JPH0225565B2 - - Google Patents

Info

Publication number
JPH0225565B2
JPH0225565B2 JP1811883A JP1811883A JPH0225565B2 JP H0225565 B2 JPH0225565 B2 JP H0225565B2 JP 1811883 A JP1811883 A JP 1811883A JP 1811883 A JP1811883 A JP 1811883A JP H0225565 B2 JPH0225565 B2 JP H0225565B2
Authority
JP
Japan
Prior art keywords
capacitor
phase
input
circuit
integrating circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1811883A
Other languages
Japanese (ja)
Other versions
JPS59144216A (en
Inventor
Hiroaki Kunieda
Satoru Ooshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1811883A priority Critical patent/JPS59144216A/en
Publication of JPS59144216A publication Critical patent/JPS59144216A/en
Publication of JPH0225565B2 publication Critical patent/JPH0225565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H19/00Networks using time-varying elements, e.g. N-path filters
    • H03H19/004Switched capacitor networks

Description

【発明の詳細な説明】 (技術分野) 本発明はスイツチトキヤパシタフイルタに関
し、通過周波数帯域における厳しい仕様条件もし
くは素子精度が十分得られない環境条件を有する
としても、半導体基板上にモノリシツクに大なる
歩留りにて構成することのできる新規なスイツチ
トキヤパシタフイルタを提案せんとするものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a switched capacitor filter that can be monolithically mounted on a semiconductor substrate even if it has strict specification conditions in the pass frequency band or environmental conditions that prevent sufficient element precision from being obtained. We would like to propose a new switch capacitor filter that can be configured with high yield.

(背景技術) 従来提案されている差動入力スイツチトキヤパ
シタ積分回路の一例を第1図に示す。この回路は
キヤパシタC1と、反転入力端m、正転入力端p
及び出力端Oを有し且つ大なる利得を有する演算
増幅器Aの反転入力端m及び出力端O間に積分用
のキヤパシタC2が接続され、演算増幅器Aの正
転入力端pが接地され、出力端Oより信号出力端
子が導出される構成の積分回路で、スイツチS1
S2の可動接点w1,w2を固定接点x1,x2に、次に
他の固定接点y1,y2に順次切り換えていくことに
より、スイツチの可動接点w1,w2が固定接点x1
y1側の時、、キヤパシタC1に信号入力端子T1に与
えられる入力信号に基づきその大いさに応じた電
荷をもつて充電され、スイツチS1,S2の可動接点
w1,w2が固定接点x2,y2側に切り換えられた時
キヤパシタC1が信号入力端子T2に与えられる別
の入力信号に基づきその大いさに応じた電荷を蓄
える。従つて、その時キヤパシタC1によりその
二つの入力信号の差の電圧に応じた電荷が積分回
路のキヤパシタC2に転送され、その積分出力が
信号出力端子T3に導出される。
(Background Art) An example of a conventionally proposed differential input switch capacitor integration circuit is shown in FIG. This circuit consists of a capacitor C1 , an inverting input terminal m, and a normal input terminal p.
An integrating capacitor C2 is connected between the inverting input terminal m and the output terminal O of an operational amplifier A having a large gain and an output terminal O, and a non-inverting input terminal p of the operational amplifier A is grounded. This is an integrating circuit configured such that a signal output terminal is derived from an output terminal O, and switches S 1 ,
By sequentially switching the movable contacts w 1 and w 2 of S 2 to the fixed contacts x 1 and x 2 and then to the other fixed contacts y 1 and y 2, the movable contacts w 1 and w 2 of the switch are fixed. Contact x 1 ,
When on the y 1 side, the capacitor C 1 is charged with a charge corresponding to the magnitude of the input signal given to the signal input terminal T 1 , and the movable contacts of the switches S 1 and S 2
When w 1 and w 2 are switched to the fixed contacts x 2 and y 2 , the capacitor C 1 stores a charge corresponding to the magnitude of another input signal applied to the signal input terminal T 2 . Therefore, at that time, the capacitor C1 transfers a charge corresponding to the voltage difference between the two input signals to the capacitor C2 of the integrating circuit, and the integrated output is delivered to the signal output terminal T3 .

この積分器の二つの入力端子の信号電圧V1
(z),V2(z)と出力端子の電圧V0(z)間の伝
送をz変数領域にて表わすと、 V0(z)=z-1/2/1−z-1C1/C2(V1(z)−V2(z)
)(1) なる関係をもつ。すなわち、入力端子T1より信
号出力端子T3への伝送が逆相積分器であり、入
力端子T2より信号出力端子T3への伝送が正相積
分器となり、これらが一つのキヤパシタC1及び
スイツチを介して行われている。
The signal voltage V 1 at the two input terminals of this integrator
(z), V 2 (z) and the output terminal voltage V 0 (z) is expressed in the z variable domain, V 0 (z) = z -1/2 /1 - z -1 C 1 /C 2 (V 1 (z) − V 2 (z)
)(1) have the following relationship. That is, the transmission from input terminal T 1 to signal output terminal T 3 is a negative phase integrator, and the transmission from input terminal T 2 to signal output terminal T 3 is a positive phase integrator, and these are one capacitor C 1 and via a switch.

