JPH03267496A - Curved driving method and drive bearing body - Google Patents

Curved driving method and drive bearing body

Info

Publication number
JPH03267496A
JPH03267496A JP6632990A JP6632990A JPH03267496A JP H03267496 A JPH03267496 A JP H03267496A JP 6632990 A JP6632990 A JP 6632990A JP 6632990 A JP6632990 A JP 6632990A JP H03267496 A JPH03267496 A JP H03267496A
Authority
JP
Japan
Prior art keywords
propulsion
buried
buried pipe
curved
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6632990A
Other languages
Japanese (ja)
Other versions
JPH07103780B2 (en
Inventor
Koichi Kimura
宏一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kidoh Construction Co Ltd
Original Assignee
Kidoh Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kidoh Construction Co Ltd filed Critical Kidoh Construction Co Ltd
Priority to JP2066329A priority Critical patent/JPH07103780B2/en
Publication of JPH03267496A publication Critical patent/JPH03267496A/en
Publication of JPH07103780B2 publication Critical patent/JPH07103780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To drive forward smoothly by connecting successively drive bearing bodies at the rear of a guider through an alteration coupling means and, at the same time, fitting and loading buried pipes to the peripheral surfaces of the drive bearing bodies, and alternating the axial directions of the drive bearing bodies by the alteration coupling means. CONSTITUTION:Drive bearing bodies 20 are connected at the rear of a guider 10 through hinge machineries 30 and expansion machineries 40 and, at the same time, buried pipes 60 are fitted and loaded to the peripheral surfaces of the bearing bodies 20. After that, driving force is added to the last end of the bearing bodies 20 from a breech pushed jack in a vertical shaft, and buried holes are excavated by the guider 10. Then, a new bearing body is connected to the last end of the existing bearing body 20 through the machineries 30 and 40 and, at the same time, collars 70 are loaded to joint parts of the pipes 60 and 60. One of the machineries 40 is extended, the other of them is shrunk to alternate the axial directions of the bearing bodies 20 and 20 and, at the same time, the ends of the pipes 60 are covered with the collars 70. Accordingly, stress concentration to the ends of the pipes 60 is avoided, and smooth driving can be made.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、曲線推進工法および推進支持体に関し、詳
しくは、下水管等の地下埋設管を埋設施工する際に、地
盤を開削することなく、地盤に直接埋設孔を形成しなが
ら形成された埋設孔に埋設管を埋設していく、いわゆる
推進工法のうち、特に曲線部分を施工する方法、すなわ
ち曲線推進工法と、この曲線推進工法に用いる推進支持
体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a curved propulsion construction method and a propulsion support, and more specifically, the present invention relates to a curve propulsion construction method and a propulsion support. Among the so-called propulsion construction methods, in which a buried pipe is buried directly in the formed burial hole while forming a burial hole directly in the ground, there is a method that specifically constructs curved sections, that is, a curved propulsion method, and the method used for this curve propulsion method. It concerns a propulsion support.

〔従来の技術〕[Conventional technology]

推進工法は、埋設経路に沿って地盤を広く開削する必要
がないため、交通量が多く通行制限が行い難い施工現場
等に好ましい方法として、研究開発が進められている。
Since the propulsion method does not require extensive excavation of the ground along the buried route, research and development is progressing as a preferred method for construction sites where traffic volume is high and it is difficult to restrict access.

従来の一般的な推進工法は、まず、地盤に立坑を掘削形
成し、この立坑の側面に先導体と呼ばれる装置で水平方
向の埋設孔を形成していく。埋設孔の形成方法には、先
導体に備えたアースオーガ等の掘削手段で地盤を掘削し
て埋設孔を形成する方法と、先導体の円錐状等をなす先
端で地盤を圧密して埋設孔を形成する方法があり、土質
や施工条件によって、何れかの方法が選択される。先導
体の後方には、順次埋設管が継ぎ足されていく。
The conventional propulsion method is to first excavate a shaft in the ground, and then use a device called a guide to form a horizontal burial hole on the side of the shaft. There are two methods for forming a burial hole: one is to excavate the ground with a digging means such as an earth auger equipped on the guide body, and the other is to compact the ground with the conical tip of the guide body. There are several methods of forming a Buried pipes are successively added to the rear of the leading body.

この埋設管の後端に、立坑内に設置された元押しジヤツ
キで推進力を加えて、埋設管列および先導体を推進させ
ながら、先導体による埋設孔の形成および埋設管の敷設
を行うものである。
Propulsive force is applied to the rear end of this buried pipe by a pusher jack installed in the shaft to propel the buried pipe row and leading body, while forming a buried hole with the leading body and laying the buried pipe. It is.

下水管等の埋設施工においては、下水管の方向を変えた
り、障害物を避けたりするために、埋設管を曲線状に埋
設する場合がある。曲線部に推進工法を通用する場合、
まず、曲線状の埋設孔を形成するには、先導体の周方向
に複数本の方向制御用ジヤツキを備えておき、この方向
制御用ジヤツキを伸縮させることによって、先導体を変
向させて所定の曲線方向を向かせる。この状態で、前記
同様に、埋設管列の最後尾に推進力を加えれば、先導体
は前記曲線方向へと推進されて、曲線状の埋設孔が形成
され、埋設管も、この曲線状の埋設孔に沿って送り込ま
れるというものである。
In the construction of underground sewer pipes, etc., the buried pipes are sometimes buried in a curved shape in order to change the direction of the sewer pipe or avoid obstacles. When applying the propulsion method to curved sections,
First, in order to form a curved buried hole, a plurality of direction control jacks are provided in the circumferential direction of the guide body, and by expanding and contracting the direction control jacks, the direction of the guide body is changed to a predetermined position. Orient the curve direction. In this state, if a driving force is applied to the last end of the buried pipe row in the same manner as above, the guide body will be propelled in the curved direction, a curved buried hole will be formed, and the buried pipe will also follow this curved hole. It is sent along the buried hole.

なお、埋設管自体は、通常の直線部分と同し直線円筒状
のものを用いるので、曲線部分に沿って推進される埋設
管同士の端面には、曲率の内外周で、7字形の隙間があ
くことになる。この7字形の隙間は、埋設管の敷設後に
、内面側から埋められて封止される。
In addition, since the buried pipes themselves are straight cylindrical like normal straight sections, there is a figure 7-shaped gap between the inner and outer peripheries of the curvature on the end surfaces of the buried pipes that are propelled along the curved sections. It will be dark. After the buried pipe is laid, this 7-shaped gap is filled and sealed from the inner side.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記のような、従来における曲線推進工法で
は、埋設管の破損が起きたり、推進が不可能になる事故
が頻繁に発生するという問題があった。
However, the conventional curved propulsion construction method as described above has the problem of frequently causing damage to buried pipes and accidents that make propulsion impossible.

これは、曲線部分に埋設管を推進させていくと、前記し
たように、埋設管同士の端面にはV字形の隙間があいた
状態で、後方からの推進力が伝えられることになる。す
なわち、埋設管の端面には、曲線の内側になる一部個所
のみに推進力が加わり、この部分に大きな集中応力が発
生することになるのである。このように埋設管の一部に
応力集中が発生することによって、埋設管の変形や破損
が生じ、ひどい場合には埋設管の推進が不可能になって
しまうのである。
This is because, as described above, when the buried pipes are propelled along the curved portion, a V-shaped gap is left between the ends of the buried pipes, and the propulsion force from behind is transmitted. In other words, the propulsive force is applied only to a portion of the end face of the buried pipe that is inside the curve, and a large concentrated stress is generated in this portion. This concentration of stress in a portion of the buried pipe causes deformation and damage of the buried pipe, and in severe cases, it becomes impossible to move the buried pipe.

そこで、埋設管同士の端面に変形可能な発泡スチロール
等からなるクツション材を挟んでおき、曲線部分で埋設
管同士の端面の隙間が変わるにつれて、クツション材が
部分的に変形し、埋設管同士の端面に常にクツション材
が接触していることによって、局部的な応力集中を防ご
うとする方法が提案されている。
Therefore, a cushioning material made of deformable polystyrene foam or the like is sandwiched between the end faces of the buried pipes, and as the gap between the end faces of the buried pipes changes at the curved part, the cushioning material partially deforms, causing the end faces of the buried pipes to A method has been proposed in which the cushioning material is constantly in contact with the cushioning material to prevent local stress concentration.

