体の温度の変化を、下流側の第二の
潜熱型蓄熱器の蓄/放熱により緩和できるので、これに
より、熱機関へ流入する蒸気の温度を安定化することが
できる。
That is, the change in the temperature of the circulating heat medium due to the change in the heat storage/heat dissipation capacity of the first latent heat type heat storage device on the upstream side can be alleviated by the heat storage/radiation of the second latent heat type heat storage device on the downstream side. The temperature of the steam flowing into the heat engine can be stabilized.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第2図により説明す
る。第1図は本発明の一実施例である蓄熱システムを含
む宇宙用太陽熱発電システムの系統図である。第2図は
第1図の発電システムの動作を示す説明図である。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a system diagram of a space solar thermal power generation system including a heat storage system, which is an embodiment of the present invention. FIG. 2 is an explanatory diagram showing the operation of the power generation system of FIG. 1.

第1図において、集光鏡1の焦点付近にキャビティ型の
受熱器2が配置され、その受熱器2の内部に集熱管とし
て複数本のヒートパイプ3が円周上に配置されている。
In FIG. 1, a cavity-type heat receiver 2 is arranged near the focal point of a condensing mirror 1, and a plurality of heat pipes 3 are arranged circumferentially inside the heat receiver 2 as heat collecting tubes.

このヒートパイプ3の下部には融点’roの蓄熱材を内
蔵した高融点潜熱型蓄熱器4が設けられている。循環熱
媒体5を輸送する循環熱媒体配管6は、受熱器2でピー
1〜バイブ3の下部に伝熱的に接続され、低融点潜熱型
蓄熱器7、圧力調整弁15、タービン9、再生熱交換器
10、冷却器11、ポンプ12、及び、再生熱交換器1
0を経て、受熱器2に戻る。低融点潜熱型蓄熱器7の内
部には、融点TLの蓄熱材を内蔵した複数の蓄熱カプセ
ル14が設けられ、蓄熱力プセル14と循環熱媒体5と
の間で熱交換可能である。
A high melting point latent heat type heat storage device 4 containing a heat storage material having a melting point of 'ro' is provided at the lower part of the heat pipe 3. A circulating heat medium piping 6 that transports the circulating heat medium 5 is thermally connected to the lower part of the P1 to the vibrator 3 at the heat receiver 2, and is connected to a low melting point latent heat type heat storage device 7, a pressure regulating valve 15, a turbine 9, and a regeneration device. Heat exchanger 10, cooler 11, pump 12, and regenerative heat exchanger 1
0 and returns to the heat receiver 2. A plurality of heat storage capsules 14 containing a heat storage material having a melting point TL are provided inside the low melting point latent heat type heat storage device 7, and heat can be exchanged between the heat storage power capsule 14 and the circulating heat medium 5.

高融点潜熱型蓄熱器4の融点T11、低融点潜熱型蓄熱
器7の融点Tしは当然のことであるが、T)l  > 
T+。
It goes without saying that the melting point T11 of the high melting point latent heat type heat storage device 4 and the melting point T11 of the low melting point latent heat type heat storage device 7 are T)l>
T+.

本実施例では、循環熱媒体5としてヘリウムガスを用い
、高融点潜熱型蓄熱器4の蓄熱材としてLiF(融点T
++=1121°K)、低融点潜熱型蓄熱器7の蓄熱材
としてNaF(75%)とM g F 2(25%)の
混合塩(融点TL=1.105°K)を用いた。また、
日照期間中における受熱器2の積分積熱量を日照及び日
陰時の発電に必要な積分熱量に等しくできるだけの集光
tA1の大きさとした。
In this embodiment, helium gas is used as the circulating heat medium 5, and LiF (melting point T
++=1121°K), and a mixed salt of NaF (75%) and M g F 2 (25%) (melting point TL=1.105°K) was used as the heat storage material of the low melting point latent heat type heat storage device 7. Also,
The size of the condensed light tA1 was set so that the integral heat quantity of the heat receiver 2 during the sunshine period can be made equal to the integral heat quantity required for power generation during sunshine and shade.

第1図に示した宇宙太陽熱発電システムの動作を、蓄熱
システムの作用を中心に第2図により説明する。
The operation of the space solar thermal power generation system shown in FIG. 1 will be explained with reference to FIG. 2, focusing on the action of the heat storage system.

