JPH02256797A - Driving device for driving method - Google Patents

Driving device for driving method

Info

Publication number
JPH02256797A
JPH02256797A JP7910989A JP7910989A JPH02256797A JP H02256797 A JPH02256797 A JP H02256797A JP 7910989 A JP7910989 A JP 7910989A JP 7910989 A JP7910989 A JP 7910989A JP H02256797 A JPH02256797 A JP H02256797A
Authority
JP
Japan
Prior art keywords
propulsion
bending angle
driving
joint
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7910989A
Other languages
Japanese (ja)
Other versions
JPH0768859B2 (en
Inventor
Teruo Kabeuchi
輝夫 壁内
Katsuhiko Mukono
勝彦 向野
Yukio Imada
今田 幸雄
Yukishige Yamada
山田 幸重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1079109A priority Critical patent/JPH0768859B2/en
Publication of JPH02256797A publication Critical patent/JPH02256797A/en
Publication of JPH0768859B2 publication Critical patent/JPH0768859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To drive an accurate course through a ground by connecting a plurality of driving bodies so that they are capable of bending, providing an inclined pressure receiving plane lengthwise to the end, and providing a means to adjust a coupling angle freely in a device driving an arc shaped course. CONSTITUTION:A driving head 1 is constituted of a head body 1A, an excavation section 3 capable of swiveling around the axial center P, a control device 4 of the swivel, and a water jet nozzle 5. Then, an inclined pressure receiving plane F for setting a driving direction by the earth pressure is formed in the excavation section 3. After that, a plurality of driving pipes 2 are connected with a joint section J so that they are capable of bending and, at the same time, lock nuts 15A and 15B are provided, then their positions are adjusted to make it free to adjust a joint bending angle. The bending angle is set in advance to drive along a required circular arc shaped course. In case of advancing forward, the bending angle is set to 0 deg., and the excavation section is rotated to drive. According to the constitution, a driving device can drive a required course accurately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、推進体の複数個が屈曲自在に連結され、且つ
、それら推進体の先端のものには推進体長手方向に対し
て傾斜した受圧面が形成されている推進工法用の推進装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is characterized in that a plurality of propellants are connected in a bendable manner, and the tips of the propellants are inclined with respect to the longitudinal direction of the propellants. The present invention relates to a propulsion device for a propulsion method in which a pressure receiving surface is formed.

〔従来の技術〕[Conventional technology]

推進装置を推進させる工法としては、受圧面が形成され
ている部分を推進体長手方向に沿う軸芯周りで回転させ
ながら推進体を後方から押し込んでいき、土中において
直線的に推進させる工法や、また、受圧面の向きを所定
の位置に固定したまま推進体を押し込んでいき、土圧に
よって受圧面の方向を徐々に変え、土中において受圧面
の向きとは反対の方向に円弧状経路に沿うようにして推
進させる工法などがある。
The method of propelling the propulsion device is to push the propellant from behind while rotating the part where the pressure receiving surface is formed around the axis along the longitudinal direction of the propellant, and propel it linearly into the soil. In addition, the propeller is pushed in with the direction of the pressure-receiving surface fixed at a predetermined position, and the direction of the pressure-receiving surface is gradually changed by the earth pressure, creating an arcuate path in the soil in the opposite direction to the direction of the pressure-receiving surface. There are construction methods that promote construction along the following lines.

従来の推進工法用の推進装置では、なるべく小さな半径
の円弧状経路に沿っても土中を推進することができるよ
うに、推進体の隣り合うもの同士の最大屈曲角を製作段
階から最大限に確保してあった。
With propulsion devices for conventional propulsion methods, the maximum bending angle between adjacent propulsion bodies is maximized from the manufacturing stage so that it can be propelled through the soil even along arc-shaped paths with as small a radius as possible. It was secured.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の推進装置は、各々の推進体が最大屈曲角の範囲内
であれば自由に屈曲するようになっているので、例えば
土中を直線的に推進させていく際に、先頭の推進体が固
い土壌にぶつかって推進し難くなると、後方からの押し
込み力によって推進体が不本意に屈折してしまうことが
あった。つまりは土中で座屈して目標方向に推進できな
くなる虞れがあった。
In the above-mentioned propulsion device, each propellant can bend freely as long as it is within the maximum bending angle, so for example, when propelling linearly through the soil, the leading propellant When it hit hard soil and became difficult to propel, the propelling body would sometimes bend involuntarily due to the pushing force from behind. In other words, there was a risk that it would buckle in the soil and become unable to propel itself in the target direction.