しかし、クツション材では、埋設管同士の隙間を塞く作
用はあっても、埋設管の端面に加わる応力の集中を防ぐ
効果はあまり期待できない。すなわち、埋設管同士の隙
間が大きい曲線部分の外側個所ではクツション材が変形
せず、埋設管同士の隙間が小さい曲線部分の内側個所で
クツション材が圧縮変形させられるだけなので、曲線部
分の内側個所における応力伝達面が少し増える程度の効
果はあっても、曲線部分の外側個所では埋設管同士の端
面を通して伝わる応力はほとんど増えず、埋設管の端面
全体に応力を分散させることは出来ない。したがって、
やはり、曲線部分の内側個所で大部分の推進力が伝えら
れるので、この部分の埋設管端面に応力が集中して変形
したり破損したりする可能性が高い。
However, although the cushioning material has the effect of closing the gaps between the buried pipes, it cannot be expected to be very effective in preventing the concentration of stress applied to the end faces of the buried pipes. In other words, the cushioning material is not deformed at the outside of the curved section where there is a large gap between the buried pipes, and the cushioning material is only compressed and deformed at the inside of the curved section where the gap between the buried pipes is small. Even if there is an effect of slightly increasing the stress transmission surface at , the stress transmitted through the end faces of the buried pipes will hardly increase at the outside of the curved part, and the stress cannot be dispersed over the entire end face of the buried pipes. therefore,
After all, most of the propulsion force is transmitted inside the curved portion, so there is a high possibility that stress will be concentrated on the end face of the buried pipe in this portion, causing deformation or damage.

さらに、特公平1−56240号公報に開示された先行
技術では、埋設管の端面間に複数個の開口調整部材を挟
んでおき、曲線部分を推進する際に、前記開口調整部材
の長さを調整することによって、曲線部の内外周の何れ
でも、埋設管の端面同士が開口調整部材で連結された状
態で、正確な曲線状に推進されるようにしている。この
方法では、曲線部分の内周側および外周側の何れでも、
埋設管同士の間で開口調整部材を介して推進力の伝達が
行われるので、曲線部の内側の一点のみに大きな応力集
中が生じることはない。
Furthermore, in the prior art disclosed in Japanese Patent Publication No. 1-56240, a plurality of opening adjustment members are sandwiched between the end faces of a buried pipe, and when moving a curved portion, the length of the opening adjustment members is adjusted. By making the adjustment, the end faces of the buried pipe are connected to each other by the opening adjusting member on both the inner and outer peripheries of the curved portion, and are propelled in an accurate curved shape. In this method, both the inner and outer circumferential sides of the curved part,
Since the propulsion force is transmitted between the buried pipes via the opening adjustment member, a large stress concentration does not occur only at one point inside the curved portion.

しかし、上記方法においても、後方の埋設管をその軸方
向に沿って直線的に推進させようとする力を、軸方向が
一定角度ずれた前方の埋設管に伝えるので、曲線部の内
周側と外周側とでは伝達される力すなわち埋設管の端面
に発生する応力の違いが生じ、どうしても、曲線部の内
周側のほうに外周側よりも大きな応力が発生する。した
がって、この方法でも、埋設管の端面では、曲線部の内
周側が変形したり破損したりし易いという問題が残って
いる。
However, even in the above method, the force that attempts to linearly propel the rear buried pipe along its axial direction is transmitted to the front buried pipe whose axial direction is shifted by a certain angle, so the inner peripheral side of the curved part There is a difference in the force transmitted, that is, the stress generated on the end face of the buried pipe, between the curved portion and the outer circumferential side, and inevitably a larger stress is generated on the inner circumferential side of the curved portion than on the outer circumferential side. Therefore, even with this method, there remains the problem that the inner peripheral side of the curved portion of the end face of the buried pipe is easily deformed or damaged.

そこで、この発明の課題は、前記したような曲線部分に
対する推進工法において、従来技術の問題点を解消し、
埋設管の端面に局部的な応力集中が発生せず、埋設管の
変形や破損を確実に防止することのできる方法を提供す
ることにある。また、上記方法に用いる装置である推進
支持体を提供することにある。
Therefore, the object of this invention is to solve the problems of the prior art in the propulsion method for curved sections as described above,
It is an object of the present invention to provide a method that does not cause local stress concentration on the end face of a buried pipe and can reliably prevent deformation and breakage of the buried pipe. Another object of the present invention is to provide a propulsion support, which is a device used in the above method.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決する、この発明の請求1記載の曲線推進
工法は、先導体で曲線状の埋設孔を形成しながら埋設管
を前記曲線状の埋設孔に沿って埋設する曲線推進工法に
おいて、先導体の後方に、変向角度を調整可能な変向連
結手段を介して推進支持体を順次連結していくとともに
、推進支持体の外周に埋設管を嵌挿して推進支持体に備
えた保持固定手段で埋設管を推進支持体に保持固定して
おき、前記変向連結手段で推進支持体同士の軸方向を所
定の角度で変向させるとともに、推進支持体に推進力を
加えることにより、先導体および埋設管を曲線状に推進
させていく。
A curved propulsion method according to claim 1 of the present invention that solves the above problems is a curved propulsion method in which a curved buried hole is formed with a guide body and a buried pipe is buried along the curved buried hole. The propulsion supports are sequentially connected to the rear of the body through a direction change connecting means that can adjust the direction change angle, and a holding and fixing device is provided on the propulsion supports by inserting a buried pipe into the outer periphery of the propulsion supports. The buried pipe is held and fixed to the propulsion support by the means, and the axial direction of the propulsion supports is changed at a predetermined angle by the direction change connecting means, and the leading force is applied to the propulsion support. The body and buried pipe are propelled in a curved manner.

また、請求項2記載の推進支持体は、上記方法に用いる
ものであって、外周に埋設管を嵌挿可能な軸体状をなし
、外周に嵌挿された埋設管を保持固定する保持固定手段
を備え、軸方向端部には、推進支持体同士を連結できる
とともに、推進支持体同士の軸方向を所定の角度で変向
できる変向連結手段を備えている。
Further, the propulsion support according to claim 2 is used in the above method, and has a shaft shape into which a buried pipe can be inserted into the outer periphery, and has a holding and fixing structure that holds and fixes the buried pipe inserted into the outer periphery. The axial end portion is provided with a direction change connecting means that can connect the propulsion supports to each other and change the axial direction of the propulsion supports at a predetermined angle.

先導体は、通常の推進工法で使用されているものと同じ
ものが用いられる。先導体の外径は、敷設する埋設管の
外径に合わせて設定される。前記したように、先導体に
は、アースオーガ等の掘削手段を備えたものと、圧密用
の先端部を備えたものがあり、何れの構造のものでも使
用できる。また、先導体から地盤面に泥水を循環供給し
て、掘削された土砂を泥水とともに排出するもの等も使
用される。先導体には、先端の向きを変える方向制御用
ジヤツキ等の変向手段を備えておく。変向手段の具体的
構造も、通常の推進工法における先導体と同様のもので
よい。なお、先導体自身には変向手段を備えず、後述す
る推進支持体の変向連結手段で、先導体とその直後の推
進支持体を連結しておいてもよい。
The guide body used is the same as that used in normal propulsion methods. The outer diameter of the guide body is set according to the outer diameter of the buried pipe to be laid. As described above, there are some guide bodies equipped with excavating means such as an earth auger, and others equipped with a tip for consolidation, and either structure can be used. Also used is one that circulates and supplies muddy water from a guide body to the ground surface and discharges excavated earth and sand together with the muddy water. The guide body is provided with direction changing means such as a direction control jack for changing the direction of the tip. The specific structure of the deflection means may be similar to that of the guide body in the normal propulsion method. Note that the leading body itself may not be provided with the direction change means, and the leading body and the propulsion support immediately after it may be connected by a direction change connection means of the propulsion support described later.

推進支持体は、敷設する埋設管の内径よりも少し細い程
度の円筒からなる軸体状をなし、推進支持体の長さは、
埋設管の長さとほぼ同じ程度に形成される。推進支持体
は、先導体の後方に連結されて順次継ぎ足されていく。
The propulsion support is shaped like a cylindrical shaft that is slightly thinner than the inner diameter of the buried pipe to be laid, and the length of the propulsion support is as follows:
It is formed to approximately the same length as the buried pipe. The propulsion support body is connected to the rear of the guide body and is successively added.

推進支持体の内部には、先導体のアースオーガを駆動し
て、掘削された土砂を後方に送り出すオーガスクリユー
や、先導体の変向手段を作動させる油圧や空圧の配管、
電源ケーブル等が収容されるようになっている。また、
大径の埋設管に適用する推進支持体であれば、推進支持
体の内部に作業者が入れるようになっている場合もある
Inside the propulsion support body, there is an auger screw that drives the earth auger of the guide body and sends excavated earth backward, and hydraulic and pneumatic piping that operates the direction change means of the guide body.
It accommodates power cables, etc. Also,
If the propulsion support is applied to a large-diameter buried pipe, the operator may be able to enter inside the propulsion support.

推進支持体の端面には、先導体と推進支持体または推進
支持体同士を連結する変向連結手段が設けられる。変向
連結手段は、推進支持体を軸方向につないで、一体的に
運動させたり、推進力を伝達したりできるとともに、連
結された前後の推進支持体の軸方向を所定の角度で自由
に変えることができるものである。通常、推進支持体同
士を軸方向の角度がフリーな状態で連結する連結手段と
、軸方向の角度を所望の角度に調整固定する角度調整手
段とを備えておくが、連結手段と角度調整手段を同一の
機構で果たすようになっていてもよい。
A direction changing connection means for connecting the leading body and the propulsion support or the propulsion supports to each other is provided on the end face of the propulsion support. The direction change connecting means connects the propulsion supports in the axial direction so that they can move together and transmit propulsion force, and also allows the axial direction of the connected front and rear propulsion supports to be freely moved at a predetermined angle. It is something that can be changed. Normally, the propulsion supports are provided with a connecting means that connects the propulsion supports to each other in a free axial angle, and an angle adjusting means that adjusts and fixes the axial angle to a desired angle, but the connecting means and the angle adjusting means may be performed by the same mechanism.