第2図に、この様な差動入力積分器を用いて構
成されるリープフロツグ形スイツチトキヤパシタ
フイルタを示す(Jacobs、G.M.etal.
“DesignTechniques for MOS Switched
Capcitor Ladder Filters”IEEE.Trans.、CAS
−25 P1014(DEC1978))。このリープフロツグ形
構成回路は第3図に示すがごとき抵抗両終端形
LCフイルタの動作を模擬する回路である。すな
わち、第4図に示すLCフイルタの各部の電圧、
電流のシグナルフローグラフにおいて、各積分器
の出力は各々第3図の節点n1の電圧V1、インダ
クタLに流れる電流I2、節点n2の電圧V3を表わし
ている。第4図のシグナルフローグラフのA点は
第3図のLCフイルタにおけるキヤパシタ電流を
表わし、 SC1V1=E/R−V1/R+I1 (2) なる関係が成り立つている。
Figure 2 shows a leapfrog type switch capacitor filter constructed using such a differential input integrator (Jacobs, GMetal.
“Design Techniques for MOS Switched
Capcitor Ladder Filters”IEEE.Trans., CAS
−25 P1014 (DEC1978)). This leapfrog configuration circuit is a double-terminated resistor as shown in Figure 3.
This is a circuit that simulates the operation of an LC filter. That is, the voltage at each part of the LC filter shown in Fig. 4,
In the current signal flow graph, the output of each integrator represents the voltage V 1 at the node n 1 in FIG. 3, the current I 2 flowing through the inductor L, and the voltage V 3 at the node n 2 in FIG. Point A in the signal flow graph of FIG. 4 represents the capacitor current in the LC filter of FIG. 3, and the following relationship holds: SC 1 V 1 =E/R-V 1 /R+I 1 (2).

第4図において両終端抵抗が同じ抵抗値1をも
つ場合を例とすると、各リアクタンス素子は積分
器で表わされており、第1の積分器M1には入力
信号電圧Eが正相にて、第2の積分器M2の出力
が逆相にて入力するものと考えられる。同様に第
2の積分器M2には第1及び第3の積分器の出力
が各々正相、逆相にて入力され、第3の積分器
M3には第2及び第3の積分器の出力が各々正相、
逆相にて入力されている態様のシグナルフローグ
ラフになつている。
In Fig. 4, taking as an example the case where both terminal resistors have the same resistance value 1, each reactance element is represented by an integrator, and the input signal voltage E is in the positive phase of the first integrator M1 . Therefore, it is considered that the output of the second integrator M2 is input in reverse phase. Similarly, the outputs of the first and third integrators are input to the second integrator M2 in positive phase and negative phase, respectively, and the outputs of the third integrator
In M3 , the outputs of the second and third integrators are each in positive phase,
This is a signal flow graph in which the input is in reverse phase.

第2図に示すごときリープフロツグ形構成回路
は、第4図に示すごとき抵抗両終端形LCフイル
タのシグナルフローグラフにおける正相、逆相入
力の積分器を第1図に示すごとき正相、逆相の差
動入力スイツチトキヤパシタ積分回路にて置き換
えることにより構成されるフイルタ回路である。
The leapfrog configuration circuit as shown in Fig. 2 converts the integrator of the positive phase and negative phase inputs in the signal flow graph of the resistor double-terminated LC filter shown in Fig. 4 into the positive phase and negative phase input as shown in Fig. 1. This is a filter circuit constructed by replacing the differential input switch with a capacitor integrating circuit.

第2図において、キヤパシタC3を有する第1
の積分回路M1にはスイツチを伴うキヤパシタC1
及びキヤパシタC2が接続され、一つのキヤパシ
タC1を介して入力信号電圧及び第2の積分回路
M2の出力が各々正相、逆相にて第1の積分回路
M1に入力する機能を実現し、キヤパシタC2は第
1図の差動入力積分器において、正相入力端子
T2を接地したる態様にて、第1の積分回路M1
ら第1の積分回路M1への逆相積分入力のみの機
能を実現している。同様にしてキヤパシタC4
C5にて構成される差動入力積分回路M2、キヤパ
シタC6,C7にて構成される差動入力積分回路M3
は第4図のシグナルフローグラフにおける正相及
び逆相の入力を有す積分器M2,M3を模擬するよ
うに構成されている。
In FIG. 2, the first
The integrator circuit M 1 includes a capacitor C 1 with a switch.
and capacitor C 2 are connected to the input signal voltage and the second integration circuit through one capacitor C 1
The output of M2 is the first integrator circuit with positive phase and negative phase, respectively.
In the differential input integrator shown in Figure 1 , capacitor C2 is used as the positive phase input terminal.
By grounding T 2 , only the function of negative phase integral input from the first integrating circuit M 1 to the first integrating circuit M 1 is realized. Similarly, capacitor C 4 ,
Differential input integrator circuit M 2 consisting of C 5 and differential input integrator circuit M 3 consisting of capacitors C 6 and C 7
are constructed to simulate integrators M 2 and M 3 having positive-phase and negative-phase inputs in the signal flow graph of FIG.