また、上記の推進装置は、最小半径の円弧状経路に沿っ
て土中を推進させる場合、その隣り合うもの同士の屈曲
角を最大の状態に維持して推進体を押し込んでいくと、
推進体の姿勢が安定し、滑らかな円弧を描きながら推進
させることができるのであるが、それよりも大きい半径
の円弧状経路に沿って土中を推進させようとすると、最
大屈曲角よりも小さい屈曲角で推進体を押し込んでいく
必要があるので、屈曲角を維持することが困難となり、
滑らかな円弧を描きながら推進させることができなかっ
た。
In addition, when the above-mentioned propulsion device propels the propellant through the soil along an arcuate path with the minimum radius, the bending angle between adjacent ones is maintained at the maximum state and the propellant is pushed in.
The attitude of the propelling body is stable and it can be propelled while drawing a smooth arc, but if you try to propel it through the soil along an arcuate path with a radius larger than that, the bending angle will be smaller than the maximum bending angle. Since it is necessary to push the propellant at the bending angle, it becomes difficult to maintain the bending angle,
It was not possible to propel it in a smooth arc.

そのため、最小半径の円弧状経路よりも大きい半径の円
弧状経路に沿って土中を推進させる場合には、受圧面の
向きを所定の位置に固定したまま推進体を押し込んでい
く工法を行い、時には受圧面が形成されている部分を回
転させながら推進体を押し込む工法を行うことによって
推進方向を調整し、所望の円弧状経路に沿って土中を推
進させるようにしている。しかし、この工法は人間の感
に頼る部分が大きいため熟練が必要であり、しかもあま
り正確に推進させることができない難点があった。
Therefore, when propelling underground along an arc-shaped path with a radius larger than the arc-shaped path with the minimum radius, a construction method is used in which the propeller is pushed into the soil while the direction of the pressure-receiving surface is fixed at a predetermined position. Sometimes, the propulsion direction is adjusted by pushing the propeller while rotating the part where the pressure-receiving surface is formed, so that it is propelled through the soil along a desired arcuate path. However, this construction method requires great skill as it relies heavily on human intuition, and it also has the disadvantage that it cannot be carried out very precisely.

本発明では、推進装置を所望の経路に沿って容易に且つ
正確に推進できるようにすることを目的としている。
An object of the present invention is to enable a propulsion device to be easily and accurately propelled along a desired route.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため本発明にあっては、前記複数個
の推進体の隣り合うもの同士の最大屈曲角を変更調節す
る複数個の角度調節手段が各別に変更調節自在に設けら
れている点を特徴構成にしている。
In order to achieve the above object, the present invention is provided with a plurality of angle adjustment means that can be individually and freely changed and adjusted to change and adjust the maximum bending angle between adjacent ones of the plurality of propellant bodies. The features are as follows.

〔作 用〕[For production]

推進装置を直線的に推進させてい(場合には、隣り合う
もの同士の推進体の最大屈曲角を角度調節手段によって
0度に設定する。そして受圧面が形成されている部分を
推進体長手方向に沿う軸芯周りで回転させながら推進体
を前方へ押し込んでいく。
When the propulsion device is propelled linearly (in this case, the maximum bending angle of adjacent propellants is set to 0 degrees by the angle adjustment means), and the part where the pressure receiving surface is formed is set in the longitudinal direction of the propellant. Push the propellant forward while rotating around the axis along the axis.

また、推進装置を所定の半径の円弧状又は楕円弧状の経
路に沿って旋回させながら推進させていく場合には、隣
り合うもの同士の推進体を最大屈曲角で屈曲させた状態
にした際に、前記推進体が所定の円弧状又は楕円弧状の
経路に相当する円弧に沿うように、その最大屈曲角を各
角度調節手段によって予め設定する。そして受圧面の向
きを旋回方向に圧力を受けるように位置させて推進体を
押し込んでいくのである。このようにして押し込んでい
くと、受圧面が土庄を受けて先頭の推進体から徐々に向
きを変更し、その後部に連結された推進体が屈曲しなが
らそれに追随していく。そして推進体の隣り合うもの同
士の屈曲角が最大屈曲角に達すると、それ以上屈曲でき
なくなった推進体はその屈曲状態を維持し、予め設定し
ておいた所定の円弧状又は楕円弧状の経路に沿って推進
していくようになる。
In addition, when the propulsion device is propelled while turning along an arc-shaped or elliptical arc-shaped path with a predetermined radius, when the propulsion devices of adjacent ones are bent at the maximum bending angle, , the maximum bending angle of the propelling body is set in advance by each angle adjusting means so that the propelling body follows a circular arc corresponding to a predetermined arc-shaped or elliptical arc-shaped path. Then, the propellant is pushed in with the pressure-receiving surface oriented so that it receives pressure in the direction of rotation. As it is pushed in in this way, the pressure-receiving surface receives the tonosho and gradually changes its direction from the leading propelling body, and the propelling body connected to the rear thereof bends and follows suit. When the bending angle between adjacent propellants reaches the maximum bending angle, the propellants that can no longer bend maintain their bent state and follow a predetermined arc-shaped or elliptical arc-shaped path. It will be promoted along the lines of