具体的には、連結手段として、例えば、推進支持体の両
端外周の対称位置に、連結脱着可能なヒンジ機構を備え
ておき、前後の推進支持体をこのヒンジ機構で連結して
いけば、前後の推進支持体が一体的に連結されるととも
に、ヒンジ機構を軸にして前後の推進支持体は旋回でき
るので、推進支持体の軸方向を自由に変えることが可能
になる但し、ヒンジ機構だけでは、軸方向の角度が決ま
らない。そこで、推進支持体同士の軸方向の角度を調整
固定する角度調整手段として、スクリュージヤツキや油
空圧シリンダその他の伸縮機構を、推進支持体の端面間
で、外周の複数個所に脱着可能に設ける。これら複数個
所の伸縮機構の伸縮量を調整すれば、推進支持体の端面
間の距離が場所によって変わり、その結果、前後の推進
支持体の軸方向を任意の角度に調整固定することができ
る。スクリュージヤツキ等の伸縮機構であれば、ある程
度の荷重を負担することも出来るので、角度調整手段が
推進支持体同士を連結する連結手段としての機能も果た
すことができる。なお、前記したヒンジ機構や伸縮機構
は、この発明における変向連結手段の1例であり、前記
したような機能が果たせれば、通常の各種機械装置にお
ける連結構造や角度調整構造を組み合わせて利用するこ
とが可能である。
Specifically, as a connecting means, for example, a hinge mechanism that can be connected and detached is provided at symmetrical positions on the outer periphery of both ends of the propulsion support, and if the front and rear propulsion supports are connected by this hinge mechanism, the front and rear propulsion supports can be connected. The two propulsion supports are integrally connected, and the front and rear propulsion supports can pivot around the hinge mechanism, making it possible to freely change the axial direction of the propulsion support. However, the hinge mechanism alone is not enough. , the axial angle cannot be determined. Therefore, as an angle adjustment means for adjusting and fixing the axial angle between the propulsion supports, screw jacks, hydraulic and pneumatic cylinders, and other telescoping mechanisms can be attached and detached at multiple locations on the outer periphery between the end faces of the propulsion supports. establish. By adjusting the amount of expansion and contraction of the expansion and contraction mechanisms at these multiple locations, the distance between the end faces of the propulsion support body changes depending on the location, and as a result, the axial direction of the front and rear propulsion support bodies can be adjusted and fixed at any angle. Since a telescopic mechanism such as a screw jack can bear a certain amount of load, the angle adjusting means can also function as a connecting means for connecting the propulsion supports. The hinge mechanism and expansion/contraction mechanism described above are examples of the direction changing connection means of the present invention, and as long as they can perform the functions described above, they can be used in combination with connection structures and angle adjustment structures in various ordinary mechanical devices. It is possible to do so.

角度調整手段の作動は、各推進支持体の連結部分で、前
記したスクリュージヤツキ等を手動で作動調整してもよ
いが、例えば、スクリュージヤツキをモータで駆動させ
、各推進支持体の連結部分合ての駆動モータを一括して
電気的に制御するようにしておけば、先導体および推進
支持体が推進される曲線部分の角度に合わせで、適切な
角度に正確に調整することができる。この方法は、角度
調整手段が電気的に制御可能な機構であればスクリュー
ジヤツキ以外の機構にも適用できる。また、各推進支持
体の連結部分における角度調整手段を、シャフトと自在
継手あるいはワイヤー、カム、ギヤ等で機械的に連結し
て連動するようにしておけば、複数個所における角度調
整手段を機械的に同時に行うことができる。前後の推進
支持体の変向角度を検出するセンサ等の角度検出手段を
設けておけば、検出された変向角度を元にして角度調整
手段の作動を制御し、変向角度をより正確に調整するこ
とが可能になる。
The operation of the angle adjustment means may be adjusted manually by using the above-mentioned screw jack at the connecting portion of each propulsion support, but for example, by driving the screw jack with a motor, If the drive motors for the parts are electrically controlled all at once, the leading body and propulsion support body can be accurately adjusted to the appropriate angle according to the angle of the curved part being propelled. . This method can be applied to mechanisms other than screw jacks as long as the angle adjustment means is electrically controllable. In addition, if the angle adjustment means at the connecting parts of each propulsion support are mechanically connected and interlocked with the shaft using a universal joint, wire, cam, gear, etc., the angle adjustment means at multiple locations can be adjusted mechanically. can be done at the same time. If an angle detection means such as a sensor that detects the deflection angle of the front and rear propulsion supports is provided, the operation of the angle adjustment means can be controlled based on the detected deflection angle, and the deflection angle can be adjusted more accurately. It becomes possible to adjust.

つぎに、推進支持体には、埋設管を保持固定する保持固
定手段を備えている。保持固定手段は、推進支持体の外
周に埋設管を嵌挿した状態で、埋設管の内面から保持し
て、推進時に地盤から埋設管に加わる摩擦抵抗力等に対
抗して、埋設管を推進支持体に固定しておければよい。
Next, the propulsion support is equipped with a holding and fixing means for holding and fixing the buried pipe. The holding and fixing means holds the buried pipe from the inner surface with the buried pipe fitted around the outer periphery of the propulsion support, and propels the buried pipe against frictional resistance, etc. applied to the buried pipe from the ground during propulsion. It may be fixed to a support.

具体的には、例えば、推進支持体の外周に、空気等の圧
力媒体の供給によって膨張するゴム袋等からなる膨張体
を設けておき、この膨張体を膨張させて埋設管の内面に
当接押圧させれば、膨張体と埋設管との摩擦支持力で、
埋設管を膨張体に保持固定しておくことができる。また
、推進支持体の外周から埋設管側に機械的に移動して埋
設管の内面を押圧する摩擦保持板を設けておいたり、埋
設管の内面に適当な係止凹部または凸部を形成しておき
、この係止凹凸部に係合作動する係合部材を推進支持体
に設置しておいたり、その他各種機械装置における保持
構造あるいは固定構造を通用することができる。
Specifically, for example, an inflatable body made of a rubber bag or the like that is inflated by supply of a pressure medium such as air is provided on the outer periphery of the propulsion support, and this inflatable body is expanded so as to come into contact with the inner surface of the buried pipe. If it is pressed, the frictional support force between the expanding body and the buried pipe will cause
The buried pipe can be held and fixed to the expansion body. In addition, a friction retaining plate that mechanically moves from the outer periphery of the propulsion support toward the buried pipe to press the inner surface of the buried pipe may be provided, or an appropriate locking recess or protrusion may be formed on the inner surface of the buried pipe. In addition, an engaging member that engages and operates with this locking uneven portion can be installed on the propulsion support, or a holding structure or a fixing structure in various other mechanical devices can be used.

推進工法に用いる埋設管は、下水管や電線管等、その目
的に応じて任意の材料および寸法を有するものが使用で
き、具体的には、ヒユーム管、強化樹脂管、塩ビ管、鋼
管、その他の通常の推進工法が適用できる管材料が自由
に利用できる。埋設管の径や長さは、通常の推進工法と
同様に、目的に応じて適当な寸法のものか使用される。
The buried pipes used in the propulsion method can be of any material and size depending on the purpose, such as sewage pipes and electrical conduit pipes.Specifically, underground pipes such as water pipes, reinforced resin pipes, PVC pipes, steel pipes, etc. Pipe materials to which normal propulsion methods can be applied are freely available. The diameter and length of the buried pipe are determined to be appropriate depending on the purpose, as in normal propulsion construction methods.