ところでフイルタの優劣を定める一つの指標と
して、素子x(第2図のキヤパシタC1〜C7)の相
対的な変動(Δx/x)に対する周波数振幅特性
|T(z)|の相対的な変動(Δ|T(z)|/|T
(z)|)の割合の極限値であるところの相対素子
感度S|T(z)|x S|T(z)|x= lim Δx→OΔ|T(z)|/|T(z)|/Δx/x =x/|T(z)| ∂|T(z)|/∂x が用いられる。かかるリープフロツグ形スイツチ
トキヤパシタフイルタの場合、すべての素子xに
対するこの相対素子感度S|T(z)|xの絶対値の総和
が通過域周波数範囲で小になり、高精密のフイル
タが容易に構成できるという特徴を有している。
抵抗両終端形LCフイルタにおいては、フイルタ
が整合状態にあるときリアクタンス素子の振幅特
性に関する感度は零である。この抵抗両終端形
LCフイルタを模擬して得られるリープフロツグ
形構成回路においても、リアクタンス素子に対応
する積分回路の積分定数の振幅特性に対する感度
はフイルタが整合状態となる周波数点で零になる
特徴を有し、これにより通過周波数帯域において
低感度なフイルタとなる。しかしながら、抵抗両
終端形LCフイルタにおいてフイルタが整合状態
にあつても終端抵抗の素子感度は零でなく、第2
図に示すごときリープフロツグ形構成回路におい
ても、入力側の終端抵抗を模擬しているキヤパシ
タC1,C2の振幅特性に対する感度が整合状態で
も零にならない欠点を有している。
By the way, as an index for determining the quality of a filter, the relative fluctuation of the frequency amplitude characteristic |T(z)| with respect to the relative fluctuation (Δx/x) of the element x (capacitors C 1 to C 7 in Figure 2 ) (Δ|T(z)|/|T
The relative element sensitivity S| T(z) | x S| T(z) | x = lim Δx→OΔ|T(z)|/|T(z) is the limit value of the ratio of (z)|) |/Δx/x = x/|T(z)| ∂|T(z)|/∂x is used. In the case of such a leapfrog type switched capacitor filter, the sum of the absolute values of the relative element sensitivities S| T( z ) | It has the characteristic of being able to
In a resistor-double-terminated LC filter, when the filter is in a matching state, the sensitivity with respect to the amplitude characteristics of the reactance element is zero. This resistor has both ends
Even in a leapfrog configuration circuit obtained by simulating an LC filter, the sensitivity to the amplitude characteristic of the integral constant of the integrating circuit corresponding to the reactance element has the characteristic that it becomes zero at the frequency point where the filter is in a matching state. It becomes a filter with low sensitivity in the pass frequency band. However, in a resistor double-terminated LC filter, even if the filter is in a matching state, the element sensitivity of the termination resistor is not zero, and the second
Even in the leapfrog configuration circuit shown in the figure, the sensitivity to the amplitude characteristics of the capacitors C 1 and C 2 simulating the input-side terminating resistance does not become zero even in a matched state.

(発明の課題) 本発明は、上記欠点を除去するものであり、通
過周波数帯域において素子感度の絶対値和が極め
て小であり、特に中心周波数において終端抵抗に
対応する素子をふくむすべての素子の振幅感度が
零である無極低域及び帯域通過スイツチトキヤパ
シタフイルタ回路を提案せんとするものである。
(Problems to be solved by the invention) The present invention eliminates the above-mentioned drawbacks, and the sum of the absolute values of element sensitivities is extremely small in the pass frequency band, and especially at the center frequency, all elements including the element corresponding to the terminating resistor It is an object of this invention to propose a zero-low frequency and bandpass switched capacitor filter circuit with zero amplitude sensitivity.

(発明の構成および作用) 本発明は上記の目的を達成するために、以下に
示す原理を用いている。第1図に示すごとき正
相、逆相入力を一つのキヤパシタC1を介して行
う差動入力積分回路において、ある周波数点にお
いて正相入力信号V1(z)と逆相入力信号V2(z)
が位相、振幅を含めて同じ値をもつならば、スイ
ツチS1,S2の可動接点w1,w2が固定接点x1,x2
側の時と、スイツチS1,S2の可動接点w1,w2
固定接点y1,y2側に切り換えた時の電圧が常に同
じであり、その入力電圧の大いさに応じた電荷が
蓄えられるものの、積分回路のキヤパシタC2
転送される電荷はない。従つて、このときの積分
器の動作においてキヤパシタC1の容量の値は無
関係であり、正相入力信号と逆相入力信号が同じ
になる周波数点において、キヤパシタC1の素子
感度は零となる。
(Structure and operation of the invention) In order to achieve the above object, the present invention uses the principles shown below. In a differential input integrating circuit as shown in Fig. 1, which receives positive-phase and negative-phase inputs through one capacitor C1 , at a certain frequency point, a positive-phase input signal V 1 (z) and a negative-phase input signal V 2 ( z)
have the same values including phase and amplitude, the movable contacts w 1 and w 2 of switches S 1 and S 2 are the fixed contacts x 1 and x 2
The voltage is always the same when the movable contacts w 1 and w 2 of switches S 1 and S 2 are switched to the fixed contacts y 1 and y 2 , and the charge is proportional to the magnitude of the input voltage. is stored, but no charge is transferred to capacitor C2 of the integrating circuit. Therefore, the value of the capacitance of capacitor C 1 is irrelevant to the operation of the integrator at this time, and the element sensitivity of capacitor C 1 becomes zero at the frequency point where the positive-phase input signal and the negative-phase input signal are the same. .

本発明は上記の原理に基づき、リープフロツグ
形構成回路の通過周波数帯域における低感度性を
保持すべく基本構造は同じにしつつも、すべての
差動入力積分器の正相、逆相入力を行うキヤパシ
タに、正相、逆相入力信号が双方とも入力され、
しかも、中心周波数においてそれらの正相、逆相
入力信号の電圧値が等しくなる様な改善を行い、
中心周波数において素子振幅感度がすべて零にす
る構成のスイツチトキヤパシタフイルタである。
Based on the above principle, the present invention maintains the same basic structure in order to maintain low sensitivity in the pass frequency band of the leap-frog configuration circuit, but uses capacitors to provide positive and negative phase inputs to all differential input integrators. Both positive phase and negative phase input signals are input to
Moreover, improvements have been made so that the voltage values of the positive-phase and negative-phase input signals are equal at the center frequency.
This is a switch capacitor filter configured so that all element amplitude sensitivities are zero at the center frequency.