更に、推進装置を始めに直線的に推進させていき、所定
に位置まで達したら旋回させながら推進させていく場合
には、先端側に位置する隣り合うもの同士の推進体の最
大屈曲角を、推進体を最大屈曲角で屈曲させた状態にし
た際に、前記推進体が所定の円弧状又は楕円弧状の経路
に相当する円弧に沿うように1、その最大屈曲角を角度
調節手段によって設定し、後端側に位置する隣り合うも
の同士の推進体の最大屈曲角を角度調節手段によって0
度に設定する。そして始めは、受圧面が形成されている
部分を推進体長手方向に沿う軸芯周りで回転させること
で押し込んでいき、推進体を直進的に推進させる。
Furthermore, when the propulsion device is first propelled linearly and then rotated when it reaches a predetermined position, the maximum bending angle of the propellants between adjacent ones located on the tip side is 1. The maximum bending angle is set by the angle adjusting means so that when the propellant is bent at the maximum bending angle, the propellant follows an arc corresponding to a predetermined circular arc or elliptical arc path. , the maximum bending angle of the propelling bodies located on the rear end side is set to 0 by the angle adjustment means.
Set once. Initially, the part on which the pressure receiving surface is formed is pushed in by rotating it around the axis along the longitudinal direction of the propellant, thereby propelling the propellant in a straight line.

そして所定の位置まで達したら受圧面の向きを旋回方向
に圧力を受ける位置に固定し、推進体を押し込んでいく
のである。このようにして押し込んでいくと、所定の位
置から先では、推進体は受圧面が土庄を受けることで徐
々に向きを変更し、その後部に連結された推進体も所定
の位置に達することで最大屈曲角で屈曲しながらそれに
追随し、所定の円弧状又は楕円弧状の経路に沿って推進
していくが、後ろの推進体は所定の位置に達するまで直
進的に推進していくようになる。
Once it reaches a predetermined position, the direction of the pressure-receiving surface is fixed at a position where it receives pressure in the direction of rotation, and the propelling body is pushed in. When pushed in this way, the propelling body will gradually change direction as the pressure receiving surface receives the tonosho from the predetermined position, and the propellant connected to the rear will also reach the predetermined position. It bends at the maximum bending angle and follows it, propelling itself along a predetermined arc-shaped or elliptical path, but the propelling body behind it will propel straight ahead until it reaches a predetermined position. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来よりも固い土壌であっても、推進
装置を座屈させることなく直線的に推進させることがで
きるようになった。また、従来の最小半径の円弧状経路
よりも大きい半径の円弧状経路や或いは楕円弧状経路で
あっても、推進体をその円弧状経路又は楕円弧状の経路
に沿って容易に且つ正確に推進させることが可能となっ
た。更にまた、推進装置を始めに直線的に推進させてい
き、所定に位置まで達したら旋回させながら推進させて
いくような変則的な場合であっても、容易に且つ正確に
推進させることが可能となった。
According to the present invention, even on harder soil than before, the propulsion device can be propelled linearly without buckling. Furthermore, even if the radius is larger than the conventional minimum radius arcuate path or an elliptical arcuate path, the propelling body can be easily and accurately propelled along the arcuate path or elliptical arcuate path. It became possible. Furthermore, even in an irregular case where the propulsion device initially propels the vehicle in a straight line and then rotates when it reaches a predetermined position, it is possible to propel the vehicle easily and accurately. It became.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第2図乃至第4図に示すように、外面が円筒面状の推進
体としての推進用ヘッド(1)や複数の推進管(2)を
継手部(J)を介して屈曲自在に連結し、土中において
屈曲しながら推進していくことが可能な推進工法用の推
進装置を構成しである。
As shown in FIGS. 2 to 4, a propulsion head (1) as a propulsion body with a cylindrical outer surface and a plurality of propulsion tubes (2) are bendably connected via a joint (J). , constitutes a propulsion device for a propulsion method that can be propelled while bending in the soil.

第1図に示すように、推進用ヘッド(1)は、管状の推
進ヘッド本体(IA)、推進用ヘッド本体(IA)に対
してその長手方向に沿う軸芯(P)周りで回動自在な掘
削部(3)、及び掘削部(3)を回転操作する操作装置
(4)から成る。
As shown in Fig. 1, the propulsion head (1) is rotatable around an axis (P) along the longitudinal direction of the tubular propulsion head body (IA) and the propulsion head body (IA). It consists of an excavating part (3) and an operating device (4) for rotating the excavating part (3).