埋設管同士の継目部分には、短い筒状のカラーを嵌めて
、継目部分から埋設管内に土砂等が侵入しないようにし
ておくのが好ましい。カラーの具体的構造は、通常の推
進工法において使用されているものと同様でよい。カラ
ーの材料は、前記した埋設管の材料と同様のものが用い
られる。なお、埋設孔の曲線部を埋設管が推進されると
きには、埋設管の継目部分の隙間が部分的に拡がるので
、前記カラーは、このような継目部分の隙間の変動に対
応できるような構造のものが好ましい。カラーは、埋設
管に装着された状態で、埋設管の外径よりも突出しない
ようにしておくのが好ましい。そのため、カラーの外径
を埋設管の外径と同じか少し小さい程度に設定しておき
、埋設管の外周端部には、カラーを挿入するための段部
を形成しておくと良い。また、円筒状をなすカラーの内
周面に、内側に突出するフランジ部を設けておけば、カ
ラーが埋設管の継目部分から外れず、しかも、埋設管の
端面に前記フランジ部が当接して保護することができる
It is preferable to fit a short cylindrical collar at the joint between the buried pipes to prevent earth and sand from entering the pipe through the joint. The specific structure of the collar may be similar to that used in normal propulsion methods. The material used for the collar is the same as the material for the buried pipe described above. Note that when the buried pipe is pushed through the curved part of the buried hole, the gap at the joint part of the buried pipe partially widens, so the collar is designed to have a structure that can accommodate such fluctuations in the gap at the joint part. Preferably. Preferably, the collar does not protrude beyond the outer diameter of the buried pipe when attached to the buried pipe. Therefore, it is preferable to set the outer diameter of the collar to be the same as or slightly smaller than the outer diameter of the buried pipe, and to form a stepped portion at the outer peripheral end of the buried pipe for inserting the collar. Furthermore, if a flange part that protrudes inward is provided on the inner peripheral surface of the cylindrical collar, the collar will not come off from the joint of the buried pipe, and the flange part will come into contact with the end face of the buried pipe. can be protected.

上記した構造の各装置部材を用いる曲線推進工法につい
て説明する。
A curve propulsion method using each device member having the above-described structure will be explained.

埋設管を敷設しようとする経路の地盤に、適当な距離を
あけて立坑を掘削し、立坑の側面から、地盤内に先導体
を推進させていって埋設孔を形成するのは、通常の推進
工法と同じでである。但し、従来の推進工法では、先導
体の後方に直接埋設管を連結していき、この埋設管の最
後尾に、立坑内に設置された元押しジヤツキで推進力を
加えており、元押しジヤツキから埋設管に加えられた推
進力は、順次前方の埋設管に伝達され、最終的に先頭の
先導体を推進させることになっていた。しかし、この発
明の方法では、先導体の後方に、埋設管を嵌挿して保持
固定した推進支持体を連結して、順次継ぎ足していく。
The normal propulsion method is to excavate a shaft at an appropriate distance in the ground along the route where the buried pipe is to be laid, and then propel a guide body into the ground from the side of the shaft to form a buried hole. It is the same as the construction method. However, in the conventional propulsion method, a buried pipe is directly connected to the rear of the leading body, and propulsion force is applied to the tail end of this buried pipe with a main push jack installed in the shaft. The propulsion force applied to the buried pipe was to be sequentially transmitted to the buried pipes in front, and ultimately propel the leading body. However, in the method of the present invention, a propulsion support body in which a buried pipe is inserted and held and fixed is connected to the rear of the guide body, and the support bodies are successively added.

この状態で、推進支持体に元押しジヤツキ等で推進力を
加える。推進支持体に加えられた推進力は、順次前方の
推進支持体に伝達されるとともに、保持固定手段を介し
て埋設管に伝達される。推進力は最先端の先導体にも伝
達されて先導体を推進させることになる。
In this state, a propulsion force is applied to the propulsion support using a push jack or the like. The propulsive force applied to the propulsion support is sequentially transmitted to the forward propulsion support and is also transmitted to the buried pipe via the holding and fixing means. The propulsion force is also transmitted to the leading-edge leading body to propel it.

つぎに、曲線部分に対して推進工法を行う際には、先導
体の変向手段を作動させて、先導体の進む方向を変える
。これは、従来の推進工法と同じである。
Next, when carrying out the propulsion method on a curved section, the direction changing means for the guide body is activated to change the direction in which the guide body moves. This is the same as the conventional propulsion method.

先導体が向きを変えると、それにつづく推進支持体およ
び埋設管も、順次向きを変えながら推進されなけばなら
ない。そのため、推進支持体同士を連結している変向連
結手段を、先導体の変向角度、すなわち埋設孔の曲率に
合わせて、所定の角度だけ変向させる。そうすると、推
進支持体は、埋設孔の曲率に合わせてスムーズに向きを
変えながら推進されていく。埋設管は、推進支持体に保
持固定されているので、当然、推進支持体と同じ角度で
変向され、埋設孔の曲線部分に沿ってスムーズに向きを
変えながら推進されていく。埋設孔の曲線部の曲率が変
われば、推進支持体の変向連結手段の変向角度も変える
When the leading body changes direction, the propulsion support and the buried pipe following it must also be propelled while changing direction in turn. Therefore, the direction change connecting means connecting the propulsion supports to each other is changed by a predetermined angle in accordance with the direction change angle of the guide body, that is, the curvature of the buried hole. Then, the propulsion support body is propelled while smoothly changing its direction according to the curvature of the buried hole. Since the buried pipe is held and fixed to the propulsion support, it is naturally deflected at the same angle as the propulsion support, and is propelled while smoothly changing direction along the curved portion of the buried hole. If the curvature of the curved portion of the buried hole changes, the deflection angle of the deflection connecting means of the propulsion support body also changes.

先導体が、目的の立坑まで推進されれば、先導体および
推進支持体を埋設孔から撤去し、埋設管のみを埋設孔内
に残しておく。推進支持体同士を連結している変向連結
手段は、順次連結を解除する。また、推進支持体の保持
固定手段による埋設管の保持固定を解除しながら、推進
支持体を撤去する。先導体および推進支持体が撤去され
た後、埋設管の内面に水封処理等の仕上げ処理を行う等
の、以後の工程は通常の推進工法と全く同しように行わ
れる。
Once the guide body is propelled to the target shaft, the guide body and the propulsion support are removed from the buried hole, leaving only the buried pipe in the buried hole. The direction change connecting means connecting the propulsion supports are sequentially disconnected. Further, the propulsion support is removed while releasing the holding and fixing of the buried pipe by the holding and fixing means of the propulsion support. After the guide body and the propulsion support are removed, the subsequent steps, such as performing finishing treatments such as water sealing on the inner surface of the buried pipe, are carried out in exactly the same way as in the normal propulsion method.

上記方法において、出発立坑と目的立坑の間に形成する
埋設孔、すなわち埋設管の敷設経路が全て同じ曲率の曲
線部分のみであれば、推進支持体同士を連結する変向連
結手段の変向角度は、当初から一定の角度に固定してお
けばよい。しかし、曲線部分の曲率が場所によって変化
する場合、あるいは、曲線部分と直線部分とが混在する
場合には、埋設管および推進支持体の推進位置によって
、変向連結手段の変向角度を段階的もしくは連続的に変
える必要がある。このように、変向角度を変える必要が
ある場合には、前記したように、変向連結手段の角度調
整手段を、電気的もしくは機械的に、埋設孔の外の立坑
等で一括して調整作動できれば、非常に便利である。上
記説明からも判るように、この発明にかかる曲線推進工
法は、曲線部分の施工だけでなく、曲線部分と直線部分
とが混在する施工場所にもそのまま適用できるものであ
る。
In the above method, if the buried hole formed between the starting shaft and the destination shaft, that is, the laying route of the buried pipe, is only a curved portion of the same curvature, the direction change angle of the direction change connection means that connects the propulsion supports to each other. should be fixed at a certain angle from the beginning. However, if the curvature of a curved part changes depending on the location, or if curved parts and straight parts coexist, the direction change angle of the direction change connection means can be changed in stages depending on the propulsion position of the buried pipe and propulsion support. Or it needs to be changed continuously. In this way, if it is necessary to change the deflection angle, the angle adjustment means of the deflection coupling means can be adjusted electrically or mechanically in a vertical shaft, etc. outside the buried hole, as described above. It would be very convenient if it worked. As can be seen from the above description, the curve propulsion construction method according to the present invention can be applied not only to construction on curved sections, but also to construction sites where curved sections and straight sections coexist.

〔作  用〕[For production]

埋設管を推進支持体に保持固定させた状態で、この推進
支持体を先導体の後方に連結していき、推進支持体に推
進力を加えるようにすれば、埋設管には、保持固定され
た推進支持体から推進力が伝達されるので、埋設管の端
面同士の間で推進力を伝達する必要がなくなる。
With the buried pipe held and fixed to the propulsion support, this propulsion support is connected to the rear of the leading body, and if a propulsive force is applied to the propulsion support, the buried pipe will be held and fixed. Since the propulsion force is transmitted from the propulsion support body, there is no need to transmit the propulsion force between the end faces of the buried pipe.

推進支持体同士は、変向連結手段によって、互いの軸方
向の角度を自由に調整できるようになっているので、任
意の曲線に沿って推進させることが可能である。
Since the propulsion supports can freely adjust their mutual axial angles using the direction change connecting means, they can be propelled along any curve.

その結果、曲線状の埋設孔に埋設管を推進させていって
も、埋設管同士の端面間には、何らの外力も作用しない
。また、推進支持体の変向角度を曲線部分の曲率に合わ
せて調整でき、推進支持体を曲線部分に沿って正確かつ
滑らかに推進させることができるので、推進支持体に保
持固定された埋設管も、埋設孔に引っ掛かったり地盤に
突っ込むことなく、曲線部分に沿って正確にスムーズに
向きを変えながら推進されていく。その結果、曲線部分
において埋設管に加わる地盤の抵抗力等も極めて小さな
ものとなる。
As a result, even when the buried pipes are pushed into the curved buried hole, no external force acts between the end faces of the buried pipes. In addition, the angle of change of direction of the propulsion support can be adjusted according to the curvature of the curved part, and the propulsion support can be accurately and smoothly propelled along the curved part. The robot is also propelled while accurately and smoothly changing direction along curved sections without getting caught in buried holes or plunging into the ground. As a result, the resistance force of the ground that is applied to the buried pipe in the curved portion becomes extremely small.