第5図は本発明の第1の実施例を示す。正相、
逆相入力を有する差動入力積分器は一例として第
2図の積分回路を四つ用いる場合で、第1の積分
回路M1にはキヤパシタC1,C2なる差動入力用の
キヤパシタが接続され、キヤパシタC1を介する
正相入力には入力信号電圧E(z)、逆相入力には
第1の積分回路M1の出力電圧V1(z)が接続さ
れ、キヤパシタC2を介する正相入力には入力信
号電圧E(z)、逆相入力には第2の積分回路M2
の出力電圧V2(z)が接続され、第2の積分回路
M2にはキヤパシタC4なる一つの差動入力用キヤ
パシタが接続され、正相入力には第1の積分回路
M1の出力電圧V1(z)、逆相入力には第3の積分
回路M3の出力電圧V3(z)が接続され、第3の
積分回路M3にはキヤパシタC6なる一つの差動入
力用キヤパシタが接続され、正相入力には第2の
積分回路M2の出力電圧V2(z)、逆相入力には第
4の積分回路M4の出力電圧V4(z)が接続され、
第4の積分回路M4にはキヤパシタC8になる一つ
の差動入力用キヤパシタが接続され、正相入力に
は第3の積分回路M3の出力電圧V3(z)、逆相入
力には第4の積分回路M4の出力電圧V4(z)が
接続される様になされている。出力は第4の積分
回路M4の出力電圧より導出される。
FIG. 5 shows a first embodiment of the invention. True aspect,
An example of a differential input integrator with negative phase input is when four integrating circuits shown in Fig. 2 are used, and the first integrating circuit M1 is connected to capacitors C1 and C2 for differential input. The input signal voltage E(z) is connected to the positive phase input via capacitor C1 , the output voltage V1 (z) of the first integrating circuit M1 is connected to the negative phase input, and the positive phase input via capacitor C2 is connected to the input signal voltage E(z). Input signal voltage E(z) is used for the phase input, and second integration circuit M 2 is used for the negative phase input.
is connected to the output voltage V 2 (z) of the second integrator circuit.
One differential input capacitor called capacitor C4 is connected to M2 , and the first integration circuit is connected to the positive phase input.
The output voltage V 1 (z) of M 1 is connected to the negative phase input, and the output voltage V 3 (z) of the third integration circuit M 3 is connected to the third integration circuit M 3 . A differential input capacitor is connected, the output voltage V 2 (z) of the second integrating circuit M 2 is connected to the positive phase input, and the output voltage V 4 (z) of the fourth integrating circuit M 4 is connected to the negative phase input. is connected,
One differential input capacitor, which becomes capacitor C8 , is connected to the fourth integrating circuit M 4 , and the output voltage V 3 (z) of the third integrating circuit M 3 is connected to the positive phase input, and the output voltage V 3 (z) of the third integrating circuit M 3 is connected to the negative phase input. is connected to the output voltage V 4 (z) of the fourth integration circuit M 4 . The output is derived from the output voltage of the fourth integrating circuit M4 .

以上が本発明の第1の実施例の構成であるが、
斯る構成によれば4次の無極低域通過特性を有す
るフイルタが構成できるが、中心周波数である周
波数零の直流にて各積分回路は極めて大なる利得
を有するため、各積分回路の出力電圧が有限値で
あれば、各積分回路において差動入力用キヤパシ
タより各積分回路の演算増幅器の反転入力端子と
出力端子間に接続せるキヤパシタへの電荷転送は
ない。第2、3、4のごとき一つの差動入力用キ
ヤパシタをもつ積分回路では、上述せる差動入力
積分回路の性質より、直流では差動入力端子に加
わる電圧は等しくなつて動作している。
The above is the configuration of the first embodiment of the present invention,
With such a configuration, a filter with a 4th-order non-polar low-pass characteristic can be constructed, but since each integrating circuit has an extremely large gain at direct current with a frequency of zero, which is the center frequency, the output voltage of each integrating circuit is If is a finite value, there is no charge transfer from the differential input capacitor in each integrating circuit to the capacitor connected between the inverting input terminal and output terminal of the operational amplifier of each integrating circuit. Integrating circuits having one differential input capacitor such as the second, third, and fourth capacitors operate with equal DC voltage applied to the differential input terminals due to the properties of the differential input integrating circuit described above.