前記掘削部(3)には、推進管(2)を地中推進させる
に伴って土庄を受けて、その土庄を受けた方向に推進用
ヘッド(1)の推進方向を向けるための受圧面(F)を
、長手方向と交差する傾斜面に形成し、更に、水を噴射
して旋回推進方向側の土質を軟弱化させて旋回推進性を
向上させるための水噴射ノズル(5)を設けである。尚
、図示はしないが、例えば前記掘削部(3)の内部に重
錘式のセンサを内蔵して、土中においても受圧面(F)
が上下左右いかなる方向に向いているかを検出できるよ
うになっている。この検出情報は、受圧面(F)の向き
を変更操作するために使用される。
The excavation part (3) is provided with a pressure receiving surface (1) for receiving a tonosho as the propulsion pipe (2) is propelled underground and for orienting the propulsion direction of the propulsion head (1) in the direction in which the tonosho is received. F) is formed on an inclined surface intersecting the longitudinal direction, and a water injection nozzle (5) is further provided to inject water to soften the soil on the side in the direction of turning propulsion and improve turning propulsion. be. Although not shown, for example, a weight-type sensor may be built into the excavation part (3) to detect pressure on the pressure receiving surface (F) even in the soil.
It is now possible to detect which direction the camera is facing (up, down, left, right, left, right). This detection information is used to change the orientation of the pressure receiving surface (F).

前記操作装置(4)は、推進用ヘッド本体(IA)に内
嵌され、且つ、キー(6)によって回動を規制されて往
復動する筒状の油圧ピストン(7)と、掘削部(3)の
後部に相対回転不能に連結され、且つ、油圧ピストン(
7)が外嵌螺合する螺合溝を備えている回転軸(8)と
、圧油を吸排して油圧ピストン(7)を往復移動させる
一対の圧油供給部(9A)、 (9B)とを有している
。前記回転軸(8)の内部には、水噴射ノズル(5)に
水を供給するための配管(10)を通してあり、この配
管(10)は、圧油供給部(9A)、 (9B)に接続
されている2本の油圧配管(IIA)、 (IIB)と
共に前記継手部(J)の内部を通して後方の推進管(2
)へ導いである。
The operating device (4) includes a cylindrical hydraulic piston (7) that is fitted into the propulsion head main body (IA) and that reciprocates while its rotation is restricted by a key (6), and an excavating portion (3). ) is connected to the rear part of the hydraulic piston (
7) is provided with a threaded groove into which it is externally fitted, and a pair of pressure oil supply parts (9A) and (9B) that suck and discharge pressure oil and reciprocate the hydraulic piston (7). It has A pipe (10) for supplying water to the water injection nozzle (5) is passed through the interior of the rotating shaft (8), and this pipe (10) is connected to the pressure oil supply parts (9A) and (9B). The rear propulsion pipe (2) is passed through the joint part (J) together with the two connected hydraulic pipes (IIA) and (IIB).
).

かかる構造により、一方の圧油供給部(9A又は9B)
から推進用ヘッド本体(IA)へ圧油を供給し、他方の
圧油供給部(9B又は9A)へ推進用ヘッド本体(IA
)から圧油を戻すと、油圧ピストン(7)が往復移動す
るとともに、この油圧ピストン(7)に螺合している回
転軸(8)が正逆に回転し、掘削部(3)が軸芯(P)
周りに回転駆動されるようになっている。掘削部(3)
は、油圧ピストン(7)が−往復する間に少なくとも3
60度以上回転するようになっている。
With this structure, one pressure oil supply section (9A or 9B)
Pressure oil is supplied from the propulsion head body (IA) to the propulsion head body (IA) to the other pressure oil supply part (9B or 9A).
), the hydraulic piston (7) moves back and forth, and the rotary shaft (8) screwed into this hydraulic piston (7) rotates in forward and reverse directions, causing the excavation part (3) to move around the shaft. Core (P)
It is designed to be rotated by the surroundings. Excavation department (3)
is at least 3 times during the reciprocation of the hydraulic piston (7)
It is designed to rotate more than 60 degrees.

ところで詳しくは説明しないが、掘削部(3)を硬質の
土壌で回転する際に推進用ヘッド本体(IA)が反力に
よって逆方向に回転しようとする。
By the way, although not explained in detail, when the excavation part (3) is rotated in hard soil, the propulsion head main body (IA) tends to rotate in the opposite direction due to reaction force.