したがって、従来の工法のように、埋設管の端面に加わ
る伝達力のアンバランスによって、局部的な応力集中が
発生するという問題が解消され、曲線部分を推進させて
も埋設管が破損したり推進が不可能になることは無くな
る。
Therefore, the problem of local stress concentration occurring due to the unbalance of the transmission force applied to the end face of the buried pipe, which is the problem with conventional construction methods, is resolved, and even if the curved section is pushed forward, the buried pipe may not be damaged or pushed forward. will no longer be impossible.

なお、推進支持体は、埋設管に比べて、はるかに強度を
大きくして耐久性を持たせておくことができるので、推
進支持体の端面同士の間に伝達力のアンバランスがあっ
たとしても、何ら問題とはならない。
In addition, the propulsion support can be made much stronger and more durable than buried pipes, so even if there is an imbalance in the transmission force between the end surfaces of the propulsion support, is not a problem either.

〔実 施 例〕〔Example〕

ついで、この発明を、実施例を示す図面を参照しながら
、以下に詳しく説明する。
Next, the present invention will be explained in detail below with reference to the drawings showing examples.

第1図は、曲線推進工法の施工状態を、地盤の水平断面
について表している。
Figure 1 shows the construction status of the curved propulsion method on a horizontal cross section of the ground.

まず、先頭には先導体10が配置される。先導体10は
、外径が円筒状をなすとともに、先端部11が円錐状に
尖って内側に傾斜しており、この先端部11を地盤に突
き進めていく。先端部11の内側に取り込まれた土砂は
、先導体10の後方に送られ、最終的には立坑(図示せ
ず)から排出される。
First, the guide body 10 is placed at the beginning. The guide body 10 has a cylindrical outer diameter and a tip 11 that is pointed in a conical shape and slopes inward, and the tip 11 is pushed into the ground. The earth and sand taken inside the tip portion 11 is sent to the rear of the guide body 10 and finally discharged from a shaft (not shown).

先導体10の後方には、推進支持体20が連結されてい
る。推進支持体20は、定尺の鋼管等からなる軸体状を
なし、先端が、旋回可能なヒンジ機構30で先導体10
の背後に連結される。推進支持体20と先導体10は、
外周の複数個所に設けられた伸縮自在な伸縮機構40で
も連結されている。推進支持体20は、ヒンジ機構30
および伸縮機構40を介して順次後方に連結され、推進
支持体20の最後尾は、出発立坑に達していて、元押し
ジヤツキ等の推進力付加手段に連結されている。
A propulsion support 20 is connected to the rear of the guide body 10. The propulsion support body 20 has the shape of a shaft made of a fixed-length steel pipe or the like, and has a pivotable hinge mechanism 30 at the tip of the leading body 10.
is connected behind. The propulsion support body 20 and the guide body 10 are
They are also connected by telescopic mechanisms 40 provided at multiple locations on the outer periphery. The propulsion support body 20 includes a hinge mechanism 30
The propulsion support body 20 is sequentially connected to the rear via a telescopic mechanism 40, and the rear end of the propulsion support body 20 reaches the starting shaft, and is connected to propulsive force adding means such as a head jack.

第2図および第3図には、ヒンジ機構30および伸縮機
構40の詳細構造を示している。
2 and 3 show detailed structures of the hinge mechanism 30 and the telescopic mechanism 40.

第3図に示すように、ヒンジ機構30は、推進支持体2
0の端面外周で、直径方向の対称位置にそれぞれ設けら
れており、推進支持体20の一方の端面から突出形成さ
れたヒンジ板34と、推進支持体20の他方の端面から
突出形成された2又状のヒンジ板36の先端を重ねた状
態で、ヒンジビン36を嵌挿して、両側のヒンジ板34
.36を旋回可能に連結している。その結果、前後の推
進支持体20は、ヒンジビン36すなわちヒンジ機構3
0を結ふ直径方向を旋回軸として、自由に旋回運動でき
るようになっている。なお、ヒンジビン36は抜き挿し
自在に取り付けられてあって、推進支持体20の連結お
よび解体を可能にしている。
As shown in FIG. 3, the hinge mechanism 30
A hinge plate 34 is provided at diametrically symmetrical positions on the outer periphery of the end surface of the propelling support 20, and a hinge plate 34 protrudes from one end surface of the propulsion support 20, and a hinge plate 34 protrudes from the other end surface of the propulsion support 20. With the ends of the fork-shaped hinge plates 36 overlapped, insert the hinge bins 36 into the hinge plates 34 on both sides.
.. 36 are rotatably connected. As a result, the front and rear propulsion supports 20 are connected to the hinge bin 36, that is, the hinge mechanism 3
It is designed to be able to rotate freely using the diametrical direction connecting 0 as the rotation axis. Note that the hinge bin 36 is attached so as to be removable and removable, allowing the propulsion support 20 to be connected and disassembled.

伸縮機構40は、推進支持体20の端面外周で、前記ヒ
ンジ機構30と直交する直径方向の対称位置にそれぞれ
設けられており、いわゆるスクリュージヤツキの機構を
備えている。すなわち、ねじ軸42は、中央から左右の
ねし切り方向を逆に形成されており、例えば、右側が右
ねじてあれば、左側は左ねじになっている。ねじ軸42
の両端近くには筒状のナラ)44.44がそれぞれねじ
込まれている。ナツト44.44は、それぞれ推進支持
体20の外面に溶接等で固定された一対の軸受板46.
46に挟まれた状態で、回動自在に支持されている。ね
じ軸42の一端には駆動モータ48が取り付けられてい
て、ねじ軸42を回転作動できるようになっている。な
お、推進支持体20の変向角度を変えると、駆動モータ
48の位置が移動するので、駆動モータ48は推進支持
体20に対して、移動可能であるとともに、回転駆動す
る際の反力を支持できるような状態で取り付けておく。
The expansion and contraction mechanisms 40 are provided at symmetrical positions in the diametrical direction orthogonal to the hinge mechanism 30 on the outer periphery of the end surface of the propulsion support body 20, and have a so-called screw jack mechanism. That is, the threaded shaft 42 is formed with the left and right threading directions reversed from the center, for example, if the right side is right-handed, the left side is left-handed. Screw shaft 42
A cylindrical oak (44, 44) is screwed into each end near each end. The nuts 44.44 are connected to a pair of bearing plates 46.44, which are respectively fixed to the outer surface of the propulsion support 20 by welding or the like.
46, and is rotatably supported. A drive motor 48 is attached to one end of the screw shaft 42 so that the screw shaft 42 can be rotated. Note that when the direction angle of the propulsion support body 20 is changed, the position of the drive motor 48 is moved, so that the drive motor 48 is movable with respect to the propulsion support body 20, and at the same time, the reaction force during rotational driving is suppressed. Install it in such a way that it can be supported.

駆動モータ48を回転駆動させると、ねし軸42がナツ
ト44.44の内部で回転し、ナンド44.44とねじ
軸42とが相対的に軸方向に移動しようとする。ねじ軸
42のねじ方向が左右逆なので、右側のナンド44とね
じ軸42との相対運動の方向と、左側のす・ット44と
ねじ軸42との相対運動の方向も逆になる。ねし軸42
自体は伸縮出来ないので、左右のナソ)44.44のほ
うが互いに近づいたり、遠ざかったりする方向に移動し
ようとする。すなわち、左右のナツト44゜44間の距
離が伸びたり縮んだりする伸縮機構40を構成している
のである。
When the drive motor 48 is driven to rotate, the threaded shaft 42 rotates inside the nut 44.44, and the threaded shaft 42 and the threaded shaft 44 tend to move relative to each other in the axial direction. Since the screw direction of the screw shaft 42 is reversed left and right, the direction of relative movement between the right-hand Nand 44 and the screw shaft 42 and the direction of relative movement between the left-hand slot 44 and the screw shaft 42 are also opposite. Screw shaft 42
Since they themselves cannot expand or contract, the left and right Naso) 44. 44 try to move toward or away from each other. In other words, it constitutes a telescopic mechanism 40 in which the distance between the left and right nuts 44 and 44 is extended or contracted.