第2、3、4の差動入力積分器の差動入力端子
に加わる電圧が直流にて等しいことより、 V1(z)=V3(z) (4) V2(z)=V4(z) (5) V3(z)=V4(z) (6) である。式(4)〜(6)より V1(z)=V2(z)=V3(z)=V4(z) (7) が成り立つ。更に、第1の積分回路に接続せる二
つの差動入力用キヤパシタC1,C2よりキヤパシ
タC3への電荷転送は周波数零の直流にては行わ
れず C1(E(z)−V1(z)) +C2(E(z)−V2(z))=0 (8) が成り立ち、式(7)(8)よりすべての積分回路の出力
電圧は周波数零の直流にて信号入力電圧E(z)
に等しくなる。従つて、すべての差動入力積分回
路の差動入力用キヤパシタに関し上述せる本発明
に関わる原理を満している。しかも、第5図に示
す回路構成において、入力信号電圧を回路に入力
する役割を有すキヤパシタC1,C2を取り除くと
従来のリープフロツグ形構成回路において、入力
信号電圧を回路に入力する役割を有す部分を同様
に取り除いた回路と一致する。従つて、斯る構成
によれば、通過周波数帯域において低感度なフイ
ルタとなり、しかも周波数零の直流にて積分定数
の感度は零である。よつて、積分定数を定めるキ
ヤパシタC3,C5,C7,C8の素子感度も零である
ため、中心周波数なる直流周波数にて素子感度を
全く有しないフイルタが実現できる。
Since the voltages applied to the differential input terminals of the second, third, and fourth differential input integrators are equal in direct current, V 1 (z) = V 3 (z) (4) V 2 (z) = V 4 (z) (5) V 3 (z)=V 4 (z) (6). From equations (4) to (6), V 1 (z) = V 2 (z) = V 3 (z) = V 4 (z) (7) holds true. Furthermore, the charge transfer from the two differential input capacitors C 1 and C 2 connected to the first integration circuit to the capacitor C 3 is not carried out using direct current with a frequency of zero, but is instead C 1 (E(z)−V 1 ). (z)) +C 2 (E(z)-V 2 (z)) = 0 (8) holds, and from equations (7) and (8), the output voltages of all the integrating circuits are input as DC signals with zero frequency. Voltage E(z)
is equal to Therefore, all the differential input capacitors of the differential input integrating circuit satisfy the principles related to the present invention described above. Furthermore, in the circuit configuration shown in FIG. 5, if the capacitors C 1 and C 2 , which have the role of inputting the input signal voltage to the circuit, are removed, the role of inputting the input signal voltage to the circuit in the conventional leapfrog configuration circuit can be eliminated. This corresponds to a circuit in which the part with the same part is removed in the same way. Therefore, with such a configuration, the filter has low sensitivity in the pass frequency band, and the sensitivity of the integral constant is zero at direct current with a frequency of zero. Therefore, since the element sensitivities of the capacitors C 3 , C 5 , C 7 , and C 8 that determine the integral constants are also zero, it is possible to realize a filter that has no element sensitivity at all at the DC frequency, which is the center frequency.

上述においては低域通過フイルタに関する本発
明の実施例として積分回路を4個用いた構成例に
ついて示したが、一般の積分回路をN個用いた場
合にも入力信号電圧が入力する第1の積分回路に
同様な構成を用いることにより本発明を実施しえ
る。なお、実際の製作にあたつては、スイツチ
S12,S13の電位は常に等しいので、一つのスイツ
チで置き換えることが可能である。
In the above, a configuration example using four integrating circuits was shown as an embodiment of the present invention regarding a low-pass filter, but even when N general integrating circuits are used, the first integral input signal voltage is input. The invention can be practiced using similar circuit configurations. Please note that during actual production, the switch
Since the potentials of S 12 and S 13 are always equal, they can be replaced with one switch.

第6図に本発明の第2の実施例を示す。第1の
実施例と同様正相、逆相入力を有する差動入力積
分器は一例として第2図の積分回路を四つ用いる
場合で、第1及び第2の積分回路M1,M2と第3
及び第4の積分回路M3,M4とが各々対を形成
し、第1の積分回路M1の出力電圧V1(z)が第
2の積分回路M2にキヤパシタC3を介して正相入
力として入力し、更に、積分回路M2の出力電圧
V2(z)が第1の積分回路M1にキヤパシタC4
介して逆相入力として入力されるループを基本構
造として有し、第3、4の積分回路M3,M4にお
いても同様なループ構造の基本構造を有し、斯る
2つの基本構造の入力及び出力に、各々、第1の
積分回路M1の入力、出力を第3の積分回路M3
入力、出力を選び、本発明の第1の実施例で示し
た低域通過フイルタの構成と同様、第1、第2の
積分回路M1,M2を含む第1の基本構造の入力す
なわち第1の積分回路M1の入力端子には一つの
キヤパシタC1を介して、入力信号電圧を正相に
て、第1の基本構造の出力すなわち第1の積分回
路M1の出力を逆相にて入力し、更に、他のキヤ
パシタC2を介して、入力信号電圧を正相にて、
第2の基本構造の出力すなわち第3の積分回路
M3の出力を逆相にて入力し、第3、第4の積分
回路M3,M4を含む第2の基本構造の入力すなわ
ち第3の積分回路M3の入力端子には、キヤパシ
タC11を、介して第1の基本構造の出力すなわち
第1の積分回路M1の出力が正相にて、第2の基
本構造の出力すなわち第3の積分回路M3の出力
が逆相にて入力されるように接続がなされてい
る。
FIG. 6 shows a second embodiment of the invention. As in the first embodiment, the differential input integrator having positive phase and negative phase inputs is an example in which four integrating circuits shown in FIG. 2 are used, and the first and second integrating circuits M 1 , M 2 and Third
and fourth integrating circuits M 3 and M 4 form a pair, and the output voltage V 1 (z) of the first integrating circuit M 1 is positively supplied to the second integrating circuit M 2 via the capacitor C 3 . input as a phase input, and furthermore, the output voltage of the integrating circuit M2
The basic structure is a loop in which V 2 (z) is input as a negative phase input to the first integrating circuit M 1 via the capacitor C 4 , and the same applies to the third and fourth integrating circuits M 3 and M 4 . It has a basic structure of a loop structure, and selects the input and output of the first integrating circuit M1 and the input and output of the third integrating circuit M3 as the input and output of these two basic structures, respectively, Similar to the configuration of the low-pass filter shown in the first embodiment of the present invention, the input of the first basic structure including the first and second integrating circuits M 1 and M 2 , that is, the first integrating circuit M 1 The input signal voltage is input in positive phase to the input terminal of , through one capacitor C 1 , and the output of the first basic structure, that is, the output of the first integrating circuit M 1 is input in reverse phase, and further, Input signal voltage in positive phase through another capacitor C2 ,
The output of the second basic structure, that is, the third integrator circuit
The output of M3 is input in reverse phase, and the input terminal of the second basic structure including the third and fourth integrating circuits M3 and M4 , that is, the input terminal of the third integrating circuit M3 , is connected to a capacitor C. 11 , the output of the first basic structure, that is, the output of the first integrating circuit M1 , is in positive phase, and the output of the second basic structure, that is, the output of the third integrating circuit M3, is in reverse phase. Connections are made for input.