第2図は循環熱媒体5の流量Go (循環流量)を一定
としたときの日陰及び日照時における循環熱媒体の受熱
器出口温度TR、タービン入口温度TT、低融点潜熱型
蓄熱器7の放熱量Q。tit 、及び、吸熱量Q、。の
時間変化を示している。
Figure 2 shows the heat receiver outlet temperature TR, turbine inlet temperature TT, and radiation of the low melting point latent heat type heat storage device 7 of the circulating heat medium in the shade and during sunlight when the flow rate Go (circulation flow rate) of the circulating heat medium 5 is constant. Heat quantity Q. tit, and the amount of heat absorption Q. It shows the change over time.

同図の受熱器出口温度Tnに示すように、受熱器2に流
入した低温の循環熱媒体5は、日陰開始時には高融点潜
熱型蓄熱器4の放熱により融点T Iの近くまで加熱さ
れるが、時間の経過とともに放熱能力が低下し、受熱器
の出口温度TRは急激に低下する。低融点潜熱型蓄熱器
7では、その蓄熱材融点TLより高温の循環熱媒体5が
流入している間は蓄熱し、タービン入口温度TTを下げ
るように作用する。その後、受熱器出口温度THがTL
より低下した時点で、放熱を開始し、タービン入口温度
TT を高めるように作用する。
As shown by the heat receiver outlet temperature Tn in the same figure, the low-temperature circulating heat medium 5 that has flowed into the heat receiver 2 is heated to near the melting point T I by the heat radiation of the high melting point latent heat type heat storage device 4 when the shade starts. As time passes, the heat dissipation capacity decreases, and the outlet temperature TR of the heat receiver rapidly decreases. The low melting point latent heat type heat storage device 7 stores heat while the circulating heat medium 5 having a temperature higher than the melting point TL of the heat storage material flows in, and acts to lower the turbine inlet temperature TT. After that, the heat receiver outlet temperature TH becomes TL
When the temperature drops further, heat radiation starts and acts to increase the turbine inlet temperature TT.

つぎに1日照が始まると、受熱器で受熱された熱は高融
点潜熱型蓄熱器4に蓄熱されると共に、循環熱媒体5を
融点T11に近い温度まで加熱する。
Next, when one day of sunshine begins, the heat received by the heat receiver is stored in the high melting point latent heat type heat storage device 4 and heats the circulating heat medium 5 to a temperature close to the melting point T11.

高融点潜熱型蓄熱器4の蓄熱能力が低下してくると受熱
器出口温度TRがさらに高くなる。この時。
As the heat storage capacity of the high melting point latent heat type heat storage device 4 decreases, the heat receiver outlet temperature TR further increases. At this time.

下流の低融点潜熱型蓄熱器は受熱器出口温度TRがTL
以下である間は放熱することにより循環熱媒体を加熱し
、TL以上となると蓄熱することにより循環熱媒体より
除熱する。
The downstream low melting point latent heat type heat storage device has a heat receiver outlet temperature TR of TL.
When the temperature is below TL, the circulating heat medium is heated by radiating heat, and when it is above TL, heat is removed from the circulating heat medium by storing heat.

これらの作用により、受熱器出口温度TRの変動に比較
してタービン入口蒸気温度TTの変動を小さくできる。
Due to these effects, fluctuations in the turbine inlet steam temperature TT can be made smaller than fluctuations in the heat receiver outlet temperature TR.

本発明の他の実施例を第3図に示す。本実施例では受熱
器1の出口側の循環熱媒体配管5に高融点潜熱型蓄熱器
24を、さらに、高融点潜熱型蓄熱器24の出口側に低
融点潜熱型蓄熱器27を、それぞれ設けた。このように
構成することにより、第1図と同様の効果が得られ、受
熱器1の寸法等に制約されることなく蓄熱器の配置が可
能になる。
Another embodiment of the invention is shown in FIG. In this embodiment, a high melting point latent heat type heat storage device 24 is provided in the circulating heat medium pipe 5 on the outlet side of the heat receiver 1, and a low melting point latent heat type heat storage device 27 is provided in the outlet side of the high melting point latent heat type heat storage device 24. Ta. With this configuration, the same effects as in FIG. 1 can be obtained, and the heat storage device can be arranged without being restricted by the dimensions of the heat receiver 1.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱機関へ流入する循環熱媒体の温度を
安定化することができる。
According to the present invention, the temperature of the circulating heat medium flowing into the heat engine can be stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の太陽熱発電システムの系統
図、第2図は第1図の発電システムの動作の説明図、第
3図は本発明の他の実施例の太陽熱発電システムの系統
図である。 1・・・集光鏡、2・・・受熱器、3・・・ヒートパイ
プ、4゜24・・・高融点潜熱型蓄熱器、5・・・循環
熱媒体、6・・・循環熱媒体配管、7,27・・・低融
点潜熱型蓄熱器、9・・タービン、10 ・再生熱交換
器、11・・冷却器、12・・・ポンプ、15・・・弁
、14・・・蓄熱カプセル。 第 図 第 図
Fig. 1 is a system diagram of a solar thermal power generation system according to one embodiment of the present invention, Fig. 2 is an explanatory diagram of the operation of the power generation system of Fig. 1, and Fig. 3 is a diagram of a solar thermal power generation system according to another embodiment of the present invention. It is a system diagram. 1... Concentrating mirror, 2... Heat receiver, 3... Heat pipe, 4°24... High melting point latent heat type heat storage device, 5... Circulating heat medium, 6... Circulating heat medium Piping, 7, 27...Low melting point latent heat type heat storage device, 9...Turbine, 10 - Regenerative heat exchanger, 11... Cooler, 12... Pump, 15... Valve, 14... Heat storage capsule. Figure Figure