ナン)44.44は推進支持体20に固定された軸受板
46.46に回動可能に支持されているので、ナソ1−
44.44の移動に伴って、軸受板46.46を介して
前後の推進支持体20.20が近づいたり、遠ざかった
りする方向に移動する。第2図において、ヒンジ機構3
0の両側に位置するねじ軸42.42を互いに逆方向に
回転させて、推進支持体20.20の一方の端面ば互い
に近づき、他方の端面ば互いに遠ざかるようにすると、
推進支持体20.20はヒンジ機構30を中心して旋回
運動を行うことになる。すなわち前後の推進支持体20
.20が所定の角度で変向することになる。ねじ軸42
.42の回転角度もしくは回転数を制御すれば、推進支
持体20.20の旋回角度すなわち変向角度を自由に調
整することができる。
Since the navel) 44.44 is rotatably supported by a bearing plate 46.46 fixed to the propulsion support 20, the naso 1-
As 44.44 moves, the front and rear propulsion supports 20.20 move toward or away from each other via bearing plates 46.46. In FIG. 2, the hinge mechanism 3
By rotating the screw shafts 42.42 located on both sides of the propulsion support 20.20 in opposite directions, one end surface of the propulsion support 20.20 approaches each other and the other end surface moves away from each other.
The propulsion support 20.20 will perform a pivoting movement about the hinge mechanism 30. That is, the front and rear propulsion supports 20
.. 20 will change direction at a predetermined angle. Screw shaft 42
.. By controlling the rotation angle or number of rotations of the propulsion support 20.20, the rotation angle, that is, the turning angle of the propulsion support 20.20 can be freely adjusted.

なお、上記した伸縮機構では、ねし軸42.42を駆動
モータ48で回転させており、この駆動モータ48の作
動を電気的に制御すれば、多数を連結した状態で使用す
る推進支持体20のそれぞれの変向角度を、立坑もしく
は地上で、−括して調整操作することが可能になる。但
し、ねじ軸42.42に駆動モータ48の代わりにクラ
ンク状の操作腕等を取り付けておき、この操作腕を手動
操作してねじ軸42を回転作動し、推進支持体20を変
向させるようにしてもよい。
In the above-mentioned telescopic mechanism, the screw shafts 42, 42 are rotated by the drive motor 48, and if the operation of the drive motor 48 is electrically controlled, the propulsion supports 20 used in a plurality of connected It becomes possible to adjust the deflection angles of each of the two at once, either in the shaft or on the ground. However, a crank-shaped operating arm or the like is attached to the screw shaft 42 instead of the drive motor 48, and this operating arm is manually operated to rotate the screw shaft 42 and change the direction of the propulsion support 20. You can also do this.

第4図に示す実施例は、前記した伸縮機構において、ね
じ軸42の作動を、機械的に一括操作できるようにした
ものである。推進支持体20.20の連結部分に設ける
ヒンジ機構30や伸縮機構40の基本的な構造は、前記
した実施例と同じものである。ねじ軸420両端には、
駆動モータ48や手動操作腕の代わりに、自在継手47
を介して連結シャフト49が取り付けられている。した
がって、前後に連結された多数の推進支持体2゜のねじ
軸42が、自在継手47および連結シャフト49で全て
連結一体化されていることになる。
The embodiment shown in FIG. 4 is one in which the operations of the screw shafts 42 can be mechanically operated all at once in the above-mentioned telescopic mechanism. The basic structures of the hinge mechanism 30 and the telescoping mechanism 40 provided at the connecting portion of the propulsion supports 20 and 20 are the same as those of the embodiments described above. At both ends of the screw shaft 420,
A universal joint 47 replaces the drive motor 48 and manual operation arm.
A connecting shaft 49 is attached via. Therefore, the screw shafts 42 of a large number of propulsion supports 2° connected back and forth are all connected and integrated by the universal joint 47 and the connecting shaft 49.

このような状態で、最後尾の推進支持体2oのねじ軸4
2または連結シャフト49に、前記したような駆動モー
タ48を取り付けておけば、ひとつの駆動モータ48で
、全ての推進支持体2oのねじ軸42を一斉に回転させ
て、それぞれの推進支持体20の変向角度を同時に調整
することが可能になる。なお、推進支持体20が変向す
ると、各ねじ軸42の軸方向も1直線状に並ばなくなる
が、ねじ軸42間士を自在継手47および連結シャフト
49で連結しているので、直線状でない1連のねじ軸4
2を回転させることができるのであるつぎに、推進支持
体20の外周には、保持固定手段として、軸方向の両端
近くに、それぞれ環状の膨張機構50が設けられている
。第2図および第3図に、膨張機構50の詳しい構造を
示している。
In this state, the screw shaft 4 of the rearmost propulsion support 2o
If a drive motor 48 as described above is attached to the connecting shaft 49 or the connecting shaft 49, the screw shafts 42 of all the propulsion supports 2o can be rotated at the same time by one drive motor 48, and the screw shafts 42 of all the propulsion supports 2o can be rotated simultaneously. It becomes possible to adjust the turning angle of both at the same time. Note that when the propulsion support body 20 changes direction, the axial directions of the screw shafts 42 are no longer aligned in a straight line, but since the screw shafts 42 are connected by a universal joint 47 and a connecting shaft 49, they are not linear. 1 series screw shaft 4
Next, on the outer periphery of the propulsion support body 20, annular expansion mechanisms 50 are provided near both ends in the axial direction as holding and fixing means. The detailed structure of the expansion mechanism 50 is shown in FIGS. 2 and 3.

推進支持体20の外周を取り囲むように、ゴム等の弾性
材料からなるチューブ状の膨張体52が設置されている
。膨張体52は、推進支持体20に取り付けられた支持
枠54に内周側で取り付は固定されている。なお、膨張
体52には、圧力空気等の圧力媒体を供給および排出す
るための給排部(図示せず)が設けられている。給排部
には、通常の圧力配管用のバルブ等が取り付けられてい
る。推進支持体20の前後の膨張体52は、圧力配管で
連結しておいてもよい。また、前後に連結される推進支
持体20の膨張体52同士も、可撓性配管等で連結する
ことができる。
A tubular expansion body 52 made of an elastic material such as rubber is installed so as to surround the outer periphery of the propulsion support body 20 . The expansion body 52 is fixed to a support frame 54 attached to the propulsion support 20 on the inner peripheral side. Note that the expansion body 52 is provided with a supply/discharge section (not shown) for supplying and discharging a pressure medium such as pressurized air. The supply/discharge section is equipped with valves and the like for normal pressure piping. The expansion bodies 52 before and after the propulsion support body 20 may be connected by pressure piping. Further, the expansion bodies 52 of the propulsion support bodies 20 connected back and forth can also be connected with flexible piping or the like.

推進支持体20の外周に埋設管60を嵌挿した状態で、
膨張体52に圧力媒体を導入すると、膨張体52が外周
に向かって膨張し、膨張体52の外面が埋設管60の内
面に当接して押圧することになる。膨張体52から埋設
管60に一定の圧力を加えておけば、膨張体52と埋設
管60の間に摩擦支持力が発生するので、埋設管60は
軸方向にずれることなく、推進支持体20に確実に保持
固定されることになる。膨張体52に導入する圧力空気
の量もしくは圧力を変えれば、埋設管60に対する押圧
力すなわち保持固定力を調整することができる。膨張体
52に導入された圧力空気を開放してしまえば、埋設管
60に対する保持固定は解除され、埋設管60から推進
支持体20を抜き出すことができる。
With the buried pipe 60 inserted into the outer periphery of the propulsion support 20,
When a pressure medium is introduced into the expansion body 52, the expansion body 52 expands toward the outer periphery, and the outer surface of the expansion body 52 comes into contact with and presses the inner surface of the buried pipe 60. If a constant pressure is applied from the expansion body 52 to the buried pipe 60, a frictional support force will be generated between the expansion body 52 and the buried pipe 60, so that the buried pipe 60 will not shift in the axial direction and will be able to support the propulsion support 20. It will be securely held and fixed. By changing the amount or pressure of pressurized air introduced into the expansion body 52, the pressing force against the buried pipe 60, that is, the holding and fixing force can be adjusted. Once the pressurized air introduced into the expansion body 52 is released, the holding and fixing to the buried pipe 60 is released, and the propulsion support body 20 can be extracted from the buried pipe 60.

膨張体52の構造は、図示したように、推進支持体20
の外周を取り囲むチューブ状のもののほか、推進支持体
20の軸方向に沿って一定幅で延びる偏平袋状の膨張体
を、推進支持体20の円周方向に複数個設置しておき、
各膨張体が放射方向に膨張して埋設管60の内面に当接
するような構造のもの等、埋設管60の内面に当接して
保持固定できれば、図示した以外の構造も採用すること
ができる。
The structure of the expansion body 52 is similar to that of the propulsion support 20 as shown in the figure.
In addition to the tube-shaped inflatable bodies surrounding the outer periphery of the propulsion support body 20, a plurality of flat bag-shaped inflatable bodies extending with a constant width along the axial direction of the propulsion support body 20 are installed in the circumferential direction of the propulsion support body 20,
Structures other than those shown may also be used as long as they can be held and fixed by contacting the inner surface of the buried pipe 60, such as a structure in which each expander expands in the radial direction and comes into contact with the inner surface of the buried pipe 60.