以上が本発明の第2の実施例の構成であるが、
斯る構成によれば、4次の無極帯域通過特性を有
するフイルタが構成できる。上述せる基本構造の
回路は正相積分器と逆相積分器とがループをな
し、Q無限大の二次共振回路を形成している。第
2の実施例では上述のごとく、第1の実施例に示
した低域通過フイルタの差動入力積分回路に代つ
て第6図に示した基本構造回路にて置き換えた回
路であり、各基本構造回路の共振周波数を同一に
するように基本構造回路内のキヤパシタの容量値
を選べば、この置き換えが低域通過特性を有する
フイルタより帯域通過特性を有するフイルタへの
変換を意味する。しかも、基本構造回路はQ無限
大の共振回路であるため、中心周波数なる共振周
波数にて基本構造回路の入力と出力間には大なる
利得があり、従つて、第1の実施例の場合と全く
同様な理由により、中心周波数において各基本構
造回路の出力電圧すなわち第1の積分回路M1
出力と第3の積分回路M3の出力が入力信号電圧
と一致する。従つて、それらの電圧を差動入力と
するキヤパシタC1,C2,C9は前述の原理に基づ
き中心周波数にてその素子感度が零となる。基本
構造回路における正相、逆相入力用のキヤパシタ
C3,C4,C6,C7は前述の原理を満していないが、
これらキヤパシタは基本構造回路内の他のキヤパ
シタとともに共振回路の共振周波数を定めてお
り、これらの容量値の変化に対して共振周波数の
みが変化する。従つて、これら基本構造回路内の
キヤパシタの位相感度は中心周波数にて零でない
が振幅感度は零である。一方、第2の実施例にお
いても、入力信号電圧をフイルタに入力するキヤ
パシタC1,C2を取り除いた回路は、抵抗両終端
形LC帯域通過フイルタを模擬して構成さるリー
プフロツグ形構成回路の入力信号電圧をフイルタ
に入力する部分を取り除いた回路と一致する。従
つて、第2の実施例の回路は、通過帯域周波数に
おいて低感度であり、しかも中心周波数において
はすべて素子振幅感度を零にする回路である。
The above is the configuration of the second embodiment of the present invention,
According to such a configuration, a filter having fourth-order non-polar bandpass characteristics can be constructed. In the circuit having the basic structure described above, a positive-phase integrator and a negative-phase integrator form a loop to form a secondary resonant circuit with infinite Q. As mentioned above, in the second embodiment, the differential input integrating circuit of the low-pass filter shown in the first embodiment is replaced with the basic structure circuit shown in FIG. If the capacitance values of the capacitors in the basic structural circuit are selected so as to make the resonant frequencies of the structural circuits the same, this replacement means conversion from a filter having low-pass characteristics to a filter having band-pass characteristics. Moreover, since the basic structure circuit is a resonant circuit with infinite Q, there is a large gain between the input and output of the basic structure circuit at the resonant frequency, which is the center frequency. For exactly the same reason, the output voltage of each basic structure circuit, that is, the output of the first integrating circuit M1 and the output of the third integrating circuit M3 , match the input signal voltage at the center frequency. Therefore, the capacitors C 1 , C 2 , and C 9 which receive these voltages as differential inputs have element sensitivity of zero at the center frequency based on the above-mentioned principle. Capacitor for positive phase and negative phase input in basic structure circuit
Although C 3 , C 4 , C 6 , and C 7 do not satisfy the above principle,
These capacitors together with other capacitors in the basic structure circuit determine the resonant frequency of the resonant circuit, and only the resonant frequency changes with respect to changes in these capacitance values. Therefore, the phase sensitivity of the capacitors in these basic structure circuits is not zero at the center frequency, but the amplitude sensitivity is zero. On the other hand, in the second embodiment as well, the circuit in which the capacitors C 1 and C 2 for inputting the input signal voltage to the filter are removed is the input of a leapfrog configuration circuit configured to simulate a resistor double-terminated LC bandpass filter. This corresponds to a circuit in which the part that inputs the signal voltage to the filter is removed. Therefore, the circuit of the second embodiment is a circuit that has low sensitivity at the passband frequency and also makes all element amplitude sensitivities zero at the center frequency.

上述においては帯域通過フイルタに関する本発
明の実施例として積分回路を4個用いた構成例に
ついて示したが、一般の積分回路を2N個用いた
場合にも適用でき、本発明の低域通過フイルタの
各積分器に上述の二次共振回路なる基本構造回路
を置き換えることにより本発明を実施しえる。な
お、第6図の基本構造回路における正相積分回路
を逆相積分回路に、逆相積分回路を正相積分回路
に同時に置き換えた回路も同様である。
In the above, a configuration example using four integrating circuits was shown as an embodiment of the present invention related to a bandpass filter, but it can also be applied to a case where 2N general integrating circuits are used, and the low-pass filter of the present invention can be applied. The present invention can be implemented by replacing the basic structure circuit, which is the above-mentioned secondary resonant circuit, in each integrator. The same applies to a circuit in which the positive phase integrator circuit in the basic structure circuit of FIG. 6 is replaced with a negative phase integrator circuit, and the negative phase integrator circuit is replaced with a positive phase integrator circuit at the same time.