これを防止するためには、推進用ヘッド本体(IA)の
外周面に突条を設けたり、或いは、推進用ヘッド(1)
に繋がる2本の油圧配管(IIA)。
In order to prevent this, it is necessary to provide a protrusion on the outer circumferential surface of the propulsion head main body (IA), or to
Two hydraulic pipes (IIA) connected to.

(IIB)を強固なものにすることによって、推進用ヘ
ッド本体(IA)の回り止めを図るとよい。
It is preferable to prevent the propulsion head body (IA) from rotating by making (IIB) strong.

次に、推進用ヘッド(1)と推進管(2)とを連結する
継手部(J)と、推進用ヘッド(1)と推進管(2)と
の最大屈曲角度を変更調節する角度調節手段(S)の構
造について説明する。尚、他の推進管(2)同士を連結
している継手部(J)やその部分の角度調節手段(S)
も同一構造になっているので、その説明については割愛
する。
Next, a joint part (J) that connects the propulsion head (1) and the propulsion tube (2), and an angle adjustment means that changes and adjusts the maximum bending angle of the propulsion head (1) and the propulsion tube (2). The structure of (S) will be explained. In addition, the joint part (J) that connects other propulsion pipes (2) and the angle adjustment means (S) of that part
Since they have the same structure, we will omit their explanation.

前記継手部(J)では、前記推進管(2)の前端部を小
径に形成し、この小径部(2a)に球状部材(12)を
外嵌固定しである。そして球状部材(12)を、推進用
ヘッド(1)に内装された受部(13)に内嵌してあり
、前記受部(13)が球状部材(12)の外周面を摺動
することによって、推進用ヘッド(1)が、その後端部
と推進管(2)の前端部とが接触しない範囲において、
上下左右いずれの方向へも屈曲できる球継手構造になっ
ている。
In the joint portion (J), the front end portion of the propulsion tube (2) is formed to have a small diameter, and a spherical member (12) is externally fitted and fixed to this small diameter portion (2a). The spherical member (12) is fitted into a receiving part (13) built into the propulsion head (1), and the receiving part (13) slides on the outer peripheral surface of the spherical member (12). Accordingly, within the range where the rear end of the propulsion head (1) does not come into contact with the front end of the propulsion tube (2),
It has a ball joint structure that allows it to be bent in any direction, up, down, left, or right.

また、前記角度調節手段(S)では、前記推進用ヘッド
(1)の後端部には小径の段部を形成し、この段部にネ
ジ(14)を形成しである。そしてこのネジ(14)に
、推進用ヘッド(1)の2個のロックナツト(15A)
、 (15B)を螺合してあり、2個のロックナツト(
15A)、 (15B)を位置調節することで継手部(
J)の最大屈曲角を設定できる構造になっている。これ
らのロックナツト(15A)、 (15B)を前方に移
動させて固定すれば、推進用ヘッド(1)と推進管(2
)との隙間が大きくなり、推進用ヘッド(1)の最大屈
曲角が大きく設定される。
Further, in the angle adjusting means (S), a small-diameter stepped portion is formed at the rear end of the propulsion head (1), and a screw (14) is formed in this stepped portion. Then, attach the two lock nuts (15A) of the propulsion head (1) to this screw (14).
, (15B) are screwed together, and two lock nuts (
By adjusting the positions of 15A) and (15B), the joint part (
The structure allows the maximum bending angle of J) to be set. If these lock nuts (15A) and (15B) are moved forward and fixed, the propulsion head (1) and propulsion tube (2)
) becomes larger, and the maximum bending angle of the propulsion head (1) is set larger.

逆に後方に移動して固定すれば、推進用ヘッド(1)と
推進管(2)との隙間が小さくなり、推進用ヘッド(1
)の最大屈曲角が小さく (最小角度は0度)設定され
ることになる。
Conversely, if the propulsion head (1) and the propulsion tube (2) are moved backward and fixed, the gap between the propulsion head (1) and the propulsion tube (2) becomes smaller, and the propulsion head (1)
) will be set to a small maximum bending angle (minimum angle is 0 degrees).

次に、上述した構造の推進装置を用いた推進工法につい
て説明する。
Next, a propulsion method using the propulsion device having the above-described structure will be explained.

前記推進装置を直進させる場合は、各継手部(J)のロ
ックナツト(15A)、 (15B)を最後部に移動し
て固定することで最大屈曲角を0度に予め設定しておく
。つまりは継手部(J)が曲がらないようにする。そし
て推進ヘッド本体(IA)に対して掘削部(3)を回転
させながら推進管(2)を押し込むこんでいく (第2
図参照)。
When the propulsion device is to move straight, the maximum bending angle is preset to 0 degrees by moving and fixing the lock nuts (15A) and (15B) of each joint (J) to the rearmost position. In other words, the joint part (J) should not be bent. Then, push the propulsion tube (2) into the propulsion head main body (IA) while rotating the excavation part (3) (second
(see figure).