埋設管60の保持固定手段として、上記のような膨張機
構50を用いれば、膨張体52が弾力的に埋設管60の
内面に当接するので、埋設管60の内面を傷つけたり変
形させることなく確実に保持固定でき、埋設管60の内
径にバラツキや誤差があっても膨張体52の弾力的な変
形によって吸収でき、複雑な作動機構がないので故障の
可能性が少なく、圧力媒体の供給を制御するだけで簡単
かつ確実に埋設管60の保持固定および解除が行えるな
ど、優れた作用効果を発揮することができる。
If the above-described expansion mechanism 50 is used as a means for holding and fixing the buried pipe 60, the expansion body 52 will elastically abut against the inner surface of the buried pipe 60, so that the inner surface of the buried pipe 60 will not be damaged or deformed, and the expansion mechanism 50 can be used reliably. Even if there is variation or error in the inner diameter of the buried pipe 60, it can be absorbed by the elastic deformation of the expansion body 52. Since there is no complicated operating mechanism, there is less possibility of failure, and the supply of pressure medium is controlled. By simply doing this, the buried pipe 60 can be held, fixed and released easily and reliably, and excellent effects can be achieved.

以上に説明した推進支持体20を用いる曲線推進工法に
ついて説明する。
A curve propulsion construction method using the propulsion support body 20 explained above will be explained.

先導体10を立坑の側面から地盤内に推進させて埋設孔
を形成するのは、通常の推進工法と全く同様に行われる
。先導体10の後方には、ヒンジ機構30および伸縮機
構40を介して推進支持体20を連結する。このとき、
推進支持体20の外周には、ヒユーム管等からなる埋設
管60を嵌挿した後、推進支持体20の膨張体52に圧
力媒体を導入して膨張させ、推進支持体20に埋設管6
0を保持固定させておく。
Forming a buried hole by propelling the guide body 10 into the ground from the side of a shaft is performed in exactly the same way as a normal propulsion method. A propulsion support body 20 is connected to the rear of the leading body 10 via a hinge mechanism 30 and a telescoping mechanism 40 . At this time,
A buried pipe 60 made of a hume pipe or the like is inserted into the outer periphery of the propulsion support 20 , and then a pressure medium is introduced into the expansion body 52 of the propulsion support 20 to inflate it.
Keep it fixed at 0.

先導体10の後方に連結された推進支持体20の最後尾
に、立坑内の元押しジヤツキから推進力を加えれば、先
導体10および推進支持体20は地盤内に推進されて、
先導体10によって埋設孔が形成される。推進支持体2
0に保持固定されている埋設管60は、推進支持体20
とともに埋設孔に推進埋設される。
When a propulsion force is applied from a main push jack in the shaft to the rear end of the propulsion support 20 connected to the rear of the guide body 10, the guide body 10 and the propulsion support 20 are propelled into the ground,
A buried hole is formed by the guide body 10 . Propulsion support 2
The buried pipe 60 held and fixed at 0 is the propulsion support 20
At the same time, it is propelled and buried in the burial hole.

1本の推進支持体20および埋設管60が埋設孔の内部
に推進埋設されれば、推進支持体20の後端に、再びヒ
ンジ機構30および伸縮機構40を介して新たな推進支
持体20を連結する。この推進支持体20にも埋設管6
0を保持固定させておく。なお、前後の埋設管60.6
0の継目部分には、第3図に詳しく示すように、カラー
70を装着しておく。カラー70は、合成樹脂等からな
り、全体が筒状をなすとともに、内面中央に内側に一定
幅で環状に突出するフランジ部72が設けられた、断面
T字状をなしている。また、埋設管60.60の端部は
、外周に一定幅の浅い段部62が形成されており、この
段部62にカラー70が嵌まり込み、カラ−70フラン
ジ部72が埋設管60.60の端面に対面する状態で取
り付けられる。このようなカラー70で、埋設管60,
60の継目部分を覆っておけば、継目部分からの土砂の
侵入を防止することができる。フランジ部72が埋設管
60.60の端面間の隙間に介在することによって、カ
ラー70が軸方向に移動するのを防くとともに、埋設管
60.60の端面同士が衝突するのを防ぐこともできる
Once one propulsion support 20 and buried pipe 60 have been propulsion-buried inside the burial hole, a new propulsion support 20 is inserted again into the rear end of the propulsion support 20 via the hinge mechanism 30 and the telescoping mechanism 40. Link. This propulsion support 20 also has a buried pipe 6.
Keep it fixed at 0. In addition, the front and rear buried pipes 60.6
As shown in detail in FIG. 3, a collar 70 is attached to the joint portion of 0. The collar 70 is made of synthetic resin or the like, and has a cylindrical shape as a whole, and has a T-shaped cross section with a flange portion 72 that annularly protrudes inward with a constant width at the center of the inner surface. Further, at the end of the buried pipe 60.60, a shallow stepped portion 62 of a constant width is formed on the outer periphery, a collar 70 is fitted into this stepped portion 62, and the flange portion 72 of the collar 70 is attached to the buried pipe 60. It is attached facing the end face of 60. With such a collar 70, the buried pipe 60,
By covering the seam part 60, it is possible to prevent earth and sand from entering through the joint part. By interposing the flange portion 72 in the gap between the end faces of the buried pipes 60.60, it is possible to prevent the collar 70 from moving in the axial direction and also to prevent the end faces of the buried pipes 60.60 from colliding with each other. can.

つぎに、第1図に示すように、先導体10で曲線状の埋
設孔を形成し、形成された曲線状の埋設孔に埋設管60
を推進埋設していく。まず、先導体10に備えた変向手
段等で先導体10の推進方向を変える。図示した実施例
では、先導体10と推進支持体20を連結する伸縮機構
40の長さを変えて、先導体10を変向させている。先
導体10の進む方向が変わって埋設孔が曲線状になると
、後続の推進支持体20および埋設管60の推進方向も
変向させなければならない。そこで、第2図に示すよう
に、前後の推進支持体20.20を連結している一対の
伸縮機構40のうち、一方は伸ばし他方は縮めることに
より、前後の推進支持体20.20の軸方向を変向させ
る。このとき、前後の埋設管60.60は、一方の端面
では隙間が拡がり、他方の端面では隙間が狭まる。カラ
ー70は、埋設管60.60の隙間が拡がった個所でも
充分に隙間を覆っておけるとともに、埋設管60.60
の隙間が狭まった個所では、埋設管60.60同士が、
間にカラー70のフランジ部72を挟んだ状態で当接す
るようになり、埋設管60.60同士の端面が接触して
擦れたり傷付くのを確実に防止することができる。
Next, as shown in FIG.
We will continue to promote and bury it. First, the direction of propulsion of the guide body 10 is changed using a direction changing means or the like provided in the guide body 10 . In the illustrated embodiment, the length of the telescoping mechanism 40 connecting the guide body 10 and the propulsion support 20 is changed to change the direction of the guide body 10. When the advancing direction of the leading body 10 changes and the buried hole becomes curved, the propulsion direction of the following propulsion support 20 and buried pipe 60 must also be changed. Therefore, as shown in FIG. 2, one of the pair of telescoping mechanisms 40 connecting the front and rear propulsion supports 20.20 is extended and the other is contracted, so that the axis of the front and rear propulsion supports 20.20 is change direction. At this time, the gap between the front and rear buried pipes 60, 60 widens on one end surface, and narrows on the other end surface. The collar 70 can sufficiently cover the gap between the buried pipes 60 and 60 even when the gap has widened, and also
In places where the gap is narrowed, the buried pipes 60 and 60
They come into contact with the flange portion 72 of the collar 70 sandwiched between them, and it is possible to reliably prevent the end surfaces of the buried pipes 60 and 60 from coming into contact with each other and being rubbed or damaged.

推進支持体20の変向角度は、埋設孔の曲率に合わせて
設定される。埋設孔が、直線から曲線に移る段階もしく
は曲線の曲率が徐々に変化するときには、推進支持体2
0の推進位置が移動するにつれて、各伸縮機構40の作
動量を調整して、常に適切な変向角度を維持するのが好
ましい。
The deflection angle of the propulsion support body 20 is set according to the curvature of the buried hole. When the buried hole changes from a straight line to a curved line or when the curvature of the curve gradually changes, the propulsion support 2
As the zero propulsion position moves, it is preferable to adjust the amount of operation of each telescoping mechanism 40 to maintain an appropriate deflection angle at all times.

この発明にかかる曲線推進工法では、推進支持体20の
変向角度を任意に変向して埋設孔の曲率変化に対応でき
るので、埋設孔の経路設計が自由に行える。例えば、埋
設孔の方向を一定角度変える際に、直線部分から直ちに
一定の曲率を有する円弧状の曲線部分を経て目的とする
方向の直線部分につなげる従来の方法に代えて、直線部
分から徐々に曲率を増やしながら曲線部分に移行した後
、今度は徐々に曲率を小さくしながら目的とする方向の
直線部分につながるというような、極めて複雑な埋設孔
の経路設計が可能になる。
In the curved propulsion construction method according to the present invention, the direction angle of the propulsion support 20 can be arbitrarily changed to accommodate changes in the curvature of the buried hole, so the route of the buried hole can be designed freely. For example, when changing the direction of a buried hole by a certain angle, instead of the conventional method of immediately connecting a straight part to an arc-shaped curved part with a certain curvature and then connecting to a straight part in the desired direction, It is possible to design an extremely complex buried hole route, such as increasing the curvature and transitioning to a curved section, and then gradually decreasing the curvature while connecting to a straight section in the desired direction.