なお、実際の製作にあたつては、スイツチS12
S13,S16は常に同電位であるので一つのスイツチ
で実現することが可能である。又同様にスイツチ
S32,S33も一つのスイツチで実現することが可能
である。
In addition, for the actual production, the Switch S 12 ,
Since S 13 and S 16 are always at the same potential, it is possible to realize this with one switch. Similarly, switch
S 32 and S 33 can also be realized with one switch.

以上本発明の僅かな実施例を示したに留まり、
例えば本発明の構成回路に用いた第1図に示した
差動入力積分器に限らず他の型式の差動入力積分
回路を用いる等、本発明の精神を脱することなし
に種々の変型変更をなし得るであろう。
The above has only shown a few embodiments of the present invention,
For example, various modifications and changes may be made without departing from the spirit of the present invention, such as using not only the differential input integrator shown in FIG. 1 used in the constituent circuit of the present invention but also other types of differential input integrating circuits. will be able to do it.

(発明の効果) 本発明は上記のような構成であり、本発明によ
れば、従来の低感度スイツチトキヤパシタフイル
タに比して通過周波数帯域内において低感度であ
り、特に中心周波数にて素子感度を全く有しない
スイツチトキヤパシタフイルタが構成できるた
め、半導体基板上にモノリシツクに構成する場
合、最小容量の小容量化に伴う小型密実化や高い
歩留りにて精密フイルタが構成できるなどの利点
が得られる。
(Effects of the Invention) The present invention has the above-described configuration, and according to the present invention, the sensitivity is lower within the pass frequency band than the conventional low sensitivity switch capacitor filter, and the element is particularly sensitive at the center frequency. Since it is possible to construct a switched capacitor filter that has no sensitivity at all, when it is constructed monolithically on a semiconductor substrate, there are advantages such as miniaturization due to the small minimum capacitance and the ability to construct precision filters with high yield. can get.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は差動入力スイツチトキヤパシタ積分回
路を示す接続図、第2図は従来のリープフロツグ
形スイツチトキヤパシタフイルタを示す接続図、
第3図は抵抗両終端形LC低域通過フイルタの接
続図、第4図は第3図のフイルタのシグナルフロ
ーグラフ、第5図は本発明のスイツチトキヤパシ
タフイルタの第1の実施例を示す接続図、第6図
は本発明のスイツチトキヤパシタフイルタの第2
の実施例を示す接続図である。 S11,S12,S13,S14,S21,S22,S31,S32,S41
S42;スイツチ、C1,C2,C4,C6,C8;キヤパシ
タ、(M1,C3),(M2,C5),(M3,C7),(M4
C9);積分回路。
Fig. 1 is a connection diagram showing a differential input switch capacitor integration circuit, Fig. 2 is a connection diagram showing a conventional leapfrog type switch capacitor filter,
Fig. 3 is a connection diagram of a resistor-double-terminated LC low-pass filter, Fig. 4 is a signal flow graph of the filter in Fig. 3, and Fig. 5 shows a first embodiment of the switch capacitance filter of the present invention. The connection diagram, FIG. 6, is the second one of the switch capacitor filter of the present invention.
It is a connection diagram showing an example of. S 11 , S 12 , S 13 , S 14 , S 21 , S 22 , S 31 , S 32 , S 41 ,
S 42 ; Switch, C 1 , C 2 , C 4 , C 6 , C 8 ; Capacitor, (M 1 , C 3 ), (M 2 , C 5 ), (M 3 , C 7 ), (M 4 ,
C 9 ); Integrating circuit.

Claims (1)