また、推進装置を所定の半径を有する円弧状経路に沿っ
て旋回させる場合には、各継手部(J)を最大屈曲角で
屈曲させた状態にした際に、前記推進管(2)が所定の
円弧状経路に沿うように、各継手部(J)のロックナツ
ト(15A)、 (15B)を調節して最大屈曲角を予
め設定しておく。そして受圧面(F)の向きを旋回させ
るべき側へ土庄を受けるように位置させて推進管(2)
を押し込んでいく。このようにすると、水噴射ノズル(
5)によって旋回方向側の土質が軟弱化され、土から受
ける抵抗が小さくなっていることと、受圧面(F)が旋
回方向側への土圧を受けていることとが相まって、推進
用ヘッド(1)は徐々にその向きを変更していき、その
後部に連結された推進管(2)も屈曲しながらそれに追
随していく。
In addition, when the propulsion device is turned along an arcuate path having a predetermined radius, when each joint (J) is bent at the maximum bending angle, the propulsion tube (2) The maximum bending angle is set in advance by adjusting the lock nuts (15A) and (15B) of each joint (J) so as to follow the arcuate path. Then, position the pressure-receiving surface (F) so that it receives the tonosho toward the side to be rotated, and move the propulsion pipe (2)
Push in. In this way, the water injection nozzle (
5), the soil on the turning direction side is softened and the resistance received from the soil is reduced, and the pressure receiving surface (F) is receiving earth pressure in the turning direction side, and the propulsion head (1) gradually changes its direction, and the propulsion tube (2) connected to its rear part follows suit while bending.

そして各継手部(J)の屈曲角が最大屈曲角に達すると
、それ以上屈曲できなくなった推進用ヘッド<1)や推
進管(2)はその屈曲状態を維持しながら、予め設定し
ておいた所定の円弧状経路に沿って推進していくように
なる(第3図参照)。
When the bending angle of each joint (J) reaches the maximum bending angle, the propulsion head <1) and the propulsion tube (2), which cannot be bent any further, maintain their bent state and are set in advance. The robot will now be propelled along a predetermined arc-shaped path (see Figure 3).

更に、推進装置を始めに直線的に推進させていき、所定
の位置まで達したら旋回させながら推進させていく場合
には、先端側に位置する推進用ヘッド(1)や推進管(
2)を最大屈曲角で屈曲させた状態にした際に、推進用
ヘッド(1)と推進管(2)とが所定の円弧状経路に相
当する円弧に沿うように、先端側に位置する継手部(J
)のロックナツト(15A)、 (15B)を調節して
最大屈曲角を予め設定しておく。また、後端側に位置す
る継手部(J)の最大屈曲角を各継手部(J)のロック
ナツト(15A)、 (15B)を最後方に移動させて
固定することで最大屈曲角を0度に予め設定しておく。
Furthermore, when the propulsion device is initially propelled linearly and then rotated when it reaches a predetermined position, the propulsion head (1) and the propulsion tube (
2) A joint located on the tip side so that when the propulsion head (1) and the propulsion tube (2) are bent at the maximum bending angle, the propulsion head (1) and the propulsion tube (2) follow an arc corresponding to a predetermined arcuate path. Department (J
) to set the maximum bending angle in advance by adjusting the lock nuts (15A) and (15B). In addition, the maximum bending angle of the joint part (J) located on the rear end side can be reduced to 0 degrees by moving the lock nuts (15A) and (15B) of each joint part (J) to the rearmost position. Set in advance.

そして始めは、掘削部(3)を回転させながら推進ヘッ
ド本体(IA)を先頭に推進管(2)を押し込んでいき
、推進装置を直進的に推進させる。そして所定の位置ま
で達したら受圧面(F)の向きを旋回方向に圧力を受け
る方向で固定し、推進管(2)を引き続き押し込んでい
くのである。
At first, the propulsion tube (2) is pushed in with the propulsion head main body (IA) at the top while rotating the excavation part (3), and the propulsion device is propelled straight ahead. Once a predetermined position is reached, the direction of the pressure receiving surface (F) is fixed in the direction in which pressure is received in the rotation direction, and the propulsion tube (2) is continued to be pushed in.

このようにして押し込んでいくと、所定の位置から先で
は、推進用ヘッド(1)は受圧面(F)が土圧を受ける
ことで徐々に向きを変更し、その後部に連結された推進
管(2)も所定の位置に達することで最大屈曲角で屈曲
しながらそれに追随し、所定の円弧状経路に沿って推進
していく。
When pushed in in this way, the propulsion head (1) gradually changes direction as the pressure-receiving surface (F) receives earth pressure beyond the predetermined position, and the propulsion tube connected to the rear of the propulsion head (1) gradually changes direction as the pressure receiving surface (F) receives earth pressure. When (2) also reaches a predetermined position, it bends at the maximum bending angle and follows it, propelling itself along a predetermined arcuate path.