〔発明の効果〕〔Effect of the invention〕

以上に述べた、この発明にかかる曲線推進工法および推
進支持体によれば、推進支持体で推進力を伝達させ、埋
設管は推進支持体に保持固定しておくだけなので、埋設
管で推進力を伝達する必要がな(なり、埋設管同士の端
面には全く外力が作用しないことになる。しかも、埋設
管を保持固定する推進支持体は、変向角度を調整可能な
変向連結手段を介して連結されているので、曲線部分の
曲率に合わせて、前後の推進支持体を任意の変向角度に
調整することができる。したがって、埋設管は、端面に
局部的な応力集中が発生する心配がなく、埋設孔の曲率
にしたがって、極めて正確かつスムーズに推進されるこ
とになる。
According to the curve propulsion construction method and propulsion support according to the present invention described above, the propulsion force is transmitted by the propulsion support, and the buried pipe is simply held and fixed to the propulsion support. (This means that no external force acts on the end faces of the buried pipes. Moreover, the propulsion support that holds and fixes the buried pipes has a direction change connecting means that can adjust the direction change angle. Because they are connected through the pipe, the front and rear propulsion supports can be adjusted to any deflection angle according to the curvature of the curved section.Therefore, local stress concentration occurs on the end face of the buried pipe. There is no need to worry, and it will be propelled very accurately and smoothly according to the curvature of the buried hole.

その結果、曲線推進工法の際に、埋設管が破損したり推
進不可能になるというような問題は完全に解消され、確
実かつ迅速で安定した埋設管の施工作業を行うことが可
能になる。
As a result, problems such as the buried pipe being damaged or being unable to be propelled during the curved propulsion method are completely eliminated, and it becomes possible to perform the buried pipe construction work reliably, quickly, and stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す施工状態の概略断面図
、第2図は要部の拡大詳細断面図、第3図は第2図と直
交する方向の断面図、第4図は別の実施例を示す断面図
である。 10・・・先導体 20・・・推進支持体 30・・・
ヒンジ機構 40・・・伸縮機構 50・・・膨張機構
 60・・・埋設管 70・・・カラー
Fig. 1 is a schematic cross-sectional view of the construction state showing an embodiment of the present invention, Fig. 2 is an enlarged detailed sectional view of the main part, Fig. 3 is a cross-sectional view in the direction perpendicular to Fig. 2, and Fig. 4 is a separate view. FIG. 10... Guide body 20... Propulsion support body 30...
Hinge mechanism 40... Telescopic mechanism 50... Expansion mechanism 60... Buried pipe 70... Collar

Claims (1)

【特許請求の範囲】 1 先導体で曲線状の埋設孔を形成しながら埋設管を前
記曲線状の埋設孔に沿って埋設する曲線推進工法におい
て、先導体の後方に、変向角度を調整可能な変向連結手
段を介して推進支持体を順次連結していくとともに、推
進支持体の外周に埋設管を嵌挿して推進支持体に備えた
保持固定手段で埋設管を推進支持体に保持固定しておき
、前記変向連結手段で推進支持体同士の軸方向を所定の
角度で変向させるとともに、推進支持体に推進力を加え
ることにより、先導体および埋設管を曲線状に推進させ
ていくことを特徴とする曲線推進工法。 2 請求項1記載の曲線推進工法に用いる推進支持体で
あって、外周に埋設管を嵌挿可能な軸体状をなし、外周
に嵌挿された埋設管を保持固定する保持固定手段を備え
、軸方向端部には、推進支持体同士を連結できるととも
に推進支持体同士の軸方向を所定の角度で変向できる変
向連結手段を備えていることを特徴とする推進支持体。
[Claims] 1. In a curved propulsion method in which a buried pipe is buried along a curved buried hole while forming a curved buried hole with a leading body, the turning angle can be adjusted behind the leading body. At the same time, the propulsion supports are sequentially connected through the direction changing connection means, and the buried pipe is inserted into the outer periphery of the propulsion support, and the buried pipe is held and fixed to the propulsion support by the holding and fixing means provided on the propulsion support. Then, the axial direction of the propulsion supports is changed at a predetermined angle by the direction change connecting means, and a propulsive force is applied to the propulsion supports to propel the leading body and the buried pipe in a curved shape. A curved propulsion construction method characterized by the ability to move forward. 2. A propulsion support for use in the curved propulsion construction method according to claim 1, which has a shaft shape into which a buried pipe can be inserted into the outer periphery, and includes holding and fixing means for holding and fixing the buried pipe inserted into the outer periphery. A propulsion support, characterized in that the axial end portion thereof is provided with a direction changing connection means that can connect the propulsion supports to each other and change the axial direction of the propulsion supports at a predetermined angle.
JP2066329A 1990-03-15 1990-03-15 Curved propulsion method and propulsion support Expired - Lifetime JPH07103780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2066329A JPH07103780B2 (en) 1990-03-15 1990-03-15 Curved propulsion method and propulsion support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2066329A JPH07103780B2 (en) 1990-03-15 1990-03-15 Curved propulsion method and propulsion support

Publications (2)

Publication Number Publication Date
JPH03267496A true JPH03267496A (en) 1991-11-28
JPH07103780B2 JPH07103780B2 (en) 1995-11-08

Family

ID=13312700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2066329A Expired - Lifetime JPH07103780B2 (en) 1990-03-15 1990-03-15 Curved propulsion method and propulsion support

Country Status (1)

Country Link
JP (1) JPH07103780B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214892A (en) * 1991-12-13 1993-08-24 Kido Kensetsu Kogyo Kk Curve driving method of small bore pipe
JP2007009424A (en) * 2005-06-28 2007-01-18 Sumitomo Mitsui Construction Co Ltd Existing jacking pipe removing device and existing jacking pipe removing method using this device
JP2007056544A (en) * 2005-08-24 2007-03-08 Taisei Corp Propulsive box body, construction method of tunnel and construction method of the tunnel with large cross section

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164998A (en) * 1984-09-04 1986-04-03 南野建設株式会社 In-pipe moving type excavator
JPH01180591U (en) * 1988-06-08 1989-12-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164998A (en) * 1984-09-04 1986-04-03 南野建設株式会社 In-pipe moving type excavator
JPH01180591U (en) * 1988-06-08 1989-12-26

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214892A (en) * 1991-12-13 1993-08-24 Kido Kensetsu Kogyo Kk Curve driving method of small bore pipe
JP2007009424A (en) * 2005-06-28 2007-01-18 Sumitomo Mitsui Construction Co Ltd Existing jacking pipe removing device and existing jacking pipe removing method using this device
JP4619210B2 (en) * 2005-06-28 2011-01-26 三井住友建設株式会社 Existing propulsion pipe removal device and existing propulsion pipe removal method using the device
JP2007056544A (en) * 2005-08-24 2007-03-08 Taisei Corp Propulsive box body, construction method of tunnel and construction method of the tunnel with large cross section

Also Published As

Publication number Publication date
JPH07103780B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
JP2008121356A (en) Boring machine and boring device using the same
TW507043B (en) Semi-shield machine
JPH03267496A (en) Curved driving method and drive bearing body
JPH0552093A (en) Curve jacking method
JPH0441890A (en) Drilling device for hard material
JPH0797895A (en) Curved propulsion execution, device therefor, and buried pipe for curved propulsion
JPH0730671B2 (en) Buried pipe propulsion method
JPH0552090A (en) Curve jacking method and propulsion supporter
JP4156582B2 (en) Underground excavation equipment
JPH0347396A (en) Method and apparatus for propulsion laying of underground pipe
JP4214082B2 (en) Propulsion method excavation equipment and propulsion method
JP2683230B2 (en) A small-diameter excavator capable of making sharp turns
JPH02178496A (en) Re-laying method for existing pipeline and underground excavating device
JP2003232188A (en) Pipe jacking machine, adaptor and pipe jacking method
JP3492027B2 (en) Underground pipe drawing method
JP3520141B2 (en) How to lay pipes underground in an arc
JPH03103529A (en) Drive burying method of buried pipe
JP2863492B2 (en) Propulsion method, excavation device and propulsion device
JP5463049B2 (en) Synthetic pipe bending equipment
JP3362964B2 (en) Propulsion body
WO2012020447A1 (en) Device for laying synthetic resin pipe underground along a curve
JP3773842B2 (en) Muddy water propulsion method, feed / drain mud pipe and muddy water propulsion method equipment
JPH0649667Y2 (en) Buried pipe length correction device in pipe burial equipment
JPH02256796A (en) Driving device for driving method
KR20150009435A (en) The excavation equipment