【特許請求の範囲】 1 スイツチを伴う一つのキヤパシタにて正相及
び逆相入力の差動入力積分を行う形のスイツチト
キヤパシタ積分回路をN個(Nは2以上の自然
数)具備し、入力信号電圧及び第1の積分回路の
出力が一つのキヤパシタ及びスイツチを介して
各々正相、逆相にて第1の積分回路に入力し、更
に、入力信号電圧及び第2の積分回路の出力が他
の一つのキヤパシタ及びスイツチを介して各々正
相、逆相にて第1の積分回路に入力し、第2から
第N−1の積分回路には、各々第I−1及びI+
1の積分回路の出力が一つのキヤパシタ及びスイ
ツチを介して各々正相、逆相にて第Iの積分回路
に入力する態様をもち、第Nの積分回路には第N
−1及び第Nの積分回路の出力が一つのキヤパシ
タ及びスイツチを介して各々正相、逆相にて入力
する様になされてなる事を特徴とするスイツチト
キヤパシタフイルタ。 2 前記Nの値が4であるごとき特許請求の範囲
第1項記載のスイツチトキヤパシタフイルタ。 3 スイツチを伴う一つのキヤパシタにて正相及
び逆相入力の差動入力積分を行う形のスイツチト
キヤパシタ積分回路をN個(Nは2以上の自然
数)具備し、各々第1及び第2、第3及び第4の
ごとく各二つの積分回路の対においては一つの積
分回路の出力が他の積分回路の正相入力となり、
更にその出力がもとの積分回路の逆相入力となる
ようなループを形成しつつも、第1の積分回路の
入力には入力信号電圧と第1の積分回路の出力と
が一つのキヤパシタ及びスイツチを介して各々正
相、逆相にて入り、更に、入力信号電圧と第3の
積分回路の出力とが一つのキヤパシタ及びスイツ
チを介して入力され、第3より第2N−3の積分
回路には、各々第2I−1及び第2I+3の積分回路
の出力が一つのキヤパシタ及びスイツチを介して
各々正相、逆相にて第2I+1の積分回路に入力す
る態様をもち、第2N−1の積分回路には第2N−
3及び第2N−1の積分回路の出力が各々正相、
逆相にて入力する様になされてなる事を特徴とす
るスイツチトキヤパシタフイルタ。 4 前記Nの値が2であるごとき特許請求の範囲
第3項記載のスイツチトキヤパシタフイルタ。
[Scope of Claims] 1. N switch capacitor integration circuits (N is a natural number of 2 or more) are provided, each of which performs differential input integration of positive-phase and negative-phase inputs using one capacitor with a switch. The signal voltage and the output of the first integrating circuit are input to the first integrating circuit in positive phase and negative phase through one capacitor and a switch, respectively, and the input signal voltage and the output of the second integrating circuit are The signals are input to the first integrating circuit in positive phase and negative phase through another capacitor and a switch, and the I-1 and I+
The output of the first integrating circuit is input to the first integrating circuit in positive phase and negative phase through one capacitor and switch, and the Nth integrating circuit
A switched capacitor filter characterized in that the outputs of the -1 and Nth integrating circuits are inputted in positive phase and negative phase through one capacitor and one switch, respectively. 2. The switch capacitor filter according to claim 1, wherein the value of N is 4. 3. N switched capacitor integration circuits (N is a natural number of 2 or more) are provided, each of which performs differential input integration of positive-phase and negative-phase inputs using one capacitor with a switch. In each pair of two integrating circuits, such as the third and fourth, the output of one integrating circuit becomes the positive phase input of the other integrating circuit,
Furthermore, while forming a loop in which the output becomes the opposite phase input of the original integrating circuit, the input signal voltage and the output of the first integrating circuit are connected to one capacitor and the output of the first integrating circuit. The input signal voltage and the output of the third integrating circuit are inputted through a switch in positive phase and negative phase, respectively, and the input signal voltage and the output of the third integrating circuit are inputted through one capacitor and a switch, and the third integrating circuit is connected to the 2N-3 integrating circuit. In this case, the outputs of the 2I-1 and 2I+3 integrator circuits are input to the 2I+1 integrator circuit in positive phase and in reverse phase through one capacitor and switch, respectively, and the outputs of the 2N-1 integrator The integrator circuit has a 2nd N−
The outputs of the 3rd and 2N-1 integrating circuits are each in positive phase,
A switch capacitor filter characterized by inputting in reverse phase. 4. The switch capacitor filter according to claim 3, wherein the value of N is 2.
JP1811883A 1983-02-08 1983-02-08 Switched capacitor filter Granted JPS59144216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1811883A JPS59144216A (en) 1983-02-08 1983-02-08 Switched capacitor filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1811883A JPS59144216A (en) 1983-02-08 1983-02-08 Switched capacitor filter

Publications (2)

Publication Number Publication Date
JPS59144216A JPS59144216A (en) 1984-08-18
JPH0225565B2 true JPH0225565B2 (en) 1990-06-04

Family

ID=11962686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1811883A Granted JPS59144216A (en) 1983-02-08 1983-02-08 Switched capacitor filter

Country Status (1)

Country Link
JP (1) JPS59144216A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1215374B (en) * 1987-03-05 1990-02-08 Sgs Microelettronica Spa ACTIVE INTEGRATED ELECTRONIC FILTER WITH VERY LOW SENSITIVITY TO COMPONENTS 'AIR.
JP6509756B2 (en) * 2016-02-25 2019-05-08 日本電信電話株式会社 Filter circuit

Also Published As

Publication number Publication date
JPS59144216A (en) 1984-08-18

Similar Documents

Publication Publication Date Title
JP2964149B2 (en) Filter circuit
US4716388A (en) Multiple output allpass switched capacitor filters
JPH1051247A (en) Full differential analog circuit
US5424675A (en) Full differential type analog circuit having parallel oppositely connected capacitors to eliminate unbalanced parasitic capacitances
US4924189A (en) Two-port switched capacitor filter netowrk with linearized phase/frequency response
US4338571A (en) Low sensitivity switched-capacitor ladder filter using monolithic MOS chip
JPH0225565B2 (en)
JP2664675B2 (en) Bandpass filter
GB2198303A (en) Amplifier circuit arrangement
Hou et al. Universal cascadable current-mode biquad using only four CCIIs
US4245202A (en) Floating gyrator having a current cancellation circuit
Dumawipata et al. Cascadable current-mode multifunction filter with two inputs and three outputs using CDTAs
JPS61170113A (en) Second order active phase equalizer
JPH0621758A (en) Biquad ota-c filter
Nedungadi et al. Generalized second‐order active R filters
CA1042080A (en) Multipurpose active filter network
RU2058058C1 (en) Broad-band active piezoelectric filter
Chiang et al. Design of a CMOS fully-differential continuous-time tenth-order filter based on IFLF topology
Schaumann et al. MOS compatible, all-capacitor biquadratic active filters
Prodanov Robust high-pass and notch Gm-(grounded) C biquads: How many different topologies are there?
JPH02179111A (en) Filter circuit
JPH0964687A (en) Active filter
Lafser et al. A versatile RC-active circuit for instrumentation
JPH03267806A (en) Balanced active filter
GB2220092A (en) Integrating circuit