そして後端側の推進管(2)では先に形成された直進経
路に沿って、座屈することなく所定の位置に達するまで
直進的に推進していくようになる(第4図参照)。
Then, the propulsion tube (2) on the rear end side advances straight along the previously formed straight path without buckling until it reaches a predetermined position (see Figure 4).

更に先の実施例においては、推進装置を円弧状経路に沿
って旋回させる場合に、全ての継手部(J)を屈曲させ
てきたが、必ずしも全ての継手部(J)を屈曲させなく
ともよい。例えば土質の軟らかい場所では、第5図に示
すように、継手部(J)の最大屈曲角度を2個ずつ0度
に設定して、2個の推進管(2)を−単位として使用す
ることも可能である。
Furthermore, in the previous embodiment, all the joint parts (J) are bent when the propulsion device is rotated along an arcuate path, but it is not necessary to bend all the joint parts (J). . For example, in areas with soft soil, as shown in Figure 5, the maximum bending angle of two joints (J) should be set to 0 degrees, and two propulsion pipes (2) should be used as a - unit. is also possible.

〔別実施例〕[Another example]

先の実施例では、段部に形成したネジ(14)上でロッ
クナツト(15A)、 (15B)を移動調節すること
によって最大屈曲角の設定を行っているが、例えば第6
図及び第7図に示すように、推進用ヘッド本体(IA)
の後部に外周から中心側に向けて3本のボルト(16)
を螺挿し、継手部(J)が屈曲した際にボルト(16)
の先端が前記小径部(2a)の外周面に接当するように
すれば、ボルト(16)の螺挿度を調節することによっ
て最大屈曲角の設定を行うことができる。
In the previous embodiment, the maximum bending angle is set by adjusting the movement of the lock nuts (15A) and (15B) on the screw (14) formed on the step.
As shown in Figures and Figure 7, the propulsion head body (IA)
3 bolts (16) from the outer circumference to the center at the rear of the
When the joint part (J) is bent, the bolt (16)
If the tip of the bolt (16) is brought into contact with the outer peripheral surface of the small diameter portion (2a), the maximum bending angle can be set by adjusting the degree of threading of the bolt (16).

また第8図に示すように、段部に半割りのスペーサ(1
7)を外嵌し、このスペーサ(17)をCリング(18
)で保持するようにすれば、このスペーサ(17)を長
さの異なる別のスペーサ(17A)に交換することによ
って最大屈曲角の設定を行うことができる。
In addition, as shown in Figure 8, a half spacer (1
7), and then attach this spacer (17) to the C ring (18).
), the maximum bending angle can be set by replacing this spacer (17) with another spacer (17A) having a different length.

更に、図示はしないが、アクチュエータを備えた角度調
節手段(J)を各継手部(J)に備え、それぞれのアク
チュエータを遠隔操作することによって、各継手部(J
)の最大屈曲角を土中において自由に設定できるように
してもよい。
Furthermore, although not shown, each joint (J) is provided with an angle adjusting means (J) equipped with an actuator, and each joint (J) is adjusted by remotely controlling each actuator.
) may be freely set in the soil.

尚、特許請求の範囲の項に図面との対照を便利にするた
めに符号を記すが、この記入により本発明は添付図面の
構造に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る推進工法用の推進装置の実施例を示
し、第1図は推進用ヘッドと推進管の縦断側面図、第2
図は直線的に推進させた場合の平面図、第3図は円弧状
経路に沿って推進させた場合の平面図、第4図は始めに
直線的に推進させ、後に円弧状経路に沿って推進させた
場合の平面図、第5図は2本の推進管を一単位にして推
進させた場合の平面図、第6図は角度調節手段の第1別
実施例を示す縦断側面図、第7図は第6図の■−■線断
面図、第8図は角度調節手段の第2別実施例を示す縦断
側面図である。 (1)、 (2)・・・・・・推進体、(F)・・・・
・・受圧面、(S)・・・・・・角度調節手段。
The drawings show an embodiment of the propulsion device for the propulsion method according to the present invention, and FIG. 1 is a longitudinal cross-sectional side view of the propulsion head and the propulsion pipe,
The figure is a plan view when propelled linearly, Figure 3 is a plan view when propelled along an arcuate path, and Figure 4 is a plan view when propelled linearly at first, then along an arcuate path. FIG. 5 is a plan view when the two propulsion tubes are propelled as a unit; FIG. 6 is a vertical sectional side view showing a first alternative embodiment of the angle adjustment means; FIG. 7 is a sectional view taken along the line ■--■ in FIG. 6, and FIG. 8 is a longitudinal sectional side view showing a second alternative embodiment of the angle adjusting means. (1), (2)...Propellant, (F)...
...Pressure receiving surface, (S)...Angle adjustment means.