Claims (1)

【特許請求の範囲】 1、集光器、受熱器、蓄熱器、熱機関、及び、循環熱媒
体の配管を含む太陽熱発電システムにおいて、 前記蓄熱器を複数の領域に分割し、前記循環熱媒体の上
流側に融点T_Hの第一潜熱型蓄熱器を、下流側に融点
T_Lの第二潜熱型蓄熱器を、それぞれ、配置し、T_
H>T_Lとしたことを特徴とする太陽熱発電用の蓄熱
システム。
[Claims] 1. A solar thermal power generation system including a concentrator, a heat receiver, a heat storage device, a heat engine, and piping for a circulating heat medium, wherein the heat storage device is divided into a plurality of regions, and the circulating heat medium A first latent heat type heat storage device with a melting point T_H is placed on the upstream side of T_H, and a second latent heat type heat storage device with a melting point T_L is placed on the downstream side of T_
A heat storage system for solar thermal power generation characterized by H>T_L.
JP63300568A 1988-11-30 1988-11-30 Thermal accumulator system for solar thermal electric conversion Pending JPH02149772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300568A JPH02149772A (en) 1988-11-30 1988-11-30 Thermal accumulator system for solar thermal electric conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300568A JPH02149772A (en) 1988-11-30 1988-11-30 Thermal accumulator system for solar thermal electric conversion

Publications (1)

Publication Number Publication Date
JPH02149772A true JPH02149772A (en) 1990-06-08

Family

ID=17886405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300568A Pending JPH02149772A (en) 1988-11-30 1988-11-30 Thermal accumulator system for solar thermal electric conversion

Country Status (1)

Country Link
JP (1) JPH02149772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021525333A (en) * 2018-05-23 2021-09-24 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ エジンバラThe University Court Of The University Of Edinburgh Ultra-high temperature thermal energy storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021525333A (en) * 2018-05-23 2021-09-24 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ エジンバラThe University Court Of The University Of Edinburgh Ultra-high temperature thermal energy storage system

Similar Documents

Publication Publication Date Title
US4192144A (en) Direct contact heat exchanger with phase change of working fluid
US10330393B2 (en) Modular latent heat thermal energy storage systems
US4768345A (en) Continuous thermal energy delivery from a periodically active energy source
US20130340432A1 (en) Liquid metal thermal storage system and method
EP2647841B1 (en) Solar thermal power system
CN102483263A (en) Vapour only cycling of heat transfer fluid for the thermal storage of solar energy
US20140299122A1 (en) Methods and Apparatus for Thermal Energy Storage Control Optimization
US4111260A (en) Method of heat accumulation and a thermal accumulator for the application of said method
US20150107246A1 (en) System and method for heat storage in solar thermal power plants
Strumpf et al. Solar receiver for the space station Brayton engine
US20170179879A1 (en) Temperature-staged thermal energy storage enabling low thermal exergy loss reflux boiling in full spectrum solar energy systems
WO2011067600A2 (en) Energy generation system
US4099558A (en) Method of heat accumulation and a thermal accumulator for the application of said method
JPH02149772A (en) Thermal accumulator system for solar thermal electric conversion
US20140014090A1 (en) Solar energy system
Cui et al. Thermal performance analysis on unit tube for heat pipe receiver
GB2484326A (en) Energy generation system for converting solar and heat energy into electrical energy
US11499785B2 (en) Combined thermal energy storage and heat exchanger unit
JPH0245114B2 (en)
JPS63201494A (en) Regenerative heat exchanger
JPS60256797A (en) Heat accumulating and heat exchanging device
Miller Energy storage unit and system
Kashyap et al. Numerical Simulation of Latent Heat Thermal Energy Storage Incorporated Solar Water Heater
Crane et al. Thermal performance of specific heat receiver concepts for advanced solar dynamic applications
JPS5820913A (en) Recovery plant of waste heat