Claims (1)

【特許請求の範囲】[Claims] 推進体(1)、(2)の複数個が屈曲自在に連結され、
且つ、それら推進体(1)、(2)の先端のものには推
進体長手方向に対して傾斜した受圧面(F)が形成され
ている推進工法用の推進装置であって、前記複数個の推
進体(1)、(2)の隣り合うもの同士の最大屈曲角を
変更調節する複数個の角度調節手段(S)が各別に変更
調節自在に設けられている推進工法用の推進装置。
A plurality of propellant bodies (1) and (2) are connected in a flexible manner,
and a propulsion device for a propulsion method in which a pressure receiving surface (F) inclined with respect to the longitudinal direction of the propellant is formed at the tips of the propellants (1) and (2), wherein the plurality of propellants A propulsion device for a propulsion construction method, in which a plurality of angle adjustment means (S) for changing and adjusting the maximum bending angle between adjacent propulsion bodies (1) and (2) are individually and freely adjustable.
JP1079109A 1989-03-29 1989-03-29 Propulsion device for propulsion method Expired - Fee Related JPH0768859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1079109A JPH0768859B2 (en) 1989-03-29 1989-03-29 Propulsion device for propulsion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1079109A JPH0768859B2 (en) 1989-03-29 1989-03-29 Propulsion device for propulsion method

Publications (2)

Publication Number Publication Date
JPH02256797A true JPH02256797A (en) 1990-10-17
JPH0768859B2 JPH0768859B2 (en) 1995-07-26

Family

ID=13680736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1079109A Expired - Fee Related JPH0768859B2 (en) 1989-03-29 1989-03-29 Propulsion device for propulsion method

Country Status (1)

Country Link
JP (1) JPH0768859B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07317491A (en) * 1994-05-27 1995-12-05 Kubota Corp Propelling body
JP2008038460A (en) * 2006-08-07 2008-02-21 Nagano Yuki Kk Small-bore tunnel forming drilling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161596A (en) * 1983-03-04 1984-09-12 株式会社小松製作所 Guide apparatus for small-bore pipe excavator
JPS6282200A (en) * 1985-10-08 1987-04-15 小松建設工業株式会社 Bending propelling of embedded pipe and apparatus for bending embedded pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161596A (en) * 1983-03-04 1984-09-12 株式会社小松製作所 Guide apparatus for small-bore pipe excavator
JPS6282200A (en) * 1985-10-08 1987-04-15 小松建設工業株式会社 Bending propelling of embedded pipe and apparatus for bending embedded pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07317491A (en) * 1994-05-27 1995-12-05 Kubota Corp Propelling body
JP2008038460A (en) * 2006-08-07 2008-02-21 Nagano Yuki Kk Small-bore tunnel forming drilling device

Also Published As

Publication number Publication date
JPH0768859B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
US4974688A (en) Steerable earth boring device
JPH0384193A (en) Earth excavating method and apparatus
JPH02256797A (en) Driving device for driving method
US5350254A (en) Guided mole
JPH02256795A (en) Driving method
JPH02261193A (en) Propulsion method of construction
US7270197B2 (en) Steerable soil displacement hammer
JPH02256796A (en) Driving device for driving method
JP2688227B2 (en) Excavator for propulsion method
JP4165973B2 (en) Orbit correction method and apparatus
JP3295757B2 (en) Flexible tube propulsion embedding method and device
JP2866577B2 (en) Propulsion body for propulsion method
JP3961071B2 (en) Double propulsion machine for pipe pushing
JP2866578B2 (en) Propulsion body for propulsion method
JP4392637B2 (en) Excavated body
JPH03267496A (en) Curved driving method and drive bearing body
JP3197460B2 (en) Propulsion body for propulsion method
JPH0552090A (en) Curve jacking method and propulsion supporter
JP3086041B2 (en) Propulsion body propulsion control method
JPH0437995Y2 (en)
JP2804986B2 (en) Propulsion body for propulsion method
JPH04108997A (en) Leading pipe direction correcting device for small-bore pipe pusher
JPH02197699A (en) Method of propulsive construction of lead pipe in underground piping construction
JP2609435B2 (en) Consolidated pipe propulsion burial equipment
JPH03176595A (en) Connecting structure of propelling tube for jacking